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Abstract 
A de-centralised load management technique exploiting the flexibility in the 
charging of Electric Vehicles (EVs) is presented. Two charging regimes are 
assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 
06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) 
between 06:00 hours and 16:30 hours of the same day. During the CCR, the 
charging of EVs is coordinated and controlled by means of a wireless 
two-way communication link between EV Smart Charge Controllers 
(EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the 
local LV distribution substation. The EVLC sorts the EVs batteries in as-
cending order of their states of charge (SoC) and sends command signals for 
charging to as many EVs as the transformer could allow at that interval based 
on the condition of the transformer as analysed by the Distribution Trans-
former Monitor (DTM). A real and typical urban LV area distribution net-
work in Great Britain (GB) is used as the case study. The technique is applied 
on the LV area when its transformer is carrying the future load demand of the 
area on a typical winter weekday in the year 2050. To achieve the load man-
agement, load demand of the LV area network is decomposed into Non-EV 
load and EV load. The load on the transformer is managed by varying the 
EV load in an optimisation objective function which maximises the capacity 
utilisation of the transformer subject to operational constraints and 
non-disruption of daily trips of EV owners. Results show that with the pro-
posed load management technique, LV distribution networks could accom-
modate high uptake of EVs without compromising the useful normal life ex-
pectancy of distribution transformers before the need for capacity reinforce-
ment. 
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1. Introduction 

The uptake of low carbon technologies (LCTs), particularly Electric Vehicles 
(EVs) and Heat Pumps (HPs), at low voltage (LV) distribution networks, in the 
quest of cutting down on greenhouse gas (GHG) emissions in the transportation 
and residential sectors, has the potential to cause general load increase and may 
lead to higher and longer peak load demand [1] [2]. This development can, as 
indicated in previous studies [2] [3], pose a real challenge of capacity overload-
ing to transformers at LV distribution networks of electricity system.  

Transformer is one of the most critical equipment in the power system [4]. 
Although, transformers are usually designed to withstand certain margin of 
overload, prolonged periods of transformer overloading could lead to premature 
transformer failure and shorten transformer’s normal useful life expectancy [5]. 
Amongst the impacts of an unplanned outage of a transformer are reduction in 
system reliability and economic losses to Distribution Network Operators 
(DNOs) [6] [7].  

Traditional solution to addressing distribution transformers overloading due 
to widespread and high uptake of EVs and HPs would have been upgrading of 
transformer capacity. However, the number of LV distribution transformers in 
electricity system to be upgraded, the logistic, and the resources involved for 
such operation, and in many cases the seasonal nature of the overloads make the 
solution less desirable to the DNOs [2] [8].  

Therefore, alternative smart solution must be the approach. Conclusions from 
the study completed on behalf of all DNOs in GB, called DS2030, and reported 
in [9], showed that with suitable adaptation (smart and traditional) the future 
power network would be technically viable and capable of serving consumers in 
line with the national standards for security and quality that are applied today.  

In previous literature, many methods have been proposed for managing EVs 
and HPs load without overloading the transformer. A number of strategies to 
minimise domestic peak demand by controlling charging of EVs and operation 
of HPs and consequently mitigate their impacts on LV distribution network 
were proposed in [10]. The strategies include load shifting, demand limited 
charging and heating, fast and slow charging and bi-directional EV battery op-
eration. The most successful strategy according to [10] was a combination of 
bi-directional EV battery operation and demand limited heating and charging. 
However, the degradation of EV batteries and its economic implications in 
bi-directional operation were not considered.  

An investigative experiment into the degradation impacts of bidirectional op-
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eration of commercial Li-ion cells, similar to the EV batteries, was presented in 
[11]. Results of the experiment showed that a bi-directional operation once a day 
accelerates both the capacity loss and resistance increase of the battery and could 
decrease the lifetime of the battery to under 5 years. 

In [12], the smooth integration of EVs and management of their charging load 
in distribution network was based on the coordinated interactions of four agents 
demonstrated in a multi-agent system (MAS) based software programs. The four 
agents according to [12] are:  

1) EV agents who are the EV owners whose requirements of daily trip sche-
dules and daily charge needs must be satisfied. 

