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Abstract 
Exact self-similar solutions to Einstein’s field equations for the Kantows-
ki-Sachs space-time are determined. The self-similarity property is applied to 
determine the functional form of the unknown functions that define the gra-
vitational model and to reduce the order of the field equations. The conse-
quences of matter, described by the energy-momentum tensor, are investi-
gated in the case of a perfect fluid. Some physical features and kinematical 
properties of the obtained model are studied. 
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1. Introduction 

Space-time symmetries are important in identifying features of space-time that 
exhibit some kind of symmetry. The most important symmetries are those that 
simplify Einstein’s field equations and provide a space-time classification based 
on the corresponding Li-algebra configuration. These symmetries preserve cer-
tain physical properties of space-time, such as metric, geodesic, curvature, Ricci 
scalar, and energy-momentum tensor. In the context of the theory of General 
Relativity (GR), symmetries have been studied based on Riemannian geometry 
and on Lyra geometry and in the framework of the theory of teleparallel gravity 
based on Weitzenböck geometry. Various types of symmetries, such as isometry, 
homothetic, conformal, Ricci and matter collineations, etc, have been thorough-
ly studied in GR [1]-[18]. Some of these symmetries have also been examined in 
the theory of teleparallel gravity [19] [20]. In the context of exact self-similar so-
lutions to Einstein’s equations in GR, based on Lyra geometry, there are very few 
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studies in the literature [21] [22] [23] [24].  
Self-similar solutions to Einstein’s field equations play an important role in 

describing asymptotic properties of more general solutions and are therefore of 
great interest in physics [25]. These solutions are relevant to astrophysics and 
critical phenomena in gravitational collapse, see the references [26] [27] [28] [29] 
[30].  

Einstein’s field equations of GR are a system of nonlinear partial differential 
equations in some independent variables, depending on the matter distribution, 
determined by the stress-energy tensor, and unknown scale factors. This com-
plicated system cannot generally be integrated without making simplistic as-
sumptions on the variables to get their exact solutions. The exact solutions of 
Einstein’s field equations are known as Lorentzian metrics obtained by solving 
these equations using the definition of energy-momentum tensor. Usually, there 
are two complementary approaches to get these exact solutions. For the first ap-
proach, one chooses a specific energy-momentum tensor model and studies the 
exact solutions corresponding to Einstein’s field equations while assuming some 
physically acceptable properties on the scale factors. In the second approach, one 
focuses on some geometrical properties that are admitted by a space-time given 
by symmetries so as to simplify Einstein’s field equations, and then searches for 
the matter source that depicts these properties. For the present investigation, we 
focus on a second approach, by assuming that a given space-time admits homo-
thetic symmetry.  

In the present work, we will focus our attention on the study of the homo-
thetic symmetry of a Kantowski-Sachs space-time and solve Einstein’s field equ-
ations without making assumptions, either on variables or on physical properties, 
as is common in the literature. We will only assume that a Kantowski-Sachs 
space-time understudy admits a homothetic vector.  

Let ( ),M g  be a space-time, that is, a smooth, 4-dimensional para-compact 
manifold M with smooth metric g of Lorentzian signature ( ), , ,+ − − − . 

A global vector field ζ  on M is said to be homothetic if in any coordinate 
domain of M one has  

 ; ; ;£ 2 ,ab a b b a ab a b ab abg g g Fζ ζ ζ ψ ζ ψ= + = ⇔ = +          (1.1) 

where £  denotes a Lie derivative and semi-colon denotes a covariant derivative 
with respect to metric connection. The vector field ζ  is said to be homothetic 
if ψ  is constant on M (proper homothetic vector field if 0ψ ≠  on M). If 

0ψ =  on M, the vector field ζ  is said to be a Killing vector field on M.  
The paper is organized as follows. In the next section, we will give a brief 

overview of the space-time understudy and obtain its physical and geometric 
properties and obtain the homothetic vector field that this space-time admits. 
Section 3 deals with Einstein’s field equations of the model. Section 4 discusses 
the solutions of Einstein’s field equations and their classifications of the space-times 
under consideration. In this Section 5, we give the kinematic quantities of the 
obtained solution. Section 6 deals with barotropic equation of state. Finally, in 
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Section 7 concluding remarks are given. 

