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Abstract 
In this work, we developed a theoretical framework leading to misclassifi-
cation of the final size epidemic data for the stochastic SIR (Suscepti-
ble-Infective-Removed), household epidemic model, with false negative and 
false positive misclassification probabilities. Maximum likelihood based algo-
rithm is then employed for its inference. We then analyzed and compared the 
estimates of the two dimensional model with those of the three and four di-
mensional models associated with misclassified final size data over arrange of 
theoretical parameters, local and global infection rates and corresponding 
proportion infected in the permissible region, away from its boundaries and 
misclassification probabilities. The adequacies of the three models to the final 
size data are examined. The four and three-dimensional models are found to 
outperform the two dimensional model on misclassified final size data.  
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1. Introduction 

Inference of the stochastic SIR household epidemic model without misclassifica-
tion is well analyzed in [1]-[6]. The work of [1] and [7] provided maximum like-
lihood based algorithm for its inferences. But sometimes, the final size epidemic 
data is subject to misclassification error. This occurs in categorical data when the 
actual and recorded categories for subject differs [8] [9]. For example, the sus-
ceptibles may be wrongly be classified as infectives or an infectives wrongly clas-
sified as susceptibles. It then becomes necessary to adjust our inferences to such 
errors in order to get the precise parameter estimates and model that adequately 
fits the final size epidemic data. Using the theoretical framework developed in 
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this work with simulations, we explored the estimates of the parameters of the 
models and the adequacy of their fitness to the final size epidemic data for a 
range misclassification probabilities [ ), 0,0.5FN FPε ε ∈ . We do this by exploring 
the plots of the root mean square error of the estimates defined over the range of 
the misclassification probabilities in [0, 0.5), in order to provide clarity on the 
nature of their fitness to the final size epidemic data. This enables us to identify 
the model that adequately fits better to the final size epidemic data. 

2. Material and Methods 
The Model 

We have assumed that the stochastic SIR household final size data of [4], is sub-
ject to misclassification error; which may be caused by susceptibles wrongly clas-
sified as infectives or infectives wrongly classified as susceptibles. 

The probability of observing i infectives in a household of size n given that the 
true number of infectives is j and that of the susceptibles is n j−  takes cognis-
ance of the true and false positives with their classification probabilities 1 FNε−  
and FPε . 

Let x and y be the observed false and true positives in a household of size n. 
Then the probability of observing x y i+ =  positives, given that the true num-
ber of positives is j can be written as,  

( ) ( ), | True infect , household size .i jP n P x y i j n= + = = =       (1) 

We can express, the probability of making correct and precise observation 
of an infective when it is a true infective, and a susceptible, when it is a true 
susceptible, independently as, 1 FNε−  and 1 FPε− . The distribution of ob-
serving i number of infectives correctly and incorrectly is Binomial distributed, 

( )Bin ,1 FNj ε− , and ( )Bin , FPn j ε− . Equally the probability of observing the 
susceptibles correctly and incorrectly are Binomial distributed, ( )Bin ,1 FPn j ε− −  
and ( )Bin , FNj ε  respectively. 

The number of infectives observed is the sum of the true and false positives 
and has the sum of the Binomial distributions,  

( ) ( )Bin ,1 Bin , .FN FPj n jε ε− + −                  (2) 

Equally, the number of susceptibles observed is the sum of the true and false 
negatives and has the sum of the Binomial distributions,  

( ) ( )Bin ,1 Bin , .FP FNn j jε ε− − +                  (3) 

The probability of observing i infectives in a household of size of n can then 
be written as, 

( ),
0

Obs ,True infect , household size .
n

n i
j

q P i j n
=

= = = =∑         (4) 

Since, 

( )
( ) ( )

Obs ,True ,household size

Obs | True ,household size True .