2) EV virtual power plant agents who are responsible for managing the EVs 
charging process and guarantee the daily trip schedules of EV owners in the face 
of power system requirements and constraints. 

3) Distribution system operator technical agent who is responsible for conges-
tion verification after obtaining charging requirements and schedules from the 
EV virtual power plant agents. 

4) Distribution system operator market agent who is responsible for estab-
lishing the congestion price using market-based control method. 

Same approach in [12] of managing congestion in the LV distribution net-
work was described in [3]. In [3], an agent called fleet operator performs similar 
roles as EV virtual power plant operator in [12]. The low point of the MAS de-
scribed in [3] and [12] is that the interactions and the flow of communication 
messages between the agents to ensure their coordination are rather complex 
with huge computational burden. 

A web-based day ahead charge scheduling of EVs was proposed in [13] to 
manage the overloading problem in the LV network. In the proposed method, a 
price responsive schedule for EVs which calculates distribution locational mar-
ginal price (DLMP) was developed based on the previously received travel plan 
information of EV owners. The DLMP is high during overloading and low dur-
ing period of low demand [13]. The DLMP information is then shared with EV 
owners for them to decide on most economic charging slots. The shortcoming of 
the approach is that it is prone to uncertainties such as change in EV owners’ 
travel plan and real-time traffic. Also, some EV owners might not be willing to 
divulge information about their travel plans, which they consider as personal 
security information. 

In this paper, a de-centralised load management technique, which proffers 
solution to the issue of distribution transformer overloading in LV area distribu-
tion networks hosting considerable number of EVs and HPs, is presented. The 
proposed de-centralised load management technique exploits the flexibility in 
the charging of EVs, by taking advantage of long periods of EVs parking, to 
coordinate and control their charging without disrupting normal daily trips of 
EV owners or violating operational limits of the network. 

In the proposed load management technique, two charging regimes are in-
troduced: 
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1) Controlled Charging Regime (CCR)—This is between 16:30 hours and 
06:00 hours of the next day. Within this period, the charging of EVs is coordi-
nated and controlled by means of a wireless two-way communication link be-
tween EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the 
EV Load Controller (EVLC) at the local LV distribution substation. The system 
aims at meeting the daily charge energy requirement of all the EVs in the LV 
area within this period without thermally overloading the transformer or violat-
ing any operational constraint. The process involves sorting the connected EVs 
according to their batteries’ state of charge (SoC) and determining the number 
of EVs that could be placed on the network for charging during a time interval 
based on their SoC and network constraints including thermal limit of the 
transformer. 

2) Uncontrolled Charging Regime (UCR)—This is between 06:00 hours and 
16:30 hours of the same day. In this period the charging of EVs is not coordi-
nated. 

The usefulness of the proposed load management technique is shown in a case 
study of a real and typical urban LV area distribution network in Great Britain 
(GB) when its transformer is carrying the future load demand of the area on a 
typical winter weekday in the year 2050. 

The proposed load management technique avoids the shortcomings identified 
in previous literature. Thus, the proposed load management technique requires 
no travel plan information from EV owners. It avoids bi-directional operation of 
EV batteries. It also avoids complex interactions and information flow between 
agents.  

The rest of the paper is organized as follows: Section 2 describes the daily 
commuting patterns in the UK. This section highlights the flexibility potential in 
the coordinated and controlled charging of EVs due to long period of parking at 
homes. In Section 3, the architecture of the proposed load management tech-
nique is presented. The mathematical design and algorithm development for the 
proposed load management technique are presented in Section 4. Details of the 
real LV network used as the case study are presented in Section 5. The proposed 
method is implemented on the case study in Section 6. Results are presented and 
discussed in Section 7 and in Section 8 summary and conclusions are drawn. 

