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white matter. Myriocin partially resolved these effects corresponding with
improvements in neurobehavioral function. Conclusion: Therapeutic strate-
gies that support cerebral white matter myelin expression of sulfatide and
sphingomyelin may help remediate cognitive-behavioral dysfunction follow-
ing chronic heavy alcohol consumption in humans.
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1. Introduction

Chronic heavy and repeated binge alcohol exposures adversely alter brain struc-
ture and metabolism across the lifespan [1]. Long-term consequences include
cognitive-motor and visual-spatial deficits and impairments in executive func-
tion [2], which can progress to dementia [3] [4]. Major brain targets of alcohol’s
neurotoxic and neurodegenerative effects include the cerebral cortex (anterior
frontal and temporal lobes), hippocampus, white matter, including frontal lobe
and corpus callosum, and the cerebellum. Macroscopically, these effects are ma-
nifested by atrophy with ventriculomegaly. Although alcohol-related brain de-
generation is consistently associated with disproportionate white matter damage
[1] [5] [6] [7] [8] [9], studies have remained limited due to technical difficulties
with the analysis of myelin, which has a very high dry mass of lipid (70%) com-
pared with protein (30%). However, it is the unusually abundant lipid composi-
tion that enables myelin to provide the insulation needed for efficient neuro-
transmission.

White matter lipids include mainly phospholipids, cholesterol, and sphingoli-
pids. Although chronic alcohol exposures alter most lipid subtypes [10] [11],
sphingolipids are of particular interest because of their functional roles in cogni-
tive and motor activities, lipid rafts, and signal transduction [12] [13] [14] [15]
[16]. Alcohol has been shown to reduce expression of sphingomyelin and sulfa-
tide while increasing expression of ceramides in white matter [10] [17] [18]. Low
levels of ceramide are needed for normal brain functions including metabolism,
but high levels can be neurotoxic, inhibit signaling through cell survival and
metabolic pathways, increase oxidative stress and mitochondrial dysfunction, and
promote neuroinflammation [19]. On the other hand, reduced expression of
sulfatide or sphingomyelin in various disease states, including after chronic al-
cohol exposures, has been linked to demyelination and cell death with impair-
ments in cognition, learning, memory, and performance [19] [20]. Pathophysio-
logical states that increase sphingomyelin degradation or sulfatide catabolism via
arylsulfatase A and galactosylceramidase promote ceramide accumulation. Cor-

respondingly, experimental administration of short-chain ceramides impairs spa-
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tial learning and memory and increases molecular and biochemical indices of
neurodegeneration in the brain [21]. These findings suggest that alcohol-related
white matter degeneration could potentially be halted or reversed by agents that
prevent accumulation of ceramides in the brain.

Myriocin is a fungus-derived natural product that has been incorporated into
traditional Chinese medicine to achieve eternal youth. Myriocin was approved
by the United States Food and Drug Administration (FDA) under the names,
“ISP-1” and “FTY720” and is now an oral drug used for inflammatory demyeli-
nating diseases including multiple sclerosis [22]. One of its main positive effects
is to inhibit T cell-mediated inflammation [23]. However, at high doses, it can
inhibit protein kinase C activity and suppress growth of tumor or normal cells
[23] [24] [25]. Biochemically, myriocin disrupts ceramide synthesis by blocking
the essential enzyme serine palmitoyltransferase. In previous human and expe-
rimental models of steatohepatitis caused by chronic alcohol exposure or obesity
with metabolic syndrome, myriocin treatment resolved the hepatic architectural
and molecular pathologies [26]. The present research project was designed to
determine if similar effects of myriocin occurred in frontal cerebral white matter
of an established model of alcohol-related white matter degeneration and whether
the treatments improved cognitive behavioral functions and normalized white

matter sphingolipid profiles.

2. Methods

1) General: The Institutional Animal Care and Use Committee (IACUC) at
the Lifespan/Rhode Island Hospital approved the use of rats for this experiment.
Throughout the experiment, rats were housed under standardized humane con-
ditions and kept on a 12-hour light/dark cycle with free access to food. All expe-
riments were performed in accordance with our IACUC approved protocols and
conformed with guidelines established by the National Institutes of Health.

