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Abstract 
In this paper, we investigate the elastic wave full-waveform inversion (FWI) 
based on the trust region method. The FWI is an optimization problem of 
minimizing the misfit between the observed data and simulated data. Usually, 
the line search method is used to update the model parameters iteratively. 
The line search method generates a search direction first and then finds a 
suitable step length along the direction. In the trust region method, it defines 
a trial step length within a certain neighborhood of the current iterate point 
and then solves a trust region subproblem. The theoretical methods for the 
trust region FWI with the Newton type method are described. The algorithms 
for the truncated Newton method with the line search strategy and for the 
Gauss-Newton method with the trust region strategy are presented. Numeri-
cal computations of FWI for the Marmousi model by the L-BFGS method, 
the Gauss-Newton method and the truncated Newton method are completed. 
The comparisons between the line search strategy and the trust region strate-
gy are given and show that the trust region method is more efficient than the 
line search method and both the Gauss-Newton and truncated Newton me-
thods are more accurate than the L-BFGS method. 
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1. Introduction 

The physical properties of the earth can be inverted quantitatively by the re-
flected seismic waves. In modern seismology, traveltime inversion is the main 
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technique approach in the 19th century. Since the 1980s [1] [2], full waveform 
inversion (FWI) has become a rapidly developing subject because of its high res-
olution for reconstructing media parameters. 

In FWI, the Fréchet derivative is required to estimate explicitly before pro-
ceeding to the inversion of the linearized system [3]. However, the computation-
al cost of calculating Fréchet or gradient is too large. So some other methods 
have been taken into account. In [1] [2], the authors proposed to compute the 
gradient by solving an adjoint problem, which is considered as the initial of time- 
domain FWI. Since then, the FWI has been an important research topic in ex-
ploration geophysics. In the 1990s, the time-domain FWI was extended to the 
frequency domain [4] [5]. The frequency-domain FWI has the advantage of high 
computational efficiency and flexibility of data selection [6]. 

The FWI is actually an optimization iterative process to solve a nonlinear op-
timization problem. Generally, the computational cost of global optimization 
methods is extensive large. For this reason, local optimization algorithms are 
adopted. To avoid iteration falling to an unreasonable local minimum point, the 
multiscale method was proposed [7] in 1995. The multiscale method performs 
the inversion from the low frequency to high-frequency information step by step. 
It includes the long-wavelength information of the model and thus it enhances the 
robustness of inversion effectively. It can overcome the problem of local minima 
caused by the poor initial model selection. This technique has been successfully 
applied to the time-domain acoustic FWI, see e.g. [8] [9]. In order to reconstruct 
the long wavelength of the macroscopic velocity model, the Laplace-domain 
FWI is proposed [10]. A hybrid domain method combining the Laplace-domain 
method and the frequency-domain method together is also developed [11]. This 
method can be regarded as a special case of frequency-domain damping inversion. 

In elastic FWI, there are three different parameters, i.e., density and two Lamé 
parameters. In [12], the authors pointed out that different parameters have 
coupled effects on the seismic response which is called the trade-off effect or 
crosstalk. In order to tame the trade-off effect, several hierarchical inversion 
strategies are developed. In [13], Lamé parameters are inverted with fixed densi-
ty first and then velocities are updated. In [14], all parameters are inverted si-
multaneously. However, the overall steplength is estimated by calculating an op-
timal steplength for every parameter individually. 

The Hessian matrix plays an important role in FWI. It contains the informa-
tion of multiple scattering wavefields and the trade-off effects among different 
parameters. The off-diagonal blocks of Hessian reflect the relationship between 
different parameters [12]. The Newton-type method such as the quasi-Newton 
method, the Gauss-Newton method [15] and the truncated Newton method [16] 
all contain the Hessian information and so they behave better than the steepest 
descent method in accuracy. In the calculation of the gradient vector, the adjoint 
method is usually used [17]. The adjoint method can be extended to the trun-
cated Newton method [18]. For the elastic wave equations, the wave propagator 
operator is symmetric. The back propagator operator and the forward propaga-
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tor operator are identical. Besides that, the Gauss-Newton approximation of 
Hessian matrix is positive and definite. This property can be used in the trust re-
gion strategy. Our investigations in this paper show that the trust region method 
can accelerate the convergence rate and improve the inversion accuracy. 