2. Daily Commuting Patterns and EVs Use 

Understanding the timing and duration of EVs availability for charging, which is 
a function of the EV owners’ daily trips patterns, would help DNOs to make 
cost-effective infrastructure and operational decisions. Amongst the key obser-
vations from [14] indicated that most EV owners are either full time employed 
or self-employed and most EV owners charge at home. Therefore, understand-
ing the daily commuting patterns of EV owners is crucial for proper design and 
implementation of the proposed controlled charging technique. According to 
[15], average start time of “outbound” commuting journeys is 07:51 hours and 
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the average start time of “homebound” commuting journey is 16:23 hours.  
Figure 1 shows the daily trip patterns of commuters (percentage of commu-

ters on the primary y-axis) between the year 1998 and 2014 (on the secondary 
y-axis) from the National Travel Survey as reported in [15]. From the UK Time 
Use Survey (UKTUS) data set [16], an average of 88 minutes (1.5 hrs) is spent on 
daily trips out of total 1440 minutes (24 hrs) while the average time spent sleep-
ing and resting is 517 minutes (8.6 hrs). Therefore, it can be implied from the 
foregoing that an EV would be parked at home for at least eight hours. Also, the 
probability of the parking period falling between 16:23 hours to 07:51 hours of 
the next day is high—more than 70% as seen in Figure 1. 

3. The Architecture of the De-Centralised Load  
Management Technique 

Figure 2 shows the architecture of the proposed load management. The princip-
al components of the architecture are EVSCCs located at the EV Owners’ homes, 
the EVLC located at the LV distribution substation and the Distribution Trans-
former Monitor (DTM) also located at the LV substation. The DTM is a special 
hardware device that collects, measures, records and processes key parameters of 
the distribution transformer such as load currents, temperature, oil level and the 
voltage [17] [18] [19]. The DTM is the interface device between the EVLC and 
the distribution transformer. 

The EVs are connected to the EVSCC for charging process to begin. The 
EVSCCs read the SoC of the batteries of the connected EVs, send their readings 
to the EVLC and await the control signal. The EVLC sorts the SoC in ascending  
 

 
Figure 1. Daily trip patterns of commuters (National Travel Survey) as reported in [15]. 
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Figure 2. The architecture of the load management. 
 
order, calculates the charge energy and checks the DTM if the transformer can 
accommodate all the EVs at that period without violating any operational con-
straints, for example, thermal limits of the transformer and feeders, voltage dev-
iation limits, etc. 

If the transformer can accommodate all the EVs at that period, a “YES” con-
trol signal is sent to each of the EVSCCs to commence charging. But in the event 
that the transformer can only accommodate some but not all the EVs, the EVLC 
determines the number of EVs to be sent a “YES” control signal (i.e., the number 
of EVs to be charged) through their EVSCCs giving priority to EVs with low 
SoC. The process is repeated at the next time interval. The cycle continues until 
all the connected EVs are fully charged. It is important to mention that the 
process described above is only operational during the period of CCR but not 
during the period of UCR. 

The two-way communication links between the EVSCCs and EVLC could be 
implemented either through Wireless Mesh Network (WMN) or WiMAX 
(Worldwide Interoperability for Microwave Access). Both WMN and WiMAX 
are not expensive, easy to implement and capable of wireless coverage reach of 
large area [20] [21] [22]. 

The uniqueness of this architecture is that it offers a de-centralised and auto-
nomous system of EV charge management at the LV distribution network level 
devoid of complex interactions and exchange of information between EV own-
ers, EV load aggregators and the DNOs. 

4. The Design Formulation 

The objective of the proposed load management is to ensure that the distribu-
tion transformer is able to meet, at all times, the load demand of the LV area it is 
serving without violating any operational constraint or affecting the normal ac-
tivities of the residents of the LV area.  
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Firstly, to achieve the objective, the load on the transformer at a time interval t 
is broken into two components: 
• Non-EV load—all other domestic loads excluding EVs charging load. 
• EV load—exclusively EVs charging load. 

Then, the transformer load is modulated by varying the EV load in an opti-
misation objective function which aims at maximising the transformer capacity 
utilisation subject to operational constraints and non-disruption of normal daily 
trips of EV owners in the LV area. This can be expressed mathematically as in 
Equation (1). 

( ) ( ) ( )
1 1

max
T N

chgt nonEV t i t
t i

L L P EV
= =

 
= + 

 
∑ ∑                  (1) 

where: 

( )tL  is the load (kW) on transformer at time interval t. 