P i j n

P i j n P j

= = =

= = = = =
        (5) 
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( ) ( ),
0

| True infect , household size True ,
n

n i
j

q P x y i j n P j
=

= + = = = =∑   (6) 

where ( )TrueP j= , 0,1, ,j n=   are the final size probabilities. We can then 
write,  

( ) ( ), ,
0

, 0,1, , .
n

n i i j j
j

q P n P n i n
=

= =∑                   (7) 

where 

( ) ( ), | True ,household size .i jP n P x y i j n= + = = =             (8) 

We can generalize the expression, ( ),i jP n  for , 0,1, 2, ,i j n=   and any 
r n+∈ ≤  using the results of ( ) ( ) ( )0, 1, ,, , ,j j i jP n P n P n

 as, 

( ) ( )( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )
( )

( )( ) ( ) ( )

( )( ) ( )
( )

( )( ) ( ) ( )

,

11 1

222 2

333

1 2 1
1 1

!
1 2

1 1
1 !

1 2 3 1
1 1

2 ! 2!

1 2 4 1 2
1 1

3 ! 3!

r n jj i
i j FN FN FP

in j j i
FP FP FN FN

in j j i
FP FP FN FN

in j
FP FP FN F

j j j j i
P n

r
j j j i

n j
i

j j j j i n j n j
i

j j j j i n j n j
r

ε ε ε

ε ε ε ε

ε ε ε ε
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−−
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FP FP FN
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j

r
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− +
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− − − − − +
+ + − −

−

− − − − − +
+ −







 (9) 

Knowing the terms of ( ), , , 0,1, ,i jP n i j n= 
, the expression for  

, , 0,1, ,n iq i n=   are evaluated. For example the probability of observing 0i =  
infectives in a household of size n can be evaluated as,  

( ) ( ),0 0,
0

, 0,1, , .
n

n j j
j

q P n P n j n
=

= =∑   

where ( )jP n  are the final size probabilities, defined as the probability of ob-
serving j infectives in a household of size n, [10] [11]. 

Similarly, the chance of observing 1i =  infectives in a household of size n 
can be obtained using the terms of ( )1, ,jP n j n+∀ ∈ ≤

. This probability reduc-
es to,  

( ) ( ),1 1,
0

n

n j j
j

q P n P n
=

= ∑  

In general, the probability of observing i n+∈ ≤  infectives in a household 
of size n, is obtained as,  

( ) ( ) ( ),
0

1 1
r r k n j kj r k k

r j FN FN FP FP
k

j n j
P n

r k k
ε ε ε ε− − −− +

=

−  
= − −  −  
∑    (10) 

Equations (10) is the sum of two Binomial distributions, ( )( )Bin , 1 FNj ε−  
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and ( )Bin , FPn j ε−  defined as the probabilities of observing r k−  true posi-
tives from the true j number of infectives and k false positives from the remain-
ing n j−  number of susceptibles in a household of size n. 

Alternatively, ( ),r jP n  has the form,  

( ) ( ) ( ),
0

1 1 .
r k n j r kj k r k

r j FN FN FP FP
k

j n j
P n

k r k
ε ε ε ε − − +− −

=

−  
= − −  −  
∑     (11) 

Equation (11) is also the sum of two Binomial distributions in Equation (10) 
and defined as the probability of observing k true positives from the true j infec-
tives and r k−  false positives from the remaining n j−  susceptibles in a house-
hold of size n. 

Here, both Equations (10) and (11) for ( ),r jP n  satisfies,  

( ),
0

1, .
n

i j
i

P n j n+
=

= ∀ ∈ ≤∑   

3. The Three-Dimensional Model 

If the false positive and false negative misclassification probabilities are the 
same then Equations (2) and (3) for the distribution of the number of infected 
individuals observed and those of the susceptible individuals observed only 
depend on the common misclassification probability denoted here as ε . In 
these equations, FNε  and FPε  are replaced by ε  same as in the expressions 
for ( ), , , 0,1, ,i jP n i j n= 

 and simplified as, 

( ) ( ) 22
,

0
1 , , 0,1, , .