In this paper, we investigate the application of the trust region strategy in 
FWI. The rest of our paper is organized as follows. In Section 2, the theoretical 
methods are described in detail. In Section 3, numerical computations and com-
parisons are presented. Finally, in Section 4, the conclusion is given. 

2. Theory 

In this section, we will introduce the forward problem first. Then we will de-
scribe FWI based on the trust region method. In order to solve the subproblem in 
the trust region algorithm, the two dimensional subspace method is described. 

2.1. Forward Method 

The source-free time-domain two dimensional (2D) elastic wave equations can 
be written as [19] 

2

2 2 ,u u v u u v
t x x y x y y x

ρ λ µ µ
      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
         (2.1) 

2

2 2 ,v u v v u v
t y x y y x y x

ρ λ µ µ
      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
         (2.2) 

where ρ  is the density, λ  and µ  are the Lamé parameters, ( ), ,u x y t  and 
( ), ,v x y t  are the displacement in the horizontal x  and vertical y  directions 

respectively. Furthermore, (2.1) and (2.2) can be rewritten as the following 
stress-velocity formulation after adding a source  
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where xv  and yv  are the particle velocity components in the x  and y  direc-
tions respectively, xxσ , yyσ , xyσ  are the stress tensor components. Here we 
have added the source, i.e., the body force xf  and yf  vector to xv  and yv  
components respectively. We rewrite the system (2.3) in the following matrix form  
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where t∂ , x∂ , y∂  denote 
t
∂
∂

, 
x
∂
∂

, 
y
∂
∂

. The symbol †  denotes the adjoint  

operator. Note that the determinant of the matrix C is positive. So from (2.4) 
and (2.5), we have  
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The compact form of the forward problem is  

( )( ) ( ) ( ), ; , ; ,s sA t t=m x w x x s x x                  (2.7) 

where ( ), ,ρ λ µ=m  is the model parameters, ( ),=w v σ . In (2.7), the wave 
propagator ( )A m  is symmetric. Given the media parameters ρ , λ  and µ , 
the forward problem is to solve system (2.6) numerically. 

We have many numerical methods to solve system (2.6), for example, the fi-
nite volume method [20] and the staggered-grid method [21] and so on. In this 
paper, we use the staggered-grid method for its high computational efficiency and 
relatively easy code implementation. Since the computational domain is finite, the 
absorbing boundary conditions [22] are required to absorb the boundary reflec-
tions. In this paper, we adopt the perfectly matched layer (PML) method [23] 
[24]. The forward discrete schemes for solving system (2.3) are given in Appen-
dix A. 

2.2. Full Waveform Inversion 

The FWI is a data-fitting procedure to find the model parameter m  by mini-
mizing the data misfit δd  between the simulated data calw  and the observed 
data obsw . The objective function can be formulated as  

( ) ( )2

0
1 1

1 d ,
2

s rN N T obs cal

s r
tχ

= =

= −∑∑ ∫m w w                  (2.8) 

where T is the total recording duration, sN  and rN  are the number of the 
sources and receivers respectively. Once the media parameters ρ , λ , and µ  
are inverted, we can yield the P-wave velocity and S-wave velocity by  

2 , ,p sv vλ µ µ
ρ ρ
+

= =                     (2.9) 

respectively. 
The misfit function ( )χ m  is minimized iteratively. The update procedure in 

FWI at k -th iteration can be expressed as  

1 , 1, 2, ,k k k k kα−= + =m m p                   (2.10) 

where 1k+m  and km  are the model parameter at 1k +  and k  iteration re-
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spectively, kα  denotes the step length at k  iteration, kp  is the descent di-
rection. The step length kα  must be found by using the line search technique 
for nonlinear inverse problem. 