( )nonEV tL  is the Non-EV load (kW) at time interval t. 

chgP  is the charger power rating (kW). 
EV is the Electric Vehicle as an entity. 
t is the index of time interval. 
T is the total number of time intervals covering the CCR period. 
i is the identifier index for EVs. 
N is the total number of EVs. 
The optimisation objective function of Equation (1) is subject to the following 

constraints: 

( ) ( )forecasted tnonEVnonEV tL L≥                        (2) 

( ) ( )
1 1 1

1
initial

T N N

chg battery ii t
t i i

P EV P SoC
= = =

≥ −∑∑ ∑                  (3) 

0.3
initialiSoC ≥                           (4) 

( ) ( )t limit tL Trx≤                           (5) 

where: 

( )forecasted tnonEVL  is the forecasted domestic load (kW) at time interval t. 

( )nonEV tL  is the actual Non-EV (domestic) load (kW) at time interval t. 

chgP  is the charger power rating (kW). 
EV is the Electric Vehicle as an entity. 

batteryP  is the battery power rating (kW) of EV. 

initialiSoC  is the SoC (%) of the battery of EVi at the time of plugging in. 

( )tL  is the load (kW) on transformer at time interval t. 

( )limit tTrx  is the transformer thermal load limit at timeinterval t.  
t is the index of time interval. 
T is the total number of time intervals covering the CCR period. 
i is the identifier index for EVs. 
N is the total number of EVs. 
The constraint expressed in Equation (2) ensures that the domestic (non-EV) 
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load of the LV area is always met even when the load forecast is by mistake less 
than the actual. Equation (3) aims at ensuring that the daily charge requirements 
of all connected EVs are met (i.e. the SoC of EVs are restored back to 100% be-
fore the start of the next day’s trips) within the period of the CCR. In Equation 
(3), it is assumed that the EVs are connected for charging via a Mode 3 (AC) 
dedicated EV charging system operating at 3.7 kW (16 A) as defined by BS EN 
61851-1 standards [23]. Mode 3 charging system is capable of smart charging 
and it incorporates control, communications and protection functions [24].  

In Equation (4), it is assumed that the initial SoC of EV batteries at the time of 
connection is limited to a minimum of 30%. The reason for this assumption is 
because 2015 Nissan Leaf 24 kWh model is chosen as the representative EV. 
Nissan Leaf is the most popular pure electric car in the UK [25]. 2015 Nissan 
Leaf 24 kWh has a combined city and highway efficiency of approximately 0.2 
kWh/km and a range of at least 120 km on full battery charge [26]. From the 
National Travel Survey [27], average daily car travel distance in the UK is esti-
mated to be 36 km. Therefore, with EV efficiency and average daily car travel 
distance already established, an EV will need 7.2 kWh, which is 30% of the full 
SoC of the battery, as its average daily energy requirement. It is therefore ex-
pected that EV owners should not deplete their batteries SoC below the mini-
mum required to guarantee the daily average travelled distance.  

The constraint of Equation (5) is to ensure that the transformer is not at any 
time loaded beyond its limit. The limit in this context refers to the adaptive 
thermal limit (ATL) of the transformer that ensures optimal capacity utilisation 
under the real and present conditions without compromising the full useful life 
of the transformer. The ATL of the transformer at time interval t is determined 
by the following conditions according to IEC 60076-7:2005 standard [28]: 

( ) ( )

( )
1.8t

R

L
K t

L
= ≤                            (6) 

( ) ( )
( )( )2 1

110 C
1
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K R
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 ∆ = ∆ × ≤
 + 
 

˚              (7) 
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( )
( ) ( )( )
( )

1
24

1

24 100% 0.0133%
T

st
hr T

lifest

AAF t T t
LoL

NT t
=

=

×
= × × ≤∑

∑
        (9) 

where: 
( )K t  is the ratio of the load ( ( )tL ) on the transformer at timeinterval t to the 

rated load ( ( )RL )of the transformer. 
( )TOR t∆  is the top-oil temperature rise (˚C) of the transformer at time in-

terval t. 

( )RTOR∆  is the top-oil temperature rise (˚C) at rated load. 
R is the ratio of loss at rated load to no-load loss. 
x is the oil exponent constant of the transformer. 
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( )HST t  is the Hot Spot Temperature (˚C) of the transformer at time interval 
t. 

( )aT t  is the ambient temperature (˚C) at time interval t. 
( )HSTOG t∆  is the hot-spot to top-oil gradient (˚C) of the transformer at 

time interval t. 