2. Version of Model and Homothetic Vector Field 

Consider a Kantowski-Sachs space-time which is a general measure of a homo-
geneous, anisotropic space-time with a spatial section of the topology 2Sℜ× . 
The standard representation of this space-time was given by [31]  

 ( )2 2 2 2 2 2 2d d e d d sin ds t r R θ θ φΩ= − − +               (2.1) 

with the convention 0x t=  (cosmic time), 1x r=  (transverse direction), 2x θ=  
and 3x φ=  (two equivalent longitudinal directions) and the scale factors Ω  
and R are functions of t only. 

From the geometrical point of view, the line element (2.1) admits a four-pa- 
rameter continuous group of isometries that acts on space-like hypersurface and 
has no three-parameter subgroup that would be simply transitive on the orbits 
(see the references [31] and [32]). The energy-momentum distribution of this 
space-time has been studied in [33] [34] [35].  

In the following, we define the physical and geometric parameters for use in 
discussing the physical and geometric properties of the self-similar solution ob-
tained from the metric (2.1). 

The average scale factor τ  of the Kantowski-Sachs model (2.1) is given by  

 

1
3

22e sin ,Rτ θ
Ω 

=   
 

                       (2.2) 

and V represents a volume scale factor is defined as follows  

 3 22e sin .V Rτ θ
Ω

= =                       (2.3) 

In view of the metric (2.1), according to Raychaudhuri [36], the 4-acceleration 
vector, rotation, expansion scalar and shear scalar characterizing the 4-velocity  

vector field, u
t
∂

=
∂

 with components 0
a au δ=  can be written in a comoving 

coordinates system as follows  
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� �
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� � � �

                 (2.4) 

where  

( )( ; ) ( )
1 .
3ab a b a a ab a bu u u g u uσ = + − Θ +�  

The mean Hubbles parameter H is defined as follows  

 ( )1 ,
3 rH H H Hθ φ= + +                     (2.5) 
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where  

 , ,
2r

RH H H
Rθ φ

Ω
= = =
� �

                    (2.6) 

are the directional Hubble’s parameters which measure the rate of expansion in 
the directions of ,r θ  and φ  respectively. A dot denotes a derivative with re-
spect to cosmic time t. From Equations (2.2)-(2.5), we obtain  

 1 1 2 .
3 3 2

V RH
V R

τ
τ

 Ω
= = = + 

 

� � ��
                   (2.7) 

The deceleration parameter q of a Kantowski-Sachs model is an important ob-
servational quantity, which is given as follows  

 
( )

2 2 2 2

2 2

d 1 8 8 6 241
d 4

R RR R R RRq
t H R R

ττ
τ

Ω + Ω− + Ω+ = − = − = − 
  Ω +

� � � � �� ����
� � �

    (2.8) 

The anisotropic parameter of expansion δ  is defined by  

 
2 23 3

2
1 1

21 11 1 ,
3 3

i i i

i i

H H H
H HH

δ
= =

  = − = − +  
   

∑ ∑             (2.9) 

in which , 1, 2,3iH i =  represent the directional Hubble’s parameters as defined 
before. 