Neglecting the summation in (2.8) and introducing the restriction operator R 
at receiver points, then the gradient of the objective function with respect to the 
model parameter m  is  

( )
†

†
0

d ,
T obs

i i

R R t
m m
χχ

 ∂ ∂
∇ = = − ∂ ∂ 

∫m
w w w              (2.11) 

where †  is the adjoint operator. Furthermore, the Hessian matrix can be ob-
tained by taking derivative of (2.11) with respect to the model parameter  
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H H
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    ∂ ∂ ∂
= + −        ∂ ∂ ∂ ∂     
∫ ∫
 

w w w w d     (2.12) 

The expression of Hessian H is divided into two parts, i.e., 1H  and 2H . The 
first part 1H  is the Gauss-Newton approximation of Hessian [15], which just 
contains the 1st-order derivative of the wavefield. The second part 2H  contains 
the 2nd-order derivative of the wavefield. The full Newton method consists of 
both the parts 1H  and 2H  [15]. The truncated Newton is based on the com-
putations of descent direction by the conjugated gradient algorithm in the full 
Newton framework. The BFGS method is an efficient algorithm to compute the 
inverse of Hessian approximation in the Gauss-Newton method. It is the first 
quasi-Newton algorithm and named for its discovers Broyden, Fletcher, Gold-
farb and Shanno. To save storage memory further, the limited-memory BFGS 
(L-BFGS) algorithm is usually applied [25] [26] [27] in computations. 

2.3. Gradient Calculation 

The gradient of the objective function can be obtained by the Lagrangian for-
mulation [17] [18] [28] or the perturbation theory [29]. Following the perturba-
tion theory [29], the gradient of the objective function with respect to model pa-
rameters can be rewritten as 

0
d ,
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T y yx x

x

u uu u
t

t t t t
χ
ρ

∂ ∂ ∂ ∂∂
= − + ∂ ∂ ∂ ∂ ∂ 
∑ ∫



                (2.13) 
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χ
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∂ ∂  ∂ ∂∂
= − + +  ∂ ∂ ∂ ∂ ∂  
∑ ∫



              (2.14) 

0
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µ

 ∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂∂  = − + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
∑ ∫

 

 

  (2.15) 

where :xu u=  and :yu v=  are the forward displacements in the x  and y  
directions respectively, and xu  and yu  are the corresponding backward dis-
placements in the x  and y  directions respectively. Equations (2.13)-(2.15) 
are the gradient expressions in terms of the displacements. 
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We solve the forward problem based on (2.3) instead of (2.1)-(2.2) by the 
staggered-grid method. So it is necessary to express the gradient (2.13)-(2.15) 
with the particle velocity and the stress tensor. The results are the following  

( )0
d ,

s

T
x x y y

x
v v v v tχ

ρ
∂

= − +
∂ ∑ ∫                    (2.16) 

( )( )
( )20
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            (2.17) 
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  + +∂  = − +
∂  + 

− − + 


∑ ∫
 



 

         (2.18) 

where xv , yv , xxσ , yyσ , xyσ  are the solutions of forward problem (2.3) whe-
reas xv , yv , xxσ , yyσ  and xyσ  are the solutions of corresponding adjoint 
problem. The derivation is given in Appendix B. 

2.4. Trust Region Method 

There are two strategies to solve a minimization problem. One is the line search 
method and the other is the trust region method. In order to describe the trust- 
region method more clearly and directly, we consider minimizing an abstract 
objection function ( )f x , i.e., ( )min

x
f x . Then the line search strategy is  

1 .k k k kx x pα+ = +                        (2.19) 

The line search chooses a direction kp  first and then finds the step length kα  
along this direction. The direction may be the steepest descent direction, the 
Newton direction and so on. After fixing the search direction, the search length 

kα  is searched by approximately solving a one-dimensional minimization 
problem  

( )
0

min .k kf x p
α

α
>

+                       (2.20) 

Usually, the inexact line search methods such as the Wolfe method and the 
interpolation method are used [26] since solving (2.20) exactly is too expensive. 
A popular inexact method is the Wolfe method [30]. In this paper, we use the 
Wolfe method. 