2) Experimental Model: Long Evans male and female 4 weeks old rats (Har-
lan Sprague Dawley, Inc., Indianapolis, IN, USA) were subdivided to generate a
4-way model to examine the effects of chronic + binge alcohol feeding [11] and
myriocin treatment [26] on cognitive-behavioral functions and white matter bi-
ochemical pathology. We used a chronic + binge instead of a standard chronic
model of ethanol feeding because previous studies demonstrated it to be more
effective for producing alcohol-mediated liver injury and simulating human dis-
ease [27] [28]. Males and females, selected at random, were included in all groups,
each of which contained 6 rats. Two sub-groups were maintained for 8 weeks on
24% ethanol-containing (caloric content) Lieber-DeCarli liquid diets (BioServ,
Frenchtown, NJ USA), and during the last 3 weeks, they were gavaged (binged)
with 2 g/kg ethanol in a liquid diet (2.5 mL total volume) late in the afternoon on
Tuesdays, Thursdays, and Saturdays. The two control groups were simultaneously
maintained on isocaloric liquid diets containing 0% ethanol, and during Weeks 5 -

8, they were gavaged with saline in liquid diet (2.5 mL total volume).
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3) Therapeutic Intervention: Previous studies showed that 2 g/kg ethanol
binge dosing raised blood alcohol to levels detected in humans who binge drink

(http://www.clinlabnavigator.com/alcohol-ethanol-ethyl-alcohol.html), yet it safe-

ly and effectively causes significant alcohol-related organ pathology [29]. For
therapeutic interventions, after 3 weeks on the liquid diets, one ethanol and one
control group were given intraperitoneal i.p.) injections of myriocin (0.3 mg/kg
in 50 ) (Sigma-Aldrich Co, St. Louis, MA) while the other two were injected
with saline (vehicle) on Mondays, Wednesdays, and Fridays for the duration of
the study. See flow diagram in Figure 1.

The alternate day schedule for gavage binging and i.p. myriocin was designed

to minimize potential interactions between the acute alcohol administration and

Control Diet+ Ethanol Diet+
Weeks 1-sacrifice Vehicle Binge

Week 7, day 5 Open Field Test
Week 8.day 1 Novel Object

Recognition Test

Week 8. day 2-5 Morris Water Maze

Week 9, day 1 Sacrifice

Brain
Harvest

Blood
Glucose

MALDI-WM
Lipidomics

Figure 1. Experimental Model: A 4-way 8-week model of chronic (24% ethanol, caloric content) + binge (2 g/Kg,
gavage) ethanol or isocaloric control (0% ethanol + saline gavage) liquid diet feeding with (0.3 mg/kg, i.p.) or
without (saline, i.p.) myriocin treatment was generated in 4-week old Long Evans male and female rats as de-
picted in the diagram. Binge ethanol or vehicle administrations were performed on Tuesday, Thursday, and Sat-
urday afternoons of Weeks 6 - 8, and myriocin (or vehicle) treatments were administered on Monday, Wednes-
day, and Friday of Weeks 3 through 8. Neurobehavioral tests including Open Field (OF), Novel Object Recogni-
tion (NOR), and Morris Water Maze (MWM) tests were performed during Weeks 7 and 8, in the mornings,
prior to ethanol/saline gavages and i.p. myriocin/saline injections. Upon sacrifice, blood samples were obtained
and brains were harvested.
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drug. Alcohol can alter the pharmacokinetics of various drugs including absorption
and metabolism, and alcohol’s pharmacokinetics can be altered by drugs [30] [31]
[32]. In humans, the elimination half-life of the FT'Y720 synthetic structural analo-
gue of myriocin ranges between 89 and 157 hours, irrespective of dose [33] [34].

