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Abstract 
Integral equations theoretical parts and applications have been studied and 
investigated in previous works. In this work, results on investigations of the 
uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the 
third kind were considered. Volterra integral equations of the first and third 
kind with smooth kernels were studied, and proof of the existence of a multi-
parameter family of solutions is described. Additionally, linear Fredholm 
integral equations of the first kind were investigated, for which Lavrent’ev 
regularizing operators were constructed. 
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1. Introduction 

The theoretical part and applications of integral equations have been studied and 
investigated in many different works. In particular, in [1], a survey of the results 
of investigations of Volterra integral equations of the second kind was consi-
dered. In [2], Volterra integral equations of the first and third kind with smooth 
kernels are studied, where a proof of the existence of a multiparameter family of 
solutions is given. In [3], linear Fredholm integral equations of the first kind 
were investigated, for which Lavrent’ev regularizing operators were constructed. 
In [4], a theory is presented and numerical methods are used for solving non-
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classical Volterra integral equations of the first kind with differentiable and non-
zero kernels on the diagonal. In papers [4] [5] [6] [7] applications of non-classical 
Volterra integral equations of the first kind in various applied problems are giv-
en. In [8], the Lavrent’ev regularization method is used for Volterra integral eq-
uations of the first kind with smooth and nonzero kernels on the diagonal and 
differentiable solutions, for which an approximate solution is constructed. In 
works [9] [10], sufficient conditions for the uniqueness of solutions were ob-
tained and the problems of regularization of solutions to systems of linear and 
nonlinear Volterra integral equations of the first and third kind were investi-
gated. In [11], a unique theorem for solutions is proved and a regularizing oper-
ator is found for solving a system of Volterra linear integral equations of the 
third kind. In works [12] [13], a new approach was used to study the existence 
and uniqueness of solutions of scalar Fredholm integral equations of the third kind 
with multipoint singularities and their systems. In [14], results are given on the 
Volterra integral equations of the first kind. In [15], derivative concept with respect 
to an increasing function was introduced, using linear Fredholm-Stiltjes integral 
equations of the first kind in [16] [17] [18]. Numerical solution of the Fredholm 
and Volterra Integral equations by using modified Bernstein-Kantorovich opera-
tors [19], second kind [20], and third kind of nonlinear Volterra-Stieltjes integral 
equations with the solution by Lavrentyev regularizing operator were also de-
scribed [21]. 

In this paper, based on concept of derivatives with respect to an increasing 
function, using the method of nonnegative quadratic forms, we establish suffi-
cient conditions for the uniqueness of a solution for Fredholm-Stiltjes integral 
equations of the third kind (1). 

We will consider the equation 

( ) ( ) ( ) ( ) ( ) ( ) [ ], d , , ,
b

a

m t u t K t s u s s f t t a bφ+ = ∈∫           (1) 

here ( ) ( ) ( ), , ,m t t K t sφ  and ( )f t —are known functions, ( )tφ —increasing 
continuous function on [ ],a b , ( ) [ ],m t C a b∈ , ( )0 m t≤  at all conditions  

[ ],t a b∈  and ( )m t  is equal to zero at least at one point of the segment [ ],a b , 

( )
( )
( )

, , ,
,

, , .

A t s a s t b
K t s

B t s a t s b

≤ ≤ ≤= 
≤ ≤ ≤

                 (2) 

It is assumed that ( ),A t s  and ( ),B t s  is continuous function on  
( ){ }, :t s a s t b≤ ≤ ≤ , and ( ){ }, :t s a t s b≤ ≤ ≤ , solution ( )u t  searched in  
[ ],C a b . 
Let’s assume: 
1) ( ) ( ) ( ), , ,H t s A t s B s t= +  and ( ) ( ) ( ),t sH t sφ φ′′  are continuous functions in 

the domain ( ){ }, :G t s a s t b= ≤ ≤ ≤ , ( ) ( ),tH t aφ′  and ( ) ( ),tH b tφ′ , and are con-
tinuous functions in [ ],a b , here; 

( ) ( ) ( ) ( )
( ) ( )0

, ,
, limt

H t s H t s
H t s

t tφ φ φ∆→

+ ∆ −
′ =

+ ∆ −
; 

https://doi.org/10.4236/alamt.2021.114008


A. Toigonbaeva et al. 
 

 

DOI: 10.4236/alamt.2021.114008 111 Advances in Linear Algebra & Matrix Theory 
 

2) ( ), 0H b a ≥ , ( ) ( ), 0tH t aφ′ ≤  and ( ) ( ), 0tH b tφ′ ≥ , [ ],t a b∀ ∈ ,  

( ) ( ) ( ), 0t sH t sφ φ′′ ≤ , ( ),t s G∀ ∈ ; 
3) ( ) ( ), 0tH t aφ′ <  for [ ],t a b∈ ; or ( ) ( ), 0tH b tφ′ >  for [ ],t a b∈ ;  

or ( ) ( ) ( ), 0t sH t sφ φ′′ <  for ( ),t s G∈ ; 
4) ( ) 0m t >  for [ ],t a b∈ . 
If taking into account (2), then Equation (1) have the following form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), d , d .
t b

a t

m t u t A t s u s s B t s u s s f tφ φ+ + =∫ ∫       (3) 