i n j i kj i k
i j

k

j n j
P n i j n

i k k
ε ε − + −− +

=

−  
= − =  −  
∑ 

      (12) 

Alternatively, we can employ  

( ) ( ) 22
,

0
1 , , 0,1, , .

i n j i kj i k
i j

k

j n j
P n i j n

k i k
ε ε − − ++ −

=

−  
= − =  −  
∑ 

     (13) 

Equations (12) and (13) for ( ),i jP n  which are particular cases of Equations 
(10) and (11) when the misclassification probabilities are the same are made of 
two Binomial distributions. While Equation (12) expresses the probability of 
observing i k−  infectives from the true j infectives and k infectives from the 
remaining n j−  susceptibles in the household of size n, Equation (13) ex-
presses the probability of observing k infectives from the true j infectives and 
i k−  infectives from the remaining n j−  susceptibles in the household of size 
n. 

Since they are probabilities, both equations ( ),i jP n , must satisfy,  

( ) { },
0

1, 0,1, , .
n

i j
i

P n j n
=

= ∀ ∈∑   

4. Maximum Likelihood Estimation 

The distribution of the final size epidemic data ,n ix  is multinomial, [12] where 
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,n ix  are the number of households of size n in which i infectives are observed 
and ,n iq  are the probabilities of observing i infectives in a household of size n, 
[1] [4] [13]. The approximate likelihood function of the model parameters is 
then a function of ,n iq  and dependent on the parameters to be estimated from 
the four dimensional model. These are the local infection rate Lλ , the probabil-
ity of avoiding infection from outside the household π , the false positive mis-
classification probability, FPε  and the false negative misclassification probabil-
ity, FNε  and hence ,n iq  has the form ( ), , , ,n i L FP FNq λ π ε ε . 

The approximate likelihood function can be written as,  

( ) ( ) ,
max

,
1 0

, , , , , , .n i
n x

L FP FN n i L FP FN
n i

L qλ π ε ε λ π ε ε
= =

∝∏∏          (14) 

where max is the maximum household size. 
Since the estimates that maximize the approximate likelihood function also 

maximize the approximate loglikelihood function, we can write,  

( ) ( ) ( )
max

, ,
1 0 0

, , , log , , 0,1, , .
n n

L FP FN n i e i j j
n i j

x P n P n i j nλ π ε ε
= = =

  
= =     
∑ ∑ ∑   (15) 

where ( )( ) ( )log , , , , , ,L FP FN L FP FNL λ π ε ε λ π ε ε=   
The approximate likelihood function for the three dimensional model also has 

similar representation with differences in the number of parameters to be esti-
mated. 

5. Numerical Simulation and Inference on the Three and  
Four Dimensional Final Size Epidemic Data 

How precise are the maximum likelihood estimates from the numerical optimi-
zations, given the minimum epidemic and population sizes, the proportion of 
the initial susceptibles infected and the magnitude of the misclassification prob-
abilities? Which of these parameters are intractable to estimate in the face of 
large misclassification probabilities? Which model best fits the final size epi-
demic data in the face of varying misclassification probabilities in the permissi-
ble region, [ )0,0.5 ? These are some of the questions to be explored in this sec-
tion using simulation studies. 

Fitting the Three Models to Data from the Four Dimensional  
Model 

We demonstrate the computational procedures of fitting the three models to 
four dimensional epidemic data from simulation studies and examined the be-
haviours of the estimates using some functions and subroutines developed for 
this work as, 

Run the function FourDimThreeATwoSNsimhousesScatterPlotsMisspec to 
simulate four dimensional household epidemic data with ( )Gamma ,a b  infec-
tious period distribution, theoretical parameters, ,L Gλ λ  and [ ), 0,0.5FN FPε ε ∈ . It 
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then calculate the corresponding parameters of the three models with 
( )Gamma ,a b  infectious period distribution computes, their mean, standard 

deviation and root mean square error of the estimates and plot the estimates us-
ing the following subroutines. 