a) Model Analysis: Rats were monitored daily to ensure adequate food intake,
and weekly for body weight. During the mornings of the final week of the experi-
ment, all rats were subjected to three sets of neurobehavioral testing. On Monday,
the rats were evaluated with the Open Field and Novel Object Recognition tests,
and from Tuesday through Friday, they were evaluated by Morris Water Maze
testing (see details below). All rats were fully awake and alert and exhibited no
signs of intoxication at testing. Ample breaks (at least 10 minutes) were allowed
between tests. At the end of the experiment (at sacrifice), morning blood alcohol
levels (cardiac) were measured using an Analox GM7 Analyzer (Analox Instru-
ments, Lunenburg, MA) and blood glucose was measured with a One-Touch II
glucometer (Lifescan Inc, Milpitas, CA) in all rats. The rats were then sacrificed by
cardiac puncture and exsanguination under deep isoflurane anesthesia. The brains
were harvested immediately, and a standardized 3-mm thick coronal slice made
from a cut just anterior to the temporal poles and a second cut just posterior to the
infundibulum, was stored frozen at —80°C for later studies.

b) Open Field Test: Open Field (OF) testing was used to assess exploratory
behavior/anxiety and locomotor activities [35] [36] [37]. This was accomplished
using a standard size acrylic box equipped with an overhead video camera. The
rats were individually placed in the empty field facing the wall and allowed to
explore for 5 minutes. Anxiety-like behavior was reflected by the latencies in ar-
riving at the center, time spent in the center, and number of entries into the
center. The results were analyzed with Ethovision 13.0 software. Between tri-
als/tests, the OF apparatus was cleaned with 70% ethanol.

c) Novel Object Recognition test (NOR): NOR testing to assess recognition
learning and memory, was performed in the same apparatus used for OF testing
[38]. After an initial 5-minute period of acclimation, the familiarization phase
was initiated by placing two identical objects side by side onto the maze floor
and permitting the rats 10 minutes to explore and get familiarized with the ob-
jects. Then, 2 hours later, one of the original objects was replaced with a novel
object and the rats were permitted 10 minutes of exploration. The number and
percentage of time spent investigating the novel object relative to the familiar
object, Le. preference for the novel object, was recorded as an index of memory.
Orientation-based preference was minimized by placing the rats into the box
facing the wall opposite the objects.

d) Morris Water Maze: MWM testing was used to assess spatial learning and
memory [39]. In brief, rats were subjected to 3 daily trials in which the latencies
(seconds) required to locate and land on the platform were recorded. On Day 1,
the platform was visible, but on Days 2 - 4, the platform was submerged. On

Days 3 and 4, the maze entry quadrants were randomized for each trial. The rats
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were allowed 120 seconds to locate the platform, after which they were guided.
Recordings of the trials were analyzed using the Ethovision 13.0 software. Area-
under-curve calculations were made for the 3 daily trials. Data were analyzed by
ANOVA with post hoc Tukey and linear trend tests.

e) Matrix-assisted laser desorption/ionization imaging mass spectrometry
(MALDI-IMS): Detailed methods have been reported elsewhere [11] [17] [40].
In brief, fresh frozen 1.5-mm diameter cores of anterior frontal white matter were
excised with a Histoarray tool and embedded in a modified optimum cutting
temperature (OCT) medium. Cryosections, 8 um thick, were thaw-mounted onto
indium tin oxide (ITO)-coated slides (Delta Technologies, Loveland, CO), and
sublimed with 5-dehydroxybenzoic acid (DHB; Sigma-Aldrich Co, St. Louis,
MO) as matrix [17] [40] [41]. External mass calibration was achieved by depo-
siting 144 of a standard peptide mixture (Peptide Calibration Standard II, Bruker
Daltonics) with matrix onto the slide after sublimation. The mixture’s seven ca-
libration points had masses ranging between 377 and 2463 Da, allowing for mass
accuracy for sphingolipids. The sections were imaged in the negative ion mode
using a reflectron geometry MALDI-time-of-flight (TOF)/TOF mass spectrome-
ter (Ultraflextreme, Bruker Daltonics, Bremen, Germany), and analyzed by fo-
cusing a Smartbeam II Nd:YAG laser onto ~75 um? areas of tissue [17] [40] [42].
Negative ion mode imaging is optimum for detecting sulfatides [43] [44].