In the trust region method, information gathered from objective function 
( )f x  is used to construct a model function kf  whose behavior near the cur-

rent point kx  is similar to that of the objective function kf . Because kf  may 
not be a good approximation of f  when x  is far from kx , we restrict the 
search for a minimizer of kf  to some region around kx . Namely, we find the 
step p by approximately solving the following subproblem 

( )min ,

s.t. the trust region

k kp

k

f x p

x p

+

+ ∈



                  (2.21) 
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If the solution of the problem (2.21) does not produce a sufficient decrease in 
( )f x , it means the trust region is too large, and we shrink it and resolve (2.21). 

Usually, the trust region is a ball defined by kp ≤ ∆ , where 0∆ >  is called the 
trust region radius. Here the norm is 

2⋅  norm. 
The model function kf  in (2.21) is usually defined to be a quadratic function  

( ) T T1 ,
2k k k kf p f f p p B p= +∇ +                  (2.22) 

where kf  and kf∇  are the objective function and the gradient at kx  respec-
tively, and the matrix kB  is either the Hessian 2

kf∇  or some approximation 
to it like the Gauss-Newton method. 

So combining (2.21) and (2.22) together, the form of the trust region method is  

( ) T T1 , s.t. ,
2k k k k kf p f f p p B p p= +∇ + ≤ ∆            (2.23) 

where k∆  is the radius. This is the trust region subproblem and we solve it by 
the two dimensional subspace method [26]. Note that the two dimensional sub-
space method requires the Hessian is symmetric and positive. 

In a sense, the line search method and the trust region method differ in that 
the line search method starts by fixing the direction kp  and then searches the 
step length kα  whereas in trust region the direction kp  and the search step 

kα  are determined together subject to the trust radius k∆ . Theoretically, the 
trust region is easier to reach quadric convergence than the line search method. 
More theoretical details can be found in the references (e.g., [31] [32] [33]). 

One key step in the trust region method is the choice of the trust region radius 

k∆  at each iteration. The choice is based on the agreement between the objec-
tive function f  and the model function kf  at previous iteration. Given a step 

kp , we define the ratio kρ  as  

( ) ( )
( ) ( )

,
0

k k k
k

k k k

f x f x p
f f p

ρ
− +

=
− 

                    (2.24) 

where the numerator is the actual reduction, and the denominator is the pre-
dicted reduction. 

If kp  reaches the boundary of the trust region or the ratio kρ  is satisfac-
tory enough, the radius is increased by a constant time: 

1 1 1, 1.k kα α+∆ = ∆ >                       (2.25) 

If the ratio kρ  is too small, which means that the model function kf  is not 
a good approximation to the objective function f  under the radius, then we 
reduce the trust region radius:  

1 2 2, 0 1.k kα α+∆ = ∆ < <                     (2.26) 

In this paper, we choose 1 2α =  and 2
1
4

α = . 

2.5. FWI Algorithms 

In this section, we present the algorithm of the truncated Newton method with 
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the line search strategy and the algorithm of the Gauss-Newton method with the 
trust-region strategy. 

Algorithm 1 is the FWI algorithm by using the truncated Newton method 
based on the line search method. There are two loops in Algorithm 1. The outer 
loop is the iteration of the line search strategy, and the inner loop is to compute 
the iterative direction kp  and the step length kα . The core of the inner loop is 
Hessian-vector product k jB d  and so on. Algorithm 2 is the FWI algorithm by 
using the Gauss-Newton method based on the trust region method. In Algorithm 
2, kB  is the Hessian approximation by the Gauss-Newton method. Comparing 
Algorithm 1 and Algorithm 2, we know the starting part of both algorithms is 
the same. The difference is in the rear part of the algorithm. In Algorithm 1, the 
line search strategy consists of the function of computing the step length and the 
iterative direction. On the contrary, in Algorithm 2, the trust region strategy 
combines the two steps together. 
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3. Numerical Computations 

In this section, numerical computations are presented to illustrate the advantages 
of the trust region method. We also present the inversion results by the L-BFGS 
method for comparisons. We choose the L-BFGS method to make comparison 
as it is the most popular quasi-Newton method. 