For the space-time under consideration (2.1), the anisotropy parameter of the 
expansion is given by 

( )
2 2 2

2

4 2 10 .
3 4

R R RR

R R
δ Ω − − Ω
=

Ω+

� � � �

� �
                (2.10) 

Study of homothetic vector fields, ( )3
0, , ,a

at rζ ζ θ φ
=

= , on Kantowski-Sachs 
model (2.1) is based on the examination of the ten equations obtained from the 
first equation of (1.1). For the model (2.1), the homothetic equations (1.1) are 
reduced to the following system of equations:  

 0
,0 ,ζ ψ=                          (2.11) 

0 1
,1 ,0e 0,ζ ζΩ− =                       (2.12) 

0 2 2
,2 ,0 0,Rζ ζ− =                       (2.13) 

0 2 2 3
,3 ,0sin 0,Rζ θζ− =                    (2.14) 

1 0
,1 ,

2
ζ ζ ψ

 Ω
+ = 
 

�
                    (2.15) 

1 2 2
,2 ,1 0,e Rζ ζΩ + =                     (2.16) 

1 2 2 3
,3 ,1e sin = 0,Rζ θζΩ +                   (2.17) 

2 0
,2 ,R

R
ζ ζ ψ

 
+ = 
 

�
                    (2.18) 

2 2 3
,3 ,2sin 0,ζ θζ+ =                     (2.19) 
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3 0 2
,3 cot .R

R
ζ ζ θζ ψ+ + =

�
                  (2.20) 

Integrating (2.11) with respect to t and using the obtained result back into (2.12), 
(2.13) and (2.14), after some algebraic calculations, we obtain  

 0
0 ,t cζ ψ= +                          (2.21) 

( )
( )
( )

1
1

2
2

3
3

, , ,

, , ,

, , ,

F r

F r

F r

ζ θ φ

ζ θ φ

ζ θ φ

=

=

=

                      (2.22) 

where 0c  is a constant of integration and ( )1 , ,F r θ φ , ( )2 , ,F r θ φ  and  
( )3 , ,F r θ φ  are arbitrary functions that are to be determined. 

Differentiating Equations (2.15) and (2.18) with respect to t and using (2.11) 
and (2.21), we get respectively  

 
0

,
2

a
t cψ

Ω
=

+

�
                       (2.23) 

0

,R b
R t cψ
=

+

�
                       (2.24) 

where a and b are non-vanishing constants of integration. Substituting these re-
sults back into Equation (2.15) and Equation (2.18), using Equations (2.16), 
(2.17) and (2.19), we get  

 ( )1
1,a r cζ ψ= − +                     (2.25) 

( )2
2 ,b cζ ψ θ= − +                     (2.26) 

where 1c  and 2c  are constants of integration. 
Using the previous results, we find from Equations (2.17) and (2.19) that 3ζ  

dos not depend on the variables r and θ . Consequently, Equation (2.20) leads  

to 
4

θ =
π  or bψ = , and 2 0c = ; in both two cases 3ζ  must equal constant.  

Since, we discuss the space-time under consideration for all values of θ , there-
fore we choose the second case  

 .b ψ=                          (2.27) 

Hence  

 3
3 ,cζ =                         (2.28) 

where 3c  is a constant of integrations. 
Without loss of generality, we assume that 1 2 3 0c c c= = = , therefore, from 

Equations (2.21), (2.25), (2.26) and (2.28), we obtain the following homothetic 
vector field  

 ( ) ( )0 .t rt c a rζ ψ ψ= + ∂ + − ∂               (2.29) 

From Equations (2.23) and (2.24), using (2.27), we get  

https://doi.org/10.4236/jamp.2021.912207


R. M. Gad et al. 
 

 

DOI: 10.4236/jamp.2021.912207 3170 Journal of Applied Mathematics and Physics 
 

 0

0

2 ,

,

a
t c

R
R t c

ψ

ψ
ψ

Ω =
+

=
+

�

�                          (2.30) 

Integrating the previous equation, we get the following self-similar solution for 
the metric (2.1) as follows (We took the constants of integration by unity)  

 ( )
2

0

0

ln ,
.

a
t c

R t c

ψψ

ψ

Ω = +

= +
                      (2.31) 

Our aim in the next section is to use the exact self-similar solution (2.31) in 
Einstein’s field equations to obtain the dynamical variables.  

3. Einstein’s Field Equations in the Case of a Perfect Fluid 

In this section, we will solve Einstein’s field equations by assuming that the 
space-time under study admits a homothetic vector field and considering the 
matter is described by a perfect fluid. 