f) Lipid Analysis: Sphingolipids were identified by generating production
spectra with tandem mass spectrometry (LIFT-TOF/TOF) and fragment ion
searches in LIPID MAPS (https://www.lipidmaps.org/). Lipid ion assignments/

identifications were made by comparing the precursor and product ion m/z val-
ues with catalogued data in LIPID MAPS and confirmed by TOF as previously
described [17] [40]. Alternatively, lipid ion assignments were based on published
reports [45]-[50].

g) Data Analysis. MALDI data were processed and visualized with Flex-
Imaging software v4.0 (Bruker Daltonics, Billerica, MA). Results were norma-
lized to total ion count and analyzed using ClinProTools v3.0 (Bruker Daltonics,
Billerica, MA). M/z values for each sample were aligned together in Excel based
on their experimental groups. Lipids were identified by their m/z values using
literature and the LIPID MAPS database. The m/z values with multiple identifi-
cations were further analyzed by MS/MS. Heatmaps provided focused inter-group
comparisons. For the heatmap, lipid profiles based on average intensities of ex-
pressed lipid ions were compared with respect to ethanol exposure and myriocin
treatment in GeneCluster 3.0 [51]. Hierarchical clustering was applied, and the
dendrogram was displayed using Java TreeView [51]. Inter-group differences
were compared by Two-way ANOVA, and the post hoc Tukey repeated meas-
ures test. Principal component analysis (PCA) was used to generate 2-D and 3-D
plots to compare the control with experimental groups with respect to their
overall patterns of lipid ion expression. Data bar plots generated with Microsoft
Excel 2016 Conditional Formatting) (Microsoft Corporation, Redmond, WA,
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USA) were used to display Inter-group comparisons and the differences in mean
lipid expression were analyzed using T-tests with a 1% false discovery rate
(GraphPad Prism 8.2, La Jolla, CA, USA).

3. Results

1) Effects of Ethanol and Myriocin Treatments: Blood alcohol concentrations
were similarly elevated in both ethanol groups (+myriocin) (53.4 - 74.65) relative
to controls (7.1 - 9.3). Mean blood glucose was highest in the Ethanol + Vehicle
(EV), and significantly reduced in the Ethanol + Myriocin (EM) group relative to
the other three groups (P < 0.05). The mean blood glucose levels in the control
groups were similar and intermediate between those measured in EV and EM

(Figure 2). Despite adequate food intake, the mean body weights of ethanol-fed
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Figure 2. Effects of ethanol and myriocin treatments on (a) blood glucose; (b) body weight;
(c) brain weight: A 4-way 8-week experimental model was generated in adult Long Evans
male and female rats (n = 8/group) as diagramed in Figure 1. The treatment groups were
as follows: CV= control diet + vehicle; CM= control diet + myriocin; EV = ethanol diet +
vehicle; EM = ethanol diet + myriocin. All measurements were obtained at sacrifice. The
box plots depict the mean (horizontal bar), 95% confidence limits (upper and lower
boundaries of the box), and range (stems) corresponding to each parameter measured.
Data were analyzed by one-way ANOVA with post hoc Tukey tests. Significant P-values

and trends (italicized) are shown in the panels.
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rats were below control. EM’s mean body weight was significantly lower than the
other three groups’. Mean brain weight was significantly lower in the EV (1.87
0.06) relative to Control + Vehicle (CV) (1.96 + 0.04; p < 0.05) and Control +
Myriocin (CM) (1.98 + 0.07; p < 0.05), whereas the mean brain weight for EM
(1.90 £ 0.08) did not significantly differ from either group (Figure 2). However,
further analysis of sex effects demonstrated that only EV females had a signifi-
cantly reduced mean brain weight (1.84 + 0.05) relative to CV females (1.96 +
0.05; p < 0.05) and CM males (1.98 + 0.08; p < 0.05). Most important was that
myriocin normalized mean brain weight in ethanol-exposed rats but had no sig-
nificant effect on control brain weight.