We consider FWI for the Marmousi model which is usually applied to test the 
ability of an imaging or inversion algorithm. The exact Marmousi model is shown 
in Figure 1. Figures 1(a)-(c) are the density, P-wave and S-wave velocities re-
spectively. The model is 10 km in length along horizontal direction and 3.48 km  
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Figure 1. The exact Marmousi model. (a) Density; (b) P-wave velocity; (c) S-wave velocity. 
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in depth. It is grided by the 500 × 174 mesh with 20 m spatial steps in both x  
and y  directions. We set 100 sources and 400 receivers in the data acquisition. 
The sources are located at 40 m in depth and the first source is set at 800 mx =  
in the horizontal direction. The receivers are located at 460 m in depth with the 
first receiver is set at 800 mx =  in the horizontal direction. The source space is 
40 m and the receiver space is 20 m. The source is the Ricker wavelet with the 
time function as  

( ) 2 2 2 21 11 exp ,
2 4

s t t tω ω   = − −   
   

                (3.1) 

where 02 fω = π  and 0 7 Hzf =  is the central frequency. The source is loaded 
on the xv  component. The recording time is 6 s with the time interval 2 ms. 

For the elastic wave FWI, the density is more sensitive than the velocities. 
Some hierarchical inversion strategies developed by [13] and [14] can be applied. 
In our FWI computations, we don’t apply these strategies. We invert the three 
media parameters simultaneously. However, a multiscale technique by imple-
menting the inversion from low frequency to high frequency is still used. More-
over, the data of the next high frequency band include the data of the previous 
low frequency band which guarantees the robustness of inversion. In our com-
putations, four groups of frequencies are used to complete inversion step by 
step, i.e., 2 Hz, 5 Hz, 10 Hz and 20 Hz. For every stage, the stopping criterion is  

( ) ( )
( )

2 ,k k

k

f x f x

f x
ε−−

≤                       (3.2) 

where ( )kf x  is in fact the objective function computed by (2.8), and ε  is set 
0.01 in our computation. This stopping criterion is based on the relative decrease 
of the misfit function. 

The initial model for FWI is shown in Figure 2. Figures 2(a)-(c) are the ini-
tial density, P-wave and S-wave velocities respectively. They are generated by 
arithmetic average smoothing for the exact model along the depth direction on-
ly. In Figure 2, we can see there are no geological structures such as the faults in 
the initial model like those in the exact model. 

The final inversion result by the Gauss-Newton method with the line search 
strategy is shown in Figure 3. The final inversion result by the Gauss-Newton 
method with the two dimensional subspace strategy is shown in Figure 4. The fi-
nal inversion result by the truncated Newton method with the line search strategy 
is shown in Figure 5. We also complete the FWI by the L-BFGS. The results are 
similar and we omit the figures for saving space. We remark that the Hessian in 
the truncated Newton method is not positive and so the two dimensional subspace 
strategy can not be applied directly. Comparing Figures 3-5 with Figure 1, we can 
see that both the Gauss-Newton method and the truncated Newton method with 
the line search strategy can yield good imaging results. And the case of the Gauss- 
Newton method with the two dimensional subspace strategy is the same. 

Figure 6 shows the profile comparison at the position 5 kmx =  among the  
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Figure 2. The initial model for FWI. (a) Density; (b) P-wave velocity; (c) S-wave velocity. 
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Figure 3. The finial inversion result of Marmousi model by the Gauss-Newton method with the line search strategy. 
(a) Density; (b) P-wave velocity; (c) S-wave velocity. 
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Figure 4. The finial inversion result of Marmousi model by the Gauss-Newton method with the two dimensional 
subspace strategy. (a) Density; (b) P-wave velocity; (c) S-wave velocity. 
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Figure 5. The inversion result of Marmousi model by the truncated Newton method with the line search strategy. (a) 
Density; (b) P-wave velocity; (c) S-wave velocity. 
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Figure 6. The comparison of inversion results at 5 kmx =  inverted by the L-BFGS method, the Gauss- 
Newton method and the truncated Newton method with the line search strategy. (a) Density; (b) P-wave 
velocity; (c) S-wave velocity. 
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inversion results by using the L-BFGS method, the Gauss-Newton method and 
the truncated Newton method with the line search strategy. In Figure 6, we can 
see both the inversion results of P-wave velocity and S-wave velocity obtained by 
the three methods are almost the same. However, the inversion results of density 
by the Gauss-Newton method and the truncated Newton method are obviously 
better than the L-BFGS method especially in deep positions. 