( )24hrLoL  is the transformer loss life (%) after a 24-hour operating period.  
( )AAF t  is the aging acceleration factor of the transformer at time interval t. 

( )AAF t  has a direct relationship with ( )HST t . 
T is the total number of time intervals. 

sT  is the duration of time interval in hours. 

lifeN  is the normal useful life expectancy of the transformer in hours. 
Equation (6) limits the transformer loading to 1.8 per unit of its rated capaci-

ty. In (7), the top-oil temperature rise is limited to 110˚C to manage pressure 
build-up. This is to prevent expansion of oil which could lead to overflow of oil 
in the tank. The HST is kept under 140˚C in (8) to prevent formation of gas 
bubbles in the oil and paper insulation. Equation (9) ensures that the daily cu-
mulative loss of life of the transformer insulation does not exceed that of normal 
operation of the transformer at HST of 110˚C for 24 hours. 

Figure 3 shows the algorithm of the load management. 

5. Case Study 

A distribution transformer serving a real urban residential LV network in Car-
diff is the case study. The area is supplied by a 500-kVA, 11/0.415-kV (no load), 
50-Hz, Dyn11, ONAN mineral oil filled, free breathing, ground mounted trans-
former. The transformer supplies 347 households consisting of 298 buildings in 
four feeders. Figure 4 shows the simplified diagram of the LV network and Ta-
ble 1 gives the analysis of the number of buildings per feeder, annual baseline 
load of the feeders in the year 2014 and the length of the feeders. 

National projection figures for the number of households in GB from [29], 
[30] and national projection figures of the different uptake scenarios of EVs and 
HPs as presented in the National Grid’s FESs document [31] were scaled down 
to the level of the LV network. The process of scaling down was well detailed in 
[32]. National Grid’s FESs presents a number of “plausible and credible path-
ways for the future of energy for GB, from today out to 2050”. These scenarios 
are developed based on the energy trilemma of security, affordability and sus-
tainability [31].  

In the FESs, the most optimistic uptake scenario for LCTs in general and EVs 
and HPs in particular is called the “Two Degrees” (TD). The scenario name 
“TD” is derived from the Article 2 of the Paris Agreement [33]. It indicates the 
target of holding the increase in global average temperature to well below 2˚C 
above the pre-industrial levels. The TD depicts a scenario of prosperous eco-
nomic growth, increased focus on renewable energy sources (RESs) and LCTs, 
and strong political drive to achieve the renewable integration and all of UK’s  
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Figure 3. The algorithm of the load management. 
 
2050 emissions reduction targets. It is a scenario in which technology and in-
vestment are focused on innovation in RESs (solar and wind) and low carbon 
(nuclear) generation.  

Table 2 presents the number of EVs and HPs the LV network is hosting under 
the TD scenario in the years 2020, 2030, 2040 and 2050. 

By the year 2050, the LV network is hosting 256 EVs and 207 HPs. The EVs  
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Figure 4. Simplified diagram of the case study LV network. 
 
Table 1. Feeders analysis. 

Feeder 2014 Annual load (MWh) Length (m) No of Buildings 

1 360.78 1190 95 

2 202.29 555 51 

3 402.70 1155 120 

4 108.94 250 32 

Total 1074.71  298 

 
Table 2. Number of EVs and HPs in the LV network under TD scenario, 2020-2050 [31]. 

Year 
Number of  

households (Units) 
Number of EVs 

(Units) 
Number of HPs 

(Units) 

2020 357 23 5 

2030 360 93 45 

2040 374 167 95 

2050 409 256 207 

 
and the HPs are distributed amongst the feeders based on the ratio of the num-
ber of buildings per feeder. 

Future load profile of the LV network for the year 2050 is created considering 
the baseline load growth and uptake of EVs and HPs by the residents of the area. 
Based on the normalisation of load profiles from [34], projected annual baseline 
demand of the LV network for the year 2050 as determined in [32] is converted 
to half-hourly seasonal (summer weekday and winter weekday) daily profiles. In 
this research work, residential baseline electricity demand is described as the 
household electricity demand which excludes the electricity demand of EVs and 
HPs.  
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The EVs daily charge requirements distribution of the LV network as deter-
mined in [32] and the half-hourly percent of average daily charge in [35] are 
adopted to generate the actual EVs average half-hourly charge requirements 
(kWh) of the LV network. Figure 5 shows the EVs daily charge requirements 
distribution of the LV network. 