2) Open Field test (OF): The OF test provides a measure of anxiety marked
by prolonged latency in arriving at the center, less time spent in the center, and
fewer entries into the center of the test area. Ethanol-fed rats spent lower mean
percentages of time in the field center, and exhibited lower percentages of entries
into the field’s center relative to controls. However, among ethanol-fed rats, my-
riocin treatment increased the mean percentage of time spent in the field’s cen-
ter and the frequency of field center entries relative to vehicle, but did not fully
normalize behavior (Figure 3). The CV and CM groups exhibited similar per-
formance by OF testing. The mean latencies for arriving at the field centers
overlapped and were not significantly different among the four groups due to
large standard deviations.

3) Novel Object Recognition test (NOR): NOR testing was used to assess
recognition learning and memory. Scoring was based on the number of times
and percentage of time the rats spent investigating a novel versus familiar object.
Although the mean duration and frequency of novel object investigation were
lowest in the CV group, the differences from the other three groups were not
statistically significant with respect to time spent at the novel object (Figure
4(a)), and with the exception of EM, the responses were similar in relation to
the time spent investigating the novel object (Figure 4(b)). However, myriocin
treatment of ethanol-exposed rats significantly increased the time investigating
the novel object relative to CV controls (Figure 4(b)).

4) Morris Water Maze: MWM testing of spatial learning and memory dem-
onstrated similar trial-related trends in all groups such that the mean latencies to
locate and land on the hidden platform were highest on Day 2, ie. the acquisi-
tion phase of learning and memory, and declined sharply on Days 3 and 4
(Figure 5). Correspondingly, the mean latencies were significantly longer on
Day 2 compared with Days 3 and 4 within each experimental group. Inter-group
comparisons revealed significantly longer mean latencies in the EV relative to
CV and CM, but not between EM and CV, CM, or EV on Trial Day 2 (Figure 2).
On Days 3 and 4, CV, CM and EV had similar mean latencies whereas for EM,
performance significantly improved with further reduction in mean latency be-
tween Trial Days 3 and 4 (Figure 2(d)). In addition, for EM, the mean latency
on Trial Day 4 was comparable to those measured in CV and CM, and lower
than in EV.
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Figure 3. Open Field (OF) Testing: The 4-way, 8-week model generated in male and fe-
male Long Evans rats (see Figure 1) was sub-grouped as follows: CV = control diet + ve-
hicle; CM = control diet + myriocin; EV = ethanol diet + vehicle; EM = ethanol diet +
myriocin. Performance on the OF test was assessed on Monday of Experimental Week 8
and data were electronically recorded and analyzed (Ethovision 13.0 software) with re-
spect to the (a) percentage of time spent in the center; (b) the percentage of entries into
the center; (c) the latency period (seconds) for arriving at the center of the open field. The
box plots depict the mean (horizontal bar), 95% confidence limits (upper and lower
boundaries of the box), and range (stems) corresponding to each parameter measured.
Data were analyzed by one-way ANOVA with post hoc Tukey tests. Significant P-values

and trends (italicized) are shown in the panels.

5) Ethanol Effects on White Matter Sphingolipids: Results were aligned and
compared based on detectable expression of the same lipids in all samples. Li-
pids not detected in all samples were excluded from the analysis. We detected 10
sulfatides (ST) plus 3 C13 isotopes of sulfatide, 1 phosphoceramide, 2 lactosyl-
ceramides (LacCer), 1 ganglioside (GD1), 3 sphingomyelin species (SM). Com-
parisons reflecting the mean percentage inter-group differences in the levels of
lipid expression between CV and EV, CV and CM, EV and EM, and CV and EM
are depicted in databar plots (Figure 6). Bars to the left of the vertical axis indi-
cate relative reductions in lipid expression and bars to the right show increases