In Table 1, we present the iteration number at every stage (i.e., 2 Hz, 5 Hz, 10 
Hz and 20 Hz) for the L-BFGS method, the Gauss-Newton (GN) method and 
the truncated Newton (TN) method by the line search (LS) strategy or the two 
dimensional subspace (Sub) strategy. From Table 1, we can see that the Gauss- 
Newton method has obvious advantage over other methods from point of total 
iteration number. 

In Table 2, we compare the computational efficiency for different methods. 
The total computational time and the time of each iteration are listed in Table 2. 
The total iteration number is also listed for convenience. As we can see, the 
Gauss-Newton method with the two dimensional subspace method costs least 
computational time for each iteration. 

In Figure 7, we present a profile comparison of the inversion results at 
6 kmx =  by the Gauss-Newton method with the line search strategy and the 

trust region strategy. Figures 7(a)-(c) are the inversion results of density, 
P-wave velocity and S-wave velocity respectively. We can see that both strategies 
almost have the same inversion accuracy for P-wave velocity and S-wave  
 
Table 1. The number of iterations at each stage for the L-BFGS method, the Gauss- 
Newton (GN) method and the truncated Newton (TN) method with the line search (LS) 
strategy or the two dimensional subspace (Sub) strategy. 

Stage L-BFGS (LS) GN (LS) GN (Sub) TN (LS) 

One 85 55 51 51 

Two 206 55 82 107 

Three 150 39 65 69 

Four 105 44 62 95 

Total 546 193 260 322 

 
Table 2. The total computation time and the time of each iteration for different inversion 
methods with the line search (LS) strategy or the two dimension subspace (Sub) strategy. 

Method time (s) iteration time/iteration (s) 

L-BFGS (LS) 243,994 546 447 

Gauss-Newton (LS) 53,227 193 276 

Gauss-Newton (Sub) 70,055 260 269 

Truncated Newton (LS) 95,399 322 296 
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Figure 7. The comparison of inversion results for the Marmousi model at 6 kmx =  inverted by using the 
Gauss-Newton method with the line search strategy and the trust region strategy. (a) Density; (b) P-wave 
velocity; (b) S-wave velocity. 
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velocity. For the density, we can see the trust region strategy with the two di-
mensional subspace strategy has better inversion accuracy than the line search 
strategy. In Table 3, we present 2l  errors and relative 2l  errors for the differ-
ent methods. The relative error ε  is defined by  

2

2

,
exa cal

exa
ε

−
=

m m

m
                        (3.3) 

where exam  is the exact model and calm  is the inversion result. The relative 

2l  error for the truncated Newton method with the two dimensional subspace 
strategy is 7.28% and it is the least. This fact is consistent with the theory since 
the Newton method contains the full information of Hessian. For the Gauss- 
Newton method, we can see that the relative 2l  error by the two dimensional 
subspace strategy is 7.38% whereas it is 7.49% for the line search strategy. It 
shows that the two dimensional subspace strategy is helpful to improve the in-
version accuracy. Figure 8 shows the absolute 2l  errors of inversion results 
versus iteration for the L-BFGS method, the Gauss-Newton method and the 
truncated Newton method. 
 

Table 3. The 2l  errors and relative 2l  errors of final inversion results for different inversion methods with the line search (LS) 
strategy or the two dimension subspace (Sub) strategy. 