a) ( )LampaiD mat , provides starting values for the two dimensional model 
parameters, Lλ  and π  according to [12]. 

b) ( )Enegloglik4 , , , ,y n a b mat , computes the negative of the loglikelihood 
function associated with the three dimensional model using the parameters of 

( )Gamma ,a b  infectious period distribution, the final size epidemic data and 
the starting parameters values obtained by inverse transformation of the para-
meter space. 

c) ( )negloglik2 , , , ,x n a b mat , computes the negative loglikelihood function 
associated with the two dimensional model from the parameters of ( )Gamma ,a b  
infectious period distribution, the final size epidemic data and the starting values 
according to [12]. 

d) ( )Misclass2 ,nε , computes the misclassification Probabilities associated 
with the three dimensional model from the misclassification probability para-
meter ε  and maximum household size n. 

e) ( )final_sizep , , , , La b nπ λ  computes the final size probabilities associated 
with the two dimensional model from the parameters of ( )Gamma ,a b  infec-
tious period distribution, , Lπ λ  and maximum household size n.  

f) ( )Misclass3 , , , , ,La b n π λ ε , computes the sum of the product of the mis-
classification probabilities and the final size probabilities associated with the 
three dimensional model for the computation of the negative loglikelihood func-
tion. 

g) ( )falseMisclass2 , ,FN FP nε ε , computes the misclassification probabilities 
associated with the four dimensional model. 

h) ( )SIRfalsePmisclass , , , , , fneg, fposLa b n π λ , computes the products of the 
misclassification probabilities and the final size probabilities associated with the 
loglikelihood function of the four dimensional model. 

i) ( )pinf 2 , , , housesLa b π λ , calculates z and Gλ , from the parameters of 

( )Gamma ,a b  infectious period distribution, model parameters , Lπ λ  and 
vector of household sizes, where houses is the vector of household sizes. 

j) ( )RSTER2 , , , , ,L Ga b c housesλ λ  calculates the threshold parameter, R∗  
from the parameters of ( )Gamma ,a b  infectious period distribution, theoretical 
parameters ,L Gλ λ  and vector of household sizes, houses. 

Using the theoretical parameters, 0.7298z = , 0.1Lλ = , 0.29Gλ = , 
0.4199π = , 2.2166R∗ = , household structure in [1] but fifty times its popula-

tion size given by 70700, minimum epidemic size of 1000 and simulation runs of 
1000. The estimates of the parameters of the three models were obtained for the 
following pairs of the misclassification probabilities ( 0.02, 0.1FN FPε ε= = ), 
( 0.3, 0.2FN FPε ε= = ) and ( 0.2, 0.2FNε ε= = ) respectively shown in Figures 1-3 
and analyzed in Tables 1-3 respectively. 
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Figure 1. Plots of the estimates of ( ),L Gλ λ , ( ),FN FPε ε  and histogram of ε  when 0.02, 0.1FN FPε ε= = . (a) Estim. ( ˆ ˆ,L Gλ λ ): 

4Dim. model; (b) Estim. ( ˆ ˆ,L Gλ λ ): 3Dim. model; (c) Estim. ( ˆ ˆ,L Gλ λ ): 2Dim. model; (d) Estim. ( ˆ ˆ,FN FPε ε ): 4Dim. model; (e) Hist. of 
ε̂  3Dim. model. 
 

 

Figure 2. Plots of the estimates of ( ),L Gλ λ , ( ),FN FPε ε  and histogram of ε  when 0.3, 0.2FN FPε ε= = . (a) Estim. ( ˆ ˆ,L Gλ λ ): 

4Dim. model; (b) Estim. ( ˆ ˆ,L Gλ λ ): 3Dim. model; (c) Estim. ( ˆ ˆ,L Gλ λ ): 2Dim. model; (d) Estim. ( ˆ ˆ,FN FPε ε ): 4Dim. model; (e) Hist. of 
ε̂  3Dim. model. 
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Table 1. Table of the mean of the parameter estimates of the three models. 