By multiplying ( )u t  to Equation (3) and integrating according to Stieltjes 
over the a t b≤ ≤  area, we will have 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 d , d d

, d d d .

b b t

a a a
b b b

a t a

m t u t t A t s u s u t s t

B t s u s u t t s f t u t t

φ φ

φ φ φ

+

+ =

∫ ∫ ∫

∫ ∫ ∫
         (4) 

We use the generalized Dirichlet formula: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 d , d d

, d d d ,

b b t

a a a
b s b

a a a

m t u t t A t s u s u t s t

B t s u s u t s t f t u t t

φ φ

φ φ φ

+

+ =

∫ ∫ ∫

∫ ∫ ∫
 

i.e. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 d , , d d d .
b b t b

a a a a

m t u t t A t s B s t u s u t s t f t u t tφ φ φ+ + =  ∫ ∫ ∫ ∫  (5) 

The designation is made for ( ) ( ) ( ), , ,H t s A t s B s t= + , then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 d , d d d .
b b t b

a a a a

m t u t t H t s u s s u t t f t u t tφ φ φ+ =∫ ∫ ∫ ∫    (6) 

After introduction of notation 

( ) ( ) ( ), d ,
t

s

Z t s u ν φ ν= ∫                      (7) 

It turns out that ( ) ( ) ( ) ( )d , ds Z t s u s sφ φ= − , also, ( ) ( ) ( ) ( )d d ,tu t t Z t sφφ = . 
By multiplying ( )2 ,Z t s  we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22 , d 2 , d , d , ,t tZ t s u t t Z t s Z t s Z t sφ φφ = =
 

( ) ( ) ( ) ( ) ( )21, d d , ,
2 tZ t s u t t Z t sφφ =                  (8) 

In this work, based on the concept of the derivative with respect to an in-
creasing function, using the method of nonnegative quadratic forms, for the first 
time, sufficient conditions for uniqueness of a solution for Fredholm-Stiltjes 
integral equations of the third kind were established (1). 

By applying (7), (8), and the method of integration by parts and the genera-
lized Dirichlet formula, from (6) we have 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

, d d

, d , d

, , , d d

, , d , d d

1 , d , , , d d
2

b t

a a

b t

s
a a

b t
t

sa
a a

b b t

s
a a a

b b b

t s
a a s

H t s u s s u t t

H t s Z t s u t t

H t s Z t s H Z t s s u t t

H t a Z t a u t t H Z t s s u t t

H t a Z t a H t s Z t s u t t s

φ

φ

φ

φ φ

φ φ

φ

φ φ

φ φ φ

φ φ

 
= −  

 
 

′= − − 
 

′= +

′= +

∫ ∫

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫ ∫
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2

2 2

2 2

1 1, , , , d
2 2

1 , d , d
2

1 1, , , , d
2 2

1 1, , d , , d d
2 2

bb

ta
a

b b

s t
a s

b

t
a

b b t

s s t
a a a

H t a Z t a H t a Z t a t

H t s Z t s s

H b a Z b a H t a Z t a t

H b s Z b s s H t s Z t s s t

φ

φ φ

φ

φ φ φ

φ

φ

φ

φ φ φ

′= −

 
′+  

 

′= −

′ ′′+ −

∫

∫ ∫

∫

∫ ∫ ∫
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2

2

1 1, d , d d
2 2

1 , d d
2

1 d d d ,
2

b b t

t
a a a

b b

s
a s

b t t

t s
a a s

H b a u s s H t a u s s t

H b s u s

H u s t

φ

φ

φ φ

φ φ φ

ξ φ ξ φ

ξ φ ξ φ φ

   
′= −   

   

 
′+  

 

 
′′−  

 

∫ ∫ ∫

∫ ∫

∫ ∫ ∫
 

here ( ), 0Z t t = . 
From Equation (6) we obtaining 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

, d d

, d , d

, , , d d

, , d , d d

1 , d , , , d d
2

b t

a a

b t

s
a a

b t
t

sa
a a

b b t

s
a a a

b b b

t s
a a s

H t s u s s u t t

H t s Z t s u t t

H t s Z t s H Z t s s u t t

H t a Z t a u t t H Z t s s u t t

H t a Z t a H t s Z t s u t t s

φ

φ

φ

φ φ

φ φ

φ

φ φ

φ φ φ

φ φ

 
= −  

 
 

′= − − 
 

′= +

′= +

∫ ∫

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫ ∫
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

2

1 1, , , , d
2 2

1 , d , d
2

bb

ta
a

b b

s t
a s

H t a Z t a H t a Z t a t

H t s Z t s s

φ

φ φ

φ

φ

′= −

 
′+  

 