Method 2l  errors relative 2l  errors 

L-BFGS (LS) 1.050648 × 105 8.57% 

GN (LS) 9.194219 × 104 7.49% 

GN (Sub) 9.048718 × 104 7.38% 

TN (LS) 8.929841 × 104 7.28% 

 

 
Figure 8. The absolute 2l  errors of inversion results versus iteration for the L-BFGS, the Gauss-Newton method and the trun-
cated Newton method. 
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4. Conclusions 

In FWI, the line search strategy is usually applied. In this paper, we have inves-
tigated the application of the trust-region strategy to elastic wave multi-parameter 
inversion. The theoretical methods and algorithms are described in detail. The 
trust-region subproblem is solved by the two-dimensional subspace method. 
Numerical computations for Marmousi model by the Gauss-Newton method 
and the truncated Newton method in the time domain are completed and com-
pared.  

We also have presented the corresponding inversion result by the L-BFGS 
method for comparison since it is the most popular quasi-Newton method. The 
comparisons demonstrate that both the Gauss-Newton method and the trun-
cated Newton method are more accurate than the L-BFGS method. The trust re-
gion strategy is more efficient than the line search strategy. In the line search 
strategy, the information of Hessian and gradient is utilized for deciding the 
search direction whereas the search direction and the search step are determined 
together in the trust region strategy. In the trust region method, as long as the 
trust-region radius is well updated, the model updating can be performed for 
every iteration with the fixed trial step and there are no more extra computations 
of the forward problem. This is the theoretical reason why the trust-region strategy 
can save computational time. In the trust-region strategy, the two-dimensional 
subspace method requires that the Hessian matrix is positive and definite. Un-
fortunately, this condition is not always satisfied for the truncated Newton me-
thod. Future work will be the other measures to update the trust-region radius 
and the application of the trust-region method to other methods. 
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Appendix A. The Staggered-Grid Schemes for Solving (2.3) 

Let t∆  be the time step in the time direction and h  the spatial step in x  and 
y  directions. The discrete indexes for x , y  and t  are denoted by j , i  

and n  respectively. Then the difference schemes for xv  and yv  with the 
second order accuracy are  

1 1 1 1 1ˆ, , , ,
12 2 2,
2

n n n
x x xv j i v j i t v j i

j iρ

+      + = + + ∆ +           + 
 

        (A.1) 

1 1 1 1 1ˆ, , , ,
12 2 2,
2

n n n
y y yv j i v j i t v j i

j iρ

+      + = + + ∆ +           + 
 

       (A.2) 

where  

( ) ( )
1 1 1 1, ,, 1 ,1 2 2 2 2ˆ , ,

2

xy xy
xx xxn

x

j i j ij i j i
v j i

h h

σ σσ σ
   + + − − +   + −     + = + 

 
 

( ) ( )
1 1 1 1, , 1, ,1 2 2 2 2ˆ , .

2

xy xy
yy yyn

y

j i j i j i j i
v j i

h h

σ σ σ σ
   + + − + −    + −     + = + 

 
 

The difference schemes for strain xxσ , xyσ  and yyσ  with the second order 
accuracy are the following  

1 1 1 1 1 1 1, , ,
2 2 2 2 2 2

1 1 1 1ˆ ˆ, , ,
2 2 2 2

n n
xy xy

n n
xy yx

j i j i t j i

v j i v j i

σ σ µ+      + + = + + + ∆ + +     
     

    × + + + + +    
    

     (A.3) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 ˆ ˆ ˆ, , , , , 2 , , ,n n n n n
xx xx xx yy xxj i j i t j i v j i v j i t j i v j iσ σ λ µ+ = + ∆ + + ∆   (A.4) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 ˆ ˆ, , , , , 2 , , ,n n n n n
yy yy xx yy yyj i j i t j i v j i v j i t j i v j iσ σ λ µ+ = + ∆ + + ∆   (A.5) 
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Appendix B. The Derivation for Gradient Formulae  
(2.16)-(2.18) 

Note that  

, , ,y yx x
x y x y

u uu uv v v v
t t t t

∂ ∂∂ ∂
= = = =

∂ ∂ ∂ ∂





  .               (B.1) 

Substituting (B.1) into (2.13), we have  

0
d ,

s

T yx
x y

x

vv
u u t

t t
χ
ρ

∂ ∂∂
= − + ∂ ∂ ∂ 
∑ ∫                     (B.2) 

which is just (2.16). 
From the relation of strain and stress [19], we have  

2 ,yx x
xx

uu u
x y x

σ λ µ
∂ ∂ ∂

= + + ∂ ∂ ∂ 
                  (B.3) 

2 ,y yx
yy

u uu
x y y

σ λ µ
∂ ∂ ∂

= + + ∂ ∂ ∂ 
                  (B.4) 

where xu  and yu  are the displacement in the x  and y  directions respec-
tively. Adding (B.3) and (B.4) together, we have  

( ) ( )2 ,yx
xx yy

uu
x y

σ σ λ µ
∂ ∂

+ = + + ∂ ∂ 
               (B.5) 

that is  

( )
.