Par. Estim. 
0.02, 0.1FN FPε ε= =  0.3, 0.2FN FPε ε= =  0.2, 0.2FN FPε ε= =  

Theo. Param 
2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 

ˆ
Lλ  0.084899 0.090811 0.10138 0.018974 0.14651 0.13265 0.03056 0.10032 0.117 0.1 

Ĝλ  0.3129 0.31015 0.28961 0.32242 0.23107 0.2744 0.33117 0.29025 0.28441 0.29 

π̂  0.38599 0.3865 0.4211 0.47438 0.52772 0.45322 0.42115 0.41985 0.4338 0.4199 

ẑ  0.74206 0.74761 0.72958 0.56414 0.67592 0.71616 0.6369 0.72953 0.72469 0.7298 

ˆFNε  N/A N/A 0.020239 N/A N/A 0.30444 N/A N/A 0.20185 N/A 

ˆFPε  N/A N/A 0.097445 N/A N/A 0.20979 N/A N/A 0.19559 N/A 

ε̂  N/A 0.01074 N/A N/A 0.31411 N/A N/A 0.19921 N/A N/A 

R̂∗  2.2495 2.2857 2.2164 1.5467 2.0074 2.1721 1.7365 2.2151 2.2004 2.2166 

 
Table 2. Table of the standard deviation of the parameter estimates of the three models. 

Par. Estim. 
0.02, 0.1FN FPε ε= =  0.3, 0.2FN FPε ε= =  0.2, 0.2FN FPε ε= =  

2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 

ˆ
Lλ  0.0015409 0.0044091 0.011434 0.00088506 0.056186 0.074851 0.0010531 0.012306 0.060019 

Ĝλ  0.0024536 0.0030933 0.017684 0.0018842 0.014262 0.05958 0.002174 0.0063406 0.047968 

π̂  0.0042913 0.0043876 0.029889 0.0031843 0.015945 0.10611 0.0035712 0.006532 0.084542 

ẑ  0.0034378 0.0051624 0.015988 0.0024631 0.016208 0.057152 0.0027625 0.011531 0.044632 

ˆFNε  N/A N/A 0.011379 N/A N/A 0.019208 N/A N/A 0.019286 

ˆFPε  N/A N/A 0.06998 N/A N/A 0.12818 N/A N/A 0.12458 

ε̂  N/A 0.0072381 N/A N/A 0.015834 N/A N/A 0.01398 N/A 

R̂∗  0.016441 0.030185 0.064045 0.0050586 0.049663 0.23955 0.0075251 0.062329 0.18484 

 
Table 3. Table of the root mean square error of the parameter estimates of the three models. 

Par. Estim. 
0.02, 0.1FN FPε ε= = . 0.3, 0.2FN FPε ε= =  0.2, 0.2FN FPε ε= =  

2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 2Dim. 3Dim. 4Dim. 

ˆ
Lλ  0.015179 0.01019 0.011506 0.081031 0.072919 0.081593 0.069448 0.012298 0.062322 

Ĝλ  0.023027 0.020387 0.017671 0.032475 0.060628 0.061531 0.041225 0.006339 0.048246 

π̂  0.034178 0.033682 0.029883 0.054578 0.10899 0.11112 0.0037814 0.0065256 0.085593 

ẑ  0.012745 0.018553 0.015974 0.16567 0.056251 0.058699 0.092928 0.011522 0.044879 

ˆFNε  N/A N/A 0.01137 N/A N/A 0.019695 N/A N/A 0.019355 

ˆFPε  N/A N/A 0.069956 N/A N/A 0.12842 N/A N/A 0.12454 

ε̂  N/A 0.049788 N/A N/A 0.066036 N/A N/A 0.013988 N/A 

R̂∗  0.036808 0.075438 0.063981 0.66988 0.21497 0.24341 0.48018 0.062283 0.18536 
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Figure 3. Plots of the estimates of ( ),L Gλ λ , ( ),FN FPε ε  and histogram of ε  when 0.2, 0.2FN FPε ε= = . (a) Estim. ( ˆ ˆ,L Gλ λ ): 

4Dim. model; (b) Estim. ( ˆ ˆ,L Gλ λ ): 3Dim. model; (c) Estim. ( ˆ ˆ,L Gλ λ ): 2Dim. model; (d) Estim. ( ˆ ˆ,FN FPε ε ): 4Dim. model; (e) Hist. of 
ε̂  3Dim. model. 
 