in lipid expression. The mean expression levels of all 13 ST (including the 3 C13
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Figure 4. Novel Object Recognition (NOR) Testing: The 4-way, 8-week model generated in male and female Long Evans rats (see
Figure 1) was sub-grouped as follows: CV = control diet + vehicle; CM = control diet + myriocin; EV = ethanol diet + vehicle; EM
= ethanol diet + myriocin. NOR testing was assessed on Monday of Experimental Week 8 and data were electronically recorded
and analyzed (Ethovision 13.0 software) with respect to the (a) time spent at the novel object and (b) time spent investigating (In)
the novel object. The box plots depict the mean (horizontal bar), 95% confidence limits (upper and lower boundaries of the box),
and range (stems) corresponding to each parameter measured. Data were analyzed by one-way ANOVA with post hoc Tukey
tests. Significant P-values are indicated.
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Figure 5. Morris Water Maze (MWM): The 4-way, 8-week model generated in male and female Long Evans rats (see Figure 1)
was sub-grouped as follows: control diet + vehicle; control diet + myriocin; ethanol diet + vehicle; ethanol diet + myriocin. MWM
testing was performed on four consecutive days (Tuesday through Friday) with three trials per day in the mornings of Experi-
mental Week 8. Latencies to locate and land on the platform were electronically captured and analyzed (Ethovision 13.0 software).
Box plots depict the mean area-under-the-curve (AUC) calculated performance over the 3 daily trials. Data were analyzed by
one-way ANOVA with post hoc Tukey tests. Significant P-values are shown in the panels.
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Figure 6. Ethanol and Myriocin effects on Frontal White Matter Sphingolipids. MALDI (negative ion mode) was
used to detect and quantify lipid expression in frontal lobe white matter of control diet + vehicle (CV); control diet
+ myriocin (CM); ethanol diet + vehicle (EV); ethanol diet + myriocin (EM) treated Long Evans rats. Databar plots
illustrate the calculated percentage differences in mean sphingolipid expression. Red bars show increased while
blue bars show reduced lipid expression. Data analysis was restricted to sphingolipids expressed in all groups and
included sulfatide (ST), C13-isotopes of ST, ceramide (Cer) including phosphorylated (CerP) and Lactosylcera-
mide (Cer), ganglioside (GD1), and sphingomyelin (SM). Inter-group comparisons of mean lipid expression were

made by T-test with 1% false discovery rate correction. P-values reflect differences in mean lipid expression indi-
cated as: NS = not significant; T = trend (0.05 < P < 0.10); *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

isotope forms), 3 of the 4 ceramides/gangliosides, and 1 of 3 SMs were reduced
by EV exposures, whereas 1 Cer and 2 SM lipids were higher in EV than CV. In
addition, both LacCers, the single GD1, and 1 of the 3 SMs (36:1) were also re-
duced by EV whereas 2 SMs and 1 PC were increased by ethanol.

6) White Matter Responses to Myriocin: Principal component analysis (PCA)
of sphingolipid expression profiles in frontal lobe white matter revealed tighter
clustering of CV with CM, and EV with EM than either control with either
ethanol-exposed group, indicating a dominant overall effect of ethanol com-
pared with myriocin (Supplementary Figure S1). Nonetheless, distinct additive
effects of myriocin were detected by heatmap displays and Two-way ANOVA
tests (Figure 7). Myriocin treatment of control rats increased frontal white mat-

ter expression of 4 ST and one C13 isotope of ST and both LacCers. Otherwise,
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Figure 7. Heatmap display of myriocin (Myr) and ethanol effects on frontal lobe white matter
sphingolipid expression as revealed by MALDI (negative ion mode). A 4-way Long Evans rat model
of chronic + binge ethanol or control diet feeding plus myriocin or vehicle treatment was used in
these studies. The mean levels of sulfatide (ST), Cl3-isotopes of ST, ceramide (Cer) including
phosphorylated (CerP) and Lactosylceramide (Cer), ganglioside (GD1), and sphingomyelin (SM)
that were detected in all groups were used to generate the heatmap in Treeview. Ion intensities are
displayed using a 7-color palette corresponding to z-scores scaled to have a mean of 0 and standard
deviation of 3.0. m/z values appear on the right-hand side. Inter-group comparisons were made
using two-way ANOVA tests. Corresponding P-values are indicated. In addition, the factor respon-
sible for the significant difference (effect) is listed (ET = ethanol, M = Myriocin; I = interaction
between ethanol and myriocin).