Einstein’s field equations are given by  

 1 ,
2ab ab abR Rg T− = −                       (3.1) 

(For convenience, we assumed that natural units 8 1c G= π = , G is the Newton’s 
gravitational constant and c is the speed of light in the vacuum), where abR  is 
the Ricci tensor, R is the Ricci scalar and abT  is the energy momentum tensor 
that describes the physical ingredients of the space-time. In the case of a perfect 
fluid abT  is given by 

( ) ,ab a b abT p u u pgρ= + −                    (3.2) 

where p is the pressure, ρ  the energy density and au  the four velocity vector, 
it must verify £ 0

a auζ = . For the space-time (2.1), the contravariant and cova-
riant components of the 4-velocity vector can be defined by ( )1,0,0,0a

au u= =  
and these are verified 1a b

abg u u = . 
For the line element (2.1), Einstein’s field Equations (3.1) with (3.2) give the 

following system of equations  

 
2

2 2

1R R
R R R

ρΩ
+ + =

� � �
                     (3.3) 

2

2 2

2 1R R p
R R R

+ + = −
�� �

                     (3.4) 

2

2 2 4
R R p
R R

Ω Ω Ω
+ + + = −
�� �� � � �

                   (3.5) 

From the equation of stress-energy conservation ; 0b
a bT = , we get  

 ( ) 2 0.
2

Rp
R

ρ ρ
 Ω

+ + + = 
 

� �
�                  (3.6) 
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4. Solutions of Einstein’s Field Equations 

In this section, we’ll solve Einstein’s field equations for the space-time under 
study without making any assumption. We’ll just assume that the space-time 
admits a homothetic vector. Using the scale factors (2.31) deduced from the 
condition that the space-time admits a homothetic vector. Equations (3.3)-(3.5) 
can be written as follows: 

Equation (3.3) gives  

 
( )

2

2
0

2 1,a
t c

ψ ψρ
ψ
+ +

=
+

                       (4.7) 

and Equations (3.4) and (3.5) give, respectively  

 
( )

2

2
0

1 ,p
t c
ψ

ψ
+

= −
+

                       (4.8) 

( )

2

2
0

.ap
t cψ

= −
+

                       (4.9) 

From Equations (4.8) and (4.9), we obtain  

 2 21 .aψ + =                         (4.10) 

Using this relation in (4.7), we get  

 
( )

2 2

2
0

2 1 1
.

t c
ψ ψ ψ

ρ
ψ

+ + +
=

+
                  (4.11) 

Equations (4.8) (or (4.9)) and (4.11) give the dynamical variables of the obtained 
self-similar solution (2.31). In the next section, we give its kinematic variables. 

5. Kinematic Variables 

In this section we give the kinematic quantities of the obtained solution (2.31) as 
follows: 

The average scale factor τ  and the volume scale factor V are given, respec-
tively, by  

 ( )
2

1
32 1

0 sin ,t c
ψ ψ

ψτ ψ θ

 + + 
 

 
 = +  
 

              (5.12) 

( )
22 1

3
0 sin .V t c

ψ ψ

ψτ ψ θ

 + + 
 

= = +              (5.13) 

In view of the solution (2.31), the 4-acceleration vector, rotation, expansion sca-
lar and shear scalar can be written, respectively, in a comoving coordinates sys-
tem as follows  

2

0

0,

1 2
,

au

t c
ψ ψ
ψ

=

+ +
Θ =

+

�
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( )
( )

2 2 2
2

2
0

0,

5 1 2 1 12
.