Figure 1 shows fitting the Two, Three and Four Dimensional Models to the 
Four Dimensional the final Size Epidemic Data, when 0.02FNε = , 0.1FPε = . 

Figure 2 shows fitting the Two, Three and Four Dimensional Models to the 
Four Dimensional the final Size Epidemic Data, when 0.3FNε = , 0.2FPε = . 

Figure 3 shows fitting the Two, Three and Four Dimensional Models to the 
Four Dimensional the final Size Epidemic Data, when 0.2FNε = , 0.2FPε = . 

6. Comparison of the Models on the Four Dimensional Data 
6.1. Simulations with the Theoretical Parameter, L 0.13λ = ,  

G 0.17λ = , 0.7423π = , z 0.4275= , R 1.4316∗ =  

We simulated household epidemic, with the following theoretical parameters, 
0.13Lλ = , 0.17Gλ = , 0.7423π = , 1.4316R∗ =  and misclassification proba-

bilities, 0.2FN FPε ε= − , [ ]0,0.2FPε ∈  with step size of =0.005. 
With theoretical parameters corresponding to 0.42755z = , we found the es-

timates of Lλ  for the two dimensional model to be imprecise and biased espe-
cially when the misclassification probabilities increase from zero as in Figure 
4(a). The two dimensional model is not a sufficient fit to the four dimensional 
final epidemic data. These behaviours can be observed for other parameters for 
the two dimensional model as in Figures 4 (b)-(g). 

The three dimensional model has precise estimates of Lλ  for misclassifica-
tion probability in 0.08 0.12FPε≤ ≤ , while the four dimensional model is best  
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Figure 4. Plots of the root mean square error of the maximum likelihood estimates of the parameters for the three models when 
0.13Lλ = , 0.17Gλ = , 0.7423π = , 0.4275z = , 1.4316R∗ = . (a) Estim. of ˆ

Lλ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim; (b) 

Estim. of Ĝλ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim; (c) Estim. of π̂ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim; (d) 
Estim. of z: Green = 4Dim, Yellow = 3Dim; Red = 2Dim; (e) Estim. of ˆFPε : Green = 4Dim, Yellow = 3Dim; (f) Estim. of ˆFNε : 

Green = 4Dim, Yellow = 3Dim; (g) Estim. of R̂∗ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim. 

 
if 0 0.08FPε≤ ≤  and 0.17FPε ≥ . This shows that the four dimensional model 
has precise estimates of Lλ  compared to those of the two and three dimension-
al models, if the misclassification probabilities are large and far apart from each 
other. 

In the case of Gλ , the two dimensional model has imprecise and biased esti-
mates, while those of the three dimensional model are precise if 0.08 0.01FPε≤ ≤ , 
those of the four dimensional model are precise if, 0 0.075FPε≤ ≤  and 

0.115FPε ≥ . 
In the case of π , the two dimensional model has precise estimates if, 

0.02 0.025FPε ≤ , while the three dimensional model has precise estimates, if 
0.03 0.105FPε≤ ≤ , the four dimensional model is best if, 0 0.015FPε≤ ≤  and 

0.111FPε ≥ . 
In the case of z, we found that the two dimensional model is best if, 

0.085 0.095FPε≤ ≤ , while the three dimensional model is best if 0.1 0.11FPε≤ ≤ . 
The estimates of the four dimensional model are precise if, 0 0.08FPε≤ ≤  and 

0.115FPε ≥ . 
In the case of the false positive misclassification probability estimates, the 
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three dimensional model is best, if 0.09 0.115FPε≤ ≤ , while the four dimen-
sional model is best if 0 0.085FPε≤ ≤  and 0.120FPε ≥  respectively. 