the effects were modest. The main effects of myriocin in ethanol-fed relative
to EV and CV were to increase expression of C13 ST(40:1)(OH). In addition,
myriocin increased expression of ST(42:0)(OH), ST(44:0) and ST(44:1)(OH),
LacCer(38:3) and LacCer(38:2) relative to EV, similar to the effects of CM com-
pared with CV. Comparisons between CV and EM largely mirrored the effects of
EM versus EV with regard to ST, but relative effects on SM and ceramide ex-

pression were modest (Figure 7).

4. Discussion

1) Study Goals and Design: This study examined the therapeutic effects of
myriocin, a potent ceramide inhibitor, on alcohol-related biochemical neuropa-

thology, focusing on its capacity to improve the integrity of white matter myelin
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and associated neurobehavioral functions. Long Evans rats were used in a well-
established 8-week, 4-way model of chronic + binge ethanol in which the ani-
mals were fed liquid diets containing 0 or 24% ethanol for 8 weeks and were
binged with ethanol or saline for the last 3 weeks; a subgroup of the control and
ethanol groups were treated with myriocin for the last 6 weeks. The chronic +
binge model produces cerebral white matter degeneration [11], mimicking the
effects of heavy drinking in humans [1] [5].

2) Gender Effects: Earlier studies showed that chronic ethanol exposures lead
to a disproportionate loss of cerebral white matter with impairments in neuro-
cognitive function. As expected, the ethanol-fed groups had lower mean brain
weights upon sacrifice; however, the variance was higher in EM compared with
EV. The subgroup analysis revealing gender-related effects such that EV females
had the smallest, i.e. most atrophic brains is not readily explained, but is consis-
tent with prior evidence that females are more vulnerable than males to the neu-
rotoxic and neurodegenerative effects of heavy alcohol consumption [52] [53].
The findings herein also demonstrate the preventive or rescue effects of myri-
ocin on brain structure. Correspondingly, ethanol exposures caused deficits in
learning and memory, but myriocin partially normalized performance on the
NOR and MWM tests.

3) Therapeutic Effects of Myriocin: NOR and MWM assess recognition
learning and spatial learning and memory respectively; typically, performance in
these tests has been correlated with hippocampal function [20] [54]. However,
growing evidence suggests that impairments in these modalities are likely me-
diated by metabolic dysfunction linked to neurodegeneration [55] [56] [57]. In a
previous study of chronic alcohol-mediated liver disease, myriocin remediated
hepatic structural and metabolic anomalies via disruption of ceramide synthesis
mechanisms [26]. Although there is no definite evidence that myriocin crosses
the blood-brain barrier (BBB), its small size and partial lipophilic structure make
direct access to the central nervous system highly likely [58]. Within our model
of alcohol-related white matter degeneration, the myriocin-associated improve-
ments in neurobehavioral test performance corresponded with the increased brain
weights in ethanol-exposed rats, supporting the concept that myriocin prevents
degeneration or restores the structural integrity of white matter following heavy
ethanol exposure.

4) Adverse Effects of Chronic + Binge Alcohol on White Matter Sphingo-
lipids: White matter is largely composed of lipid-rich myelin and is especially
vulnerable to alcohol-related injury and degeneration. Sphingolipids, including
sulfatides (which comprise 4% of total myelin lipids), sphingomyelin and gly-
cosphingolipids, together with cholesterol, are major components of white mat-
ter myelin [59]. A study published in 2005 showed that ethanol exposures sig-
nificantly alter white matter lipid profiles such that ceramide content is in-
creased [60]. Subsequently, heavy alcohol exposures were found to reduce mat-
ter myelin sulfatides and sphingomyelin and increase ceramides [61]. Although

low physiologic levels of ceramides mediate normal brain metabolism and func-
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tion, elevated toxic accumulations can cause demyelination and cell death [19]
[20]. Moreover, the potential consequences of sulfatide depletion were highlighted
by its association with ethanol-mediated neurodegeneration in humans [10] and
experimental models [11], and the earliest stages of Alzheimer’s neurodegenera-
tion [62].