2
y xx yyx uu

x y
σ σ
λ µ

∂ +∂
+ =

∂ ∂ +
                     (B.6) 

Similarly, for the backward wavefield xu  and yu , we have  

( )
,

2
y xx yyx uu

x y
σ σ
λ µ

∂ +∂
+ =

∂ ∂ +

  



                     (B.7) 

where xu , yu , xxσ  and yyσ  are the backward wavefield of the adjoint prob-
lem. Substituting (B.6) and (B.7) into (2.14), we get  

( )( )
( )20

d ,
4s

T xx yy xx yy

x
t

σ σ σ σχ
λ λ µ

+ +∂
= −

∂ +
∑ ∫

 

              (B.8) 

which is just (2.17). 
Since  

,yx
xy

uu
y x

σ µ
∂ ∂

= + ∂ ∂ 
                     (B.9) 

we have  

,y xyx uu
y x

σ
µ

∂∂
+ =

∂ ∂
                      (B.10) 

and  
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,y xyx uu
y x

σ
µ

∂∂
+ =

∂ ∂

 



                       (B.11) 

where xyσ  is the backward stress field corresponding to xyσ . Multiplying 
(B.10) and (B.11), we obtain  

2 .y y xy xyx xu uu u
x y x y

σ σ
µ

∂ ∂  ∂ ∂
+ + =  ∂ ∂ ∂ ∂  

 

                (B.12) 

Subtracting (B.3) and (B.4), we have  

2 ,yx
xx yy

uu
x y

σ σ µ
∂ ∂

− = − ∂ ∂ 
                  (B.13) 

that is  

.
2

y xx yyx uu
x y

σ σ
µ

∂ −∂
− =

∂ ∂
                    (B.14) 

Similarly, we have  

.
2

y xx yyx uu
x y

σ σ
µ

∂ −∂
− =

∂ ∂

  



                    (B.15) 

Multiplying (B.14) and (B.15), we have  

( )( )
2 .

4

y y y y y yx x x x x x

xx yy xx yy

u u u u u uu u u u u u
x y x y x x x y y x y y

σ σ σ σ

µ

∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂
− − = − − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

− −
=

  

  

 

  (B.16) 

Multiplying (B.6) and (B.7), we have  

( )( )
( )2 .

4

y y y y y yx x x x x x

xx yy xx yy

u u u u u uu u u u u u
x y x y x x x y y x y y

σ σ σ σ

λ µ

∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

+ +
=

+

  

  

 

  (B.17) 

Adding (B.16) and (B.17) together, we have  

2

y y y yx x x x

y y y yx x x x

y y y yx x x x

y yx x

u u u uu u u u
x y x y x y x y

u u u uu u u u
x x x y y x y y

u u u uu u u u
x x x y y x y y

u uu u
x x y y

∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂
− − + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∂ ∂ ∂ ∂
+ + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 

 

 

 

 

 

 





( )( )
( )

( )( )
2 2 .

44
xx yy xx yy xx yy xx yyσ σ σ σ σ σ σ σ

µλ µ

+ + − −
= +

+

   

         (B.18) 

Substituting (B.12) and (B.18) into (2.15), we have  
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( )( )
( )

( )( )

2 20

2

1
4

d ,

s

T xx yy xx yyxy xy

x

xx yy xx yy t

σ σ σ σσ σχ
µ µ λ µ

σ σ σ σ

µ

  + +∂  = − +
∂  + 

− − + 


∑ ∫
 



 

           (B.19) 

which is just (2.18). 
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