∫

∫ ∫
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

1 1, , , , d
2 2

1 1, , d , , d d
2 2

b

t
a

b b t

s s t
a a a

H b a Z b a H t a Z t a t

H b s Z b s s H t s Z t s s t

φ

φ φ φ

φ

φ φ φ

′= −

′ ′′+ −

∫

∫ ∫ ∫
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2

2

1 1, d , d d
2 2

1 , d d
2

1 d d d ,
2

b b t

t
a a a

b b

s
a s

b t t

t s
a a s

H b a u s s H t a u s s t

H b s u s

H u s t

φ

φ

φ φ

φ φ φ

ξ φ ξ φ

ξ φ ξ φ φ

   
′= −   

   

 
′+  

 

 
′′−  

 

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

    (9) 

If we take into account (9), then from (6) we will have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
2

2

2

2

1d , d
2

1 , d d
2

1 , d d
2

1 d d d d .
2

b b

a a

b t

t
a a

b b

s
a s

b t t b

t s
a a s a

m t u t t H b a u s s

H t a u s s t

H b s u s

H u s t f t u t t

φ

φ

φ φ

φ

φ φ

ξ φ ξ φ

ξ φ ξ φ φ φ

 
+  

 

 
′−  

 

 
′+  

 

 
′′− = 

 

∫ ∫

∫ ∫

∫ ∫

∫ ∫ ∫ ∫

    (10) 

Thus, (10) holds for all solutions of ( )u t  Equation (1) under condition 1), if 
( ) 0f t ≡ , then under conditions 2), 3) from (10) it follows: 

( ) ( )d 0
t

a

u s sφ ≡∫  or ( ) ( )d 0
b

t

u s sφ ≡∫  or ( ) ( )d 0,
t

s

u ξ φ ξ ≡∫  

[ ], , ,t s a b s t∈ < . 

from here ( ) 0u t ≡ . The following theorem is proved. 
Theorem 1. 
If conditions 1)-4) are satisfied, then Equation (1) in [ ],C a b  has at most one 

solution. 
Example. 
We consider the equation 

( ) ( ) ( ) ( ) ( ) [ ]
1

0

, d , 0,1tu t K t s u s s f t tφ+ = ∈∫ , where ( ) [ ], 0,1t t tφ = ∈ ,   (11) 

( )
( ) ( )
( ) ( )

1 1 , 0 1,
2,
1 1 , 0 1,
2

k m

k m

t s t s
K t s

s t s t

 − ≤ ≤ ≤= 
 − ≤ ≤ ≤


            (12) 

In this case ( )m t t= , 1, 1k m> > . Then 
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( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

, , ,
1 11 1
2 2

1 .

k m k m

k m

H t s A t s B s t

t s t s

t s

= +

= − + −

= −

           (13) 

using the above formula (9) will lead to Equation (14). Applying (9) and taking 
into account (13), we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

0 0
21 1 1

0 0

1 d d

1 1 d d d ,
2

t k m

t tk m

s

t s u s s u t t

mk t s u s t

φ φ

ξ φ ξ φ φ
− −

−

  = − − −      

∫ ∫

∫ ∫ ∫
    (14) 

In this case ( ) ( ) ( ) ( ) ( )1,0 0, ,0 0, 1, 0t sH H t H sφ φ′ ′= = = , 

( ) ( ) ( ) ( ) ( )1 1
, 1 0,

k m

s tH t s mk t sφ φ

− −
′′ = − − ≤

 

( ) ( ){ }, , | 0 1 ;t s G t s s t∀ ∈ = ≤ ≤ ≤
 

( ) ( ) ( ) ( ) ( )1 1
, 1 0,

k m

s tH t s mk t sφ φ

− −
′′ = − − <

 
with almost all ( ) ( ){ }, , | 0 1t s G t s s t∈ = ≤ ≤ ≤ . 

This shows that all conditions of Theorem 1 are satisfied. 
If ( ) 0f t =  at all conditions of [ ]0,1t∈ , then from (14) we will have 

( ) ( ) ( ) ( ) ( ) ( )
21 1 1

0 0

1 1 d d d 0
2

t tk m

s

km t s u s s s tφ φ φ
− −   − − =      

∫ ∫ ∫ .    (15) 

Equation (15) implies 

( ) ( ) ( )d 0, ,
t

s

u s s t s Gφ = ∈∫
 

It follows that ( ) 0u t = , [ ]0,1t∈ . 

2. Conclusion 

In summary, results of the Fredholm-Stiltjes linear integral equations solu-
tions uniqueness of the third kind were described. The Volterra integral equ-
ations of the first and third kind with smooth kernels were studied, and proof 
of the existence of solutions is shown. The work was devoted to the study of 
uniqueness questions for linear Fredholm-Stiltjes integral equations of third 
kind. Sufficient conditions for uniqueness of solutions for the integral equa-
tions under study were established. In the future, it is planned to study the 
problems of constructing regularizing operators for Fredholm-Stiltjes integral 
third kind equations. 
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