In the case of the false negative misclassification probability, the three dimen-
sional model is best if, 0.09 0.115FPε≤ ≤ , while the four dimensional model is 
best if, 0 0.085FPε≤ ≤  and 0.120FPε ≥ . 

Similarly in the case of the threshold parameter, the two dimensional model is 
best if 0.09 0.1FPε≤ ≤ , the three dimensional model is best, if 0.1 0.105FPε≤ ≤ , 
while the four dimensional model is best, if 0 0.085FPε≤ ≤  and 0.110FPε ≥ . 

In summary, we see in Figures 4(a)-(g) that the estimates from the four di-
mensional model are more precise than those from the two and three dimen-
sional models when the misclassification probabilities are large and far apart 
from each other. 

However if 0.1FPε = , then those of the three dimensional models are precise 
since the false negative misclassification probability, 0.1FNε =  reduces to the 
false positive misclassification probability, which is a particular case of the four 
dimensional model. 

The three dimensional are precise if the two misclassification probabilities are 
close to each other while those of the two dimensional model are best if the mis-
classification probabilities are zero or close to it. 

6.2. Simulations with Theoretical Parameters, L 0.1λ = , G 0.29λ = ,  
0.4199π = , z 0.7298= , R 2.2166∗ =  

We simulated household epidemic with the following theoretical parameters 
along the line 0.2FN FPε ε= − , [ ]0,0.2FPε ∈ , step size = 0.005. 0.1Lλ = , 

0.29Gλ = , 0.4199π = , 2.2166R∗ = . 
We then obtained the estimates of the parameters of the three models and 

presented plots of their root mean square error in Figures 5 (a)-(g) for a range 
of misclassification probabilities in [ ]0,0.2 . 

From the simulation plots in Figure 5(a), we see that the estimates of Lλ  
from the two dimensional model are driven by bias and are precise if, 

1.975FPε ≤ , while the estimates of Lλ  from three dimensional model are pre-
cise if, 0.050 0.165FPε≤ ≤ . Those of the four dimensional model are precise if, 
0 0.045FPε≤ ≤  and 0.175FPε ≥ . 

In the case of Gλ  in Figures 5(b), the estimates of the two dimensional 
model are best if, 0 0.07FPε≤ ≤ , those of the three dimensional model are best 
if, 0.075 0.145FPε≤ ≤ , while those of the four dimensional model are best if 

0.150FPε ≥ . 
Also, in the case of π  in Figure 5(c), the estimates of the two dimensional 

are best if, 0.125 0.175FPε≤ ≤ , those of the three dimensional model are best if, 
0.07 0.120FPε≤ ≤ , while those of the four dimensional model are best if, 
0 0.065FPε≤ ≤  and 0.18FPε ≥ . 

In the case of z, the estimates of the two dimensional model are best if, 
0.13 0.165FPε≤ ≤ , those of the three dimensional model are best if,  
0.065 0.125FPε≤ ≤ , while those of the four dimensional model are best if,  
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Figure 5. Plots of the root mean square error of the maximum likelihood estimates of the parameters for the three models when 
0.1Lλ = , 0.29Gλ = , 0.4199π = , 2.2166R∗ = . (a) Estim. of ˆ

Lλ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim; (b) Estim. of Ĝλ : 
Green = 4Dim, Yellow = 3Dim; Red = 2Dim; (c) Estim. of π̂ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim; (d) Estim. of z: Green 
= 4Dim, Yellow = 3Dim; Red = 2Dim; (e) Estim. of ˆFPε : Green = 4Dim, Yellow = 3Dim; (f) Estim. of ˆFNε : Green = 4Dim, Yel-

low = 3Dim; (g) Estim. of R̂∗ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim. 