From Figure 5, the maximum daily charge requirement of an EV in the LV 
network is 17 kWh. Given the EV battery capacity to be 24 kWh, the minimum 
initial SoC of EV batteries is 30%. Figure 6 is the average half-hourly EV charg-
ing profile (%). Data such as number of trips, start and end times of trips, aver-
age distance travelled, arrival times at homes, etc. generated from the National 
Travel Survey and Time Use Survey formed the basis of this charging profile 
[35]. 

The daily average electricity demand of a 6-kW variable speed air-source HP, 
shown in Figure 7, whose operating profile for the provision of both residential 
space heating and hot water was derived from the simulation described in [32] 
was used in this study. 

Powerflow simulation studies of the created future load profiles of the LV 
network were performed for the year 2050 on a typical winter weekday and a typi-
cal summer weekday. GridLAB-D power system simulation software was used  
 

 
Figure 5. EVs daily charge requirements distribution of the LV 
network [32]. 

 

 
Figure 6. Average half-hourly EV charging profile (%) [35]. 
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for the powerflow simulation study. The powerflow simulation showed the im-
pacts of the load demand of the uptake of EVs and HPs in the LV network on 
the transformer loading. Figure 8 and Figure 9 show the half-hourly Non-EV 
and EV load demand of the LV area on a typical winter weekday and a typical 
summer weekday respectively. 

As seen from Figure 8, on a winter weekday in the year 2050, the combined 
Non-EV and EV load demand of the LV area outstrips both the transformer ca-
pacity limit and adaptive thermal limit. But the severity of the overloading con-
dition is much reduced with the transformer adaptive thermal limit relative to its 
capacity limit. Reasons for the overloading condition on a winter weekday are 
increased use of HPs (see Figure 7) and increased charging of EVs coinciding 
with the peak of the non-EV loads (see Figure 6). 
 

 
Figure 7. HP daily average demand [32]. 

 

 
Figure 8. Half-hourly non-EV and EV load demand on a winter weekday in the year 
2050. 
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Figure 9. Half-hourly non-EV and EV load demand on a summer weekday in the year 
2050. 

6. Implementation 

The thermal model of the transformer of the LV network is developed according 
to IEC 60076-7:2005 standard [28]. The parameters of the transformer of the LV 
distribution network are given in Table 3. 

Ambient temperature data for a typical winter day are from the MET Office 
[36]. Table 4 gives the analysis of the total charge requirements of EVs in the LV 
area in the year 2050 as estimated from the number of EVs in the LV network in 
2050 (see Table 2) and the EVs daily charge requirements distribution of the LV 
network (see Figure 5). 

From Table 4, it is seen that a total charge of 3068 kWh is required and the 
minimum initial SoC of EVs is 30%. With the assumed constant charging power 
of 3.7 kW and battery capacity of 24 kWh, a minimum plugging time of 5 hours 
per EV would be necessary to guarantee all EVs are fully restored to 100% SoC 
considering the minimum initial SoC of 30%. 

The optimisation objective function of Equation (1) subject to the constraints 
of Equations (2) to (9) was solved using “Analytical Solver” commercial optimi-
sation software [37]. The model was diagnosed as “QCP NonCvx” and was 
solved using the standard GRG Nonlinear Solver Engine. Solution was found in 
11.45 seconds at the 9th iteration, with all the constraints and optimality condi-
tions satisfied, on a 3-GHz, 8-GB, 64-bit Windows 10 personal computer. 

7. Results and Discussion 

Figure 10 shows the half-hourly contributions of the Non-EV load and the EV 
load components to the transformer load of the LV area and the number of EVs 
that could receive charging at half-hourly interval on a typical winter weekday in 
the year 2050 after applying the proposed load management technique. The  
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Table 3. Distribution transformer parameters. 