9

ab

t c

ω

ψ ψ ψ ψ
σ

ψ

=

+ + + +
=

+

              (5.14) 

The directional and mean Hubbles parameters are  

 
2

0 0

1
, ,rH H H

t c t cθ φ
ψ ψ
ψ ψ

+
= = =

+ +
             (5.15) 

2

0

2 1
3

H
t c

ψ ψ
ψ
+ +

=
+

                      (5.16) 

The deceleration parameter q and the anisotropic parameter of expansion δ  of 
the model (2.31) are given, respectively, as  

 
( )

2 2

2
2

1 1
,

1 2
q

ψ ψ ψ

ψ ψ

− + +
= −

+ +
                   (5.17) 

( )
( )
2 2

2
2

2 10 1 2

3 1 2

ψ ψ ψ
δ

ψ ψ

− + +
=

+ +
                 (5.18) 

6. Barotropic Equation of State 

As indicated in the references [8] [9] and [10] that if the matter is described by a 
perfect fluid, then the only barotropic equation of the state compatible with 
self-similarity is  

 ( )1p λ ρ= −                       (6.19) 

where ρ  is the energy density, p is the pressure and λ  is a constant in the 
range 1 2λ≤ ≤ . However, this equation of state is physically consistent in the 
whole range of λ . When 1λ = , the Equation (6.19) describes dust, 4 3λ =  
gives the equation of state for radiation and 2λ =  considers the effective “stiff 
fluid” distribution. It would have been applied in the early Universe, because in 
this case, the speed of sound equals the speed of light, so there is no matter in 
this Universe could be stiffer. 

From Equations (4.8) and (4.11), we get each of p and ρ  depends on ψ . 
For comparison with the equation of state (6.19), we put  

 
2

2 2

1 1.
2 1 1

p ψ λ
ρ ψ ψ ψ

+
= − = −

+ + +
              (6.20) 

Now, we will study the following cases:  
Case I: Dust case, 1λ =  
From Equation (6.20), we get 2 1ψ = − , which gives imaginary values of ψ . 

Then the equation of state (6.19) does not satisfy in this case.  

Case II: Radiation case, 
4
3

λ =  
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In this case we obtain imaginary values of ψ , where 
4
3

ψ = − . As in the pre-

vious case, the equation of stat (6.19) does not also satisfy.  
Case III: Stiff fluid case, 2λ =  
In this case Equation (6.20) leads to an impossible equation of ψ . Conse-

quently, the barotropic equation of state (6.19) does not also satisfy. 
From the above discussion we obtained new classes of perfect fluid solutions 

whose matter energy density ρ  and pressure p do not satisfy the barotropic 
equation of state (6.19). 

7. Discussion and Conclusion 

This work is devoted to studying the symmetries in particular self-similar sym-
metry of a Kantowski-Sachs model in the framework of Riemannian geometry. 
We have focussed on this kind of symmetry since space-time admitting it is sta-
ble from the dynamical system point and therefore is important from the physi-
cal one. For a Kantowski-Sachs space-time, we have solved the homothetic equa-
tions and found the homothetic vector field that this space-time admits. Moreo-
ver, the solution of homothetic equations helped us to get scale factors. We have 
used these scale factors in Einstein’s field equations and found the dynamical va-
riables, the energy density ρ  and the pressure p, which depend on the cosmic 
time t. Using the values obtained for these variables, we found that the equation 
of state, which was indicated by Cahill and Taub [8] and Bicknell and Henriksen 
[9], was not satisfied in the three cases, namely, dust, radiation and stiff fluid. 
Therefore, the obtained self-similar solution can be considered as an addition to 
the rare perfect fluid solutions which do not satisfy any barotropic equation of 
state. We discussed the kinematical quantities of the obtained solution (2.31), we 
found that the model is not accelerated and expanding with time because its vo-
lume element increases as the time increases, which gives essentially empty un-
iverse for large time. The Hubble parameter, the scalar expansion and the shear 
scalar assume infinitely large values whereas with the growth of cosmic time they 
decrease to null values as t →∞ . The behavior of the fluid is time-dependent 
and can be physically reasonable. For the obtained solution the limit of the 

ratio as t →∞  is lim 0t
σ

→∞
  ≠ Θ 

, that is, the anisotropy of the model is 

maintained throughout. 
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