5) Therapeutic Efficacy of Myriocin as a Reversal Agent for Alcohol-
Medicated White Matter Biochemical (Sphingolipid) Pathology. Myriocin, a
serine palmitoyltransferase inhibitor, reduces ceramide buildup [26], and there-
fore may provide remediation of diseases linked to matter myelin degeneration
associated with altered sphingolipid profiles. A major objective of this research
was to use MALDI-IMS to determine if myriocin treatment could ameliorate or re-
verse alcohol-mediated white matter sphingolipid biochemical pathology vis-a-vis
continued chronic + binge exposures. The results demonstrated that ethanol re-
duced sulfatide and sphingomyelin expression and that myriocin partially abro-
gated these effects by normalizing matter myelin levels of ST(44:0), ST(44:1)(OH),
and ST(42:0)(OH), although opposing effects occurred with respect to SM(32:1)
and SM(34:1). In addition, alcohol-associated increases brain ceramide-1-phosphate
levels, which also correlate with neurodegeneration [63], were reduced by myri-
ocin, as illustrated by the lowered level of CerP(34:1) (see heatmap in Figure 7).
Together, the findings suggest that the adverse effects of heavy alcohol consump-
tion on matter myelin sphingolipid composition and associated neurobehavioral
pathology can be ameliorated at least in part by myriocin treatment.

6) Potential Alternative Therapeutic Strategies: Of note is that abstinence
can partially remediate the adverse effects of alcohol on cerebral white matter
atrophy with altered sphingolipid expression, but the responses are incomplete
[11]. However, in general, it is difficult to permanently halt heavy drinking be-
havior, particularly since heavy drinking may exacerbate behaviors that drive
alcohol use disorders to progress [64]. Without effective intervention, chronic
alcohol-induced neurodegeneration progresses. However, the extent to which
the atrophy remains at least partially reversible after a prolonged period of heavy
drinking is unknown.

7) Forward View of Therapeutics for Alcohol-Related Brain Degeneration:
A key aspect of these results is that myriocin’s therapeutic effects occurred despite
continued heavy ethanol exposures, which has relevance to humans with poorly
controlled alcohol use disorders. Furthermore, the findings suggest that myri-
ocin-associated neurobehavioral improvements are associated with structural
and metabolic repair in cerebral white matter. By extension, therapeutic ameli-
oration of alcohol-mediated brain injury may enhance performance in other
modalities such as those pertaining to social functions. Future studies will di-
rectly assess the degrees to which myriocin restores the structural integrity of
white matter myelinated fibers following chronic heavy ethanol exposures, and
the maximum severity injury that can be sustained and still be remediable by

myriocin treatment.
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Figure S1. Principal Component Analysis (PCA) Plots. PCA plots of sphingolipids detected in frontal white matter by MALDI-
TOF in the negative ionization mode. Sphingolipids detected between 600 and 2000 Da mass range were compared among the
sub-groups included in the 4-way Long Evans rat model: control diet + vehicle (CV); control diet + myriocin (CM); ethanol diet +
vehicle (EV); ethanol diet + myriocin (EM). Two dimensional PCA plots displaying (a) PC1 x PC2, (b) PC2 x PC3, and (c) PC1 x
PC3 were generated in ClustVis software. X and Y axes show PC1, PC2, and PC3 that correspond to 45.5%, 14.5%, and 13.2% of
total variance, respectively. PC1 and PC3 show dominant clustering of CV with CM and EV with EM, corresponding with the
primarily ethanol effect observed by two-way ANOVA (Figure 7).
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