Parameters Values 

Rating 11/0.4 kV, 500 kVA 

Cooling type ONAN 

x 0.8 

y 1.6 

k11 1.0 

k21 1.0 

k22 2.0 

( )RTOR∆  65˚C 

( )RHSTOG∆  23.0˚C 

lifeN  180,000 hours 

oτ  180 minutes 

wτ  10 minutes 

R 5 

Rated load current (Lr) 722.5A 

 
Table 4. Analysis of daily charge requirements of EVs. 

Number of 
EVs (Units) 

Initial SoC Energy required 
for charging 

(kWh) 

Minimum  
plugging  

time (hrs) (%) (kWh) 

5 70 17 35 1.9 

26 67 16 208 2.2 

30 63 15 270 2.4 

26 58 14 260 2.7 

30 54 13 330 3.0 

30 50 12 360 3.2 

23 46 11 299 3.5 

26 42 10 364 3.8 

26 38 9 390 4.1 

26 33 8 416 4.3 

8 30 7 136 4.6 

Total 256  3068  

 
transformer is no more overloaded. Although, the load outstrips the nominal 
capacity of the transformer, but it is kept within the confines of the transformer 
adaptive thermal limits. The useful normal life expectancy and therefore, the 
normal operation of the transformer is not compromised. Between 16:30 hours 
and 20:30 hours, the Non-EV component of the total load demand exceeds the 
transformer nominal capacity. 
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Figure 10. Half-hourly contribution of Non-EV and EV load components to transformer 
load after applying load management technique. 
 

Therefore, hinging the decision for the need of load management on the 
transformer nominal capacity would require more complex solution than taking 
the advantage of the flexibility of the charging of EVs as in the present case. This 
underscores the importance of why the need for load management and/or 
transformer capacity reinforcement or otherwise should not be based on static 
nominal capacity of transformers but rather on their adaptive thermal ratings.  

The charging of the EVs is scheduled to avoid the peak of the Non-EV load. 
At the peak of the Non-EV load, only 4 EVs could receive charging. As the 
Non-EV load decreases, more EVs are allowed to be charged. At 02:00 hours, as 
many as 98 EVs could be charged at once.  

During the CCR, a total of 5738 kWh of energy is available for EVs charging. 
This is almost double the daily charge requirements of 3068 kWh of the 256 EVs 
in the LV area in the year 2050. The valley region of the total load on transfor-
mer between 06:00 hours and 16:30 hours is the UCR. During this period, EV 
owners could charge their vehicles at their own liberty as the possibilities of 
overloading the transformer are remote. 

With the potential of more availability of energy (kWh) for charging of EVs 
during the CCR and the liberty of charging of EVs during the UCR, the LV area 
distribution network could accommodate further uptake of EVs up to the year 
2050 without immediate need for capacity reinforcement.  

8. Conclusions 

A de-centralised load management technique exploiting the flexibility in the 
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charging of EVs was presented. Two charging regimes were assumed. The Con-
trolled Charging Regime between 16:30 hours and 06:00 hours of the next day 
and the Uncontrolled Charging Regime between 06:00 hours and 16:30 hours of 
the same day. During the Controlled Charging Regime, it was assumed the 
charging of EVs is coordinated and controlled by means of a wireless two-way 
communication link between EV Smart Charge Controllers at EV owners’ pre-
mises and the EV Load Controller at the local LV substation. 

The technique was applied on a typical GB LV area distribution network when 
its transformer was carrying the future load demand on a typical winter weekday 
in the year 2050. From the results the following conclusions can be made: 
• With good load management technique, LV distribution network could ac-

commodate high uptake of EVs. In the case of this work, a total of 5738 kWh 
energy was available for charging of EVs during the Controlled Charging Re-
gime. This is almost double the daily charge requirement of 3068 kWh of 256 
EVs (representing 63% uptake) in the LV area. 

• Decision to engage in load management or capacity reinforcement should be 
based on adaptive thermal limit of the transformer rather than on its static 
capacity limit. In the case of this work, with the capacity limit as the deciding 
factor for load management, it would require more than the flexibility of EV 
load to implement because the Non-EV load component alone outstrips the 
transformer capacity limit. 

In the future, as the technology for the bi-directional power flow between grid 
and EV matures, and costs of EV batteries drop such that bi-directional opera-
tion of EV batteries becomes economical from the perspective of EV owners, the 
concept could be inserted in the present work to extend it further. 
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