 
0 0.06FPε≤ ≤  and 0.17FPε ≥ . 

In the case of the false positive misclassification probability, FNε , the three 
dimensional model has precise estimates if, 0.05 0.165FPε≤ ≤ , while the four 
dimensional has precise estimates if, 0 0.045FPε≤ ≤  and 0.165FPε ≥ . 

On the other hand, the estimates of the false negative misclassification proba-
bility from the three dimensional model are precise if 0.09 0.105FPε≤ ≤ , while 
from the four dimensional model the estimates are precise if, 0 0.085FPε≤ ≤  
and 0.110FPε ≥ . 

The threshold parameter, R∗  has best estimates from the two dimensional 
model if, 0.14 0.165FPε≤ ≤ , while it has best from the three dimensional mod-
el if, 0.065 0.135FPε≤ ≤ . It has best estimates from the four dimensional model 
if, 0 0.060FPε≤ ≤  and 0.170FPε ≥ . 

7. Simulation with Three Dimensional Epidemic Data 

We studied the properties of the estimates of the three models on three di-
mensional epidemic data in the face of [ )0,0.5ε ∈  using simulations with 

( )Gamma ,a b  infectious period distribution and pair of theoretical parameters 
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( ),L Gλ λ  using the function and, subroutines developed for this work. 
Figure 6 shows fitting the Two, Three and Four Dimensional Models to the 

Three Dimensional Simulated Final Size Epidemic Data, when 0.01ε = . 
Figure 7 shows fitting the Two, Three and Four Dimensional Models to the 

Three Dimensional Simulated Final Size Epidemic Data, when 0.02ε = . 
Figure 8 shows fitting the Two, Three and Four Dimensional Models to the 

Three Dimensional Simulated Final Size Epidemic Data, when 0.2ε = . 
Table of Mean, Standard Deviation and Root Mean Square Error of the Esti-

mates for the Two, Three and Four Dimensional Models, When 0.02,0.02ε =  
and 0.2ε =  are shown in Table 4 and Table 5. 

8. Simulations and Inferences of the Two and Three  
Dimensional Models for [ ]z 0,1∈  

We explored the estimates of the three models with two different sets of theoret-
ical parameters with corresponding 0.2144z =  and 0.7298z =  away from 
their boundaries, simulation runs of 500, misclassification probabilities 

[ )0,0.1ε ∈ , with stepsize of 0.01, household structure in [1] [4] [14] and 50 
times its population size, minimum epidemic size of 1000, to understand the 
properties of the estimates. We then simulate and estimate the models parame-
ters, compute and plot the root mean square of the estimates. Beginning with  
 

 

Figure 6. Plots of the estimates of ( ),L Gλ λ , ( ),FN FPε ε  and histogram of ε  when 0.01ε = . (a) Estim. ˆ ˆ,L Gλ λ : 4Dim. model; 

(b) Estim. ˆ ˆ,L Gλ λ : 3Dim. model; (c) Estim. ˆ ˆ,L Gλ λ : 2Dim. model; (d) Estim. ˆ ˆ,FN FPε ε : 4Dim. model; (e) Hist. of ε̂  3Dim. model. 
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Figure 7. Plots of the estimates of ( ),L Gλ λ , ( ),FN FPε ε  and histogram of ε  when 0.02ε = . (a) Estim. ˆ ˆ,L Gλ λ : 4Dim. model; 

(b) Estim. ˆ ˆ,L Gλ λ : 3Dim. model; (c) Estim. ˆ ˆ,L Gλ λ : 2Dim. model; (d) Estim. ˆ ˆ,FN FPε ε : 4Dim. model; (e) Hist. of ε̂  3Dim. model. 

 

 

Figure 8. Plots of the estimates of ( ),L Gλ λ , ( ),FN FPε ε  and histogram of ε  when 0.2ε = . (a) Estim. ˆ ˆ,L Gλ λ : 4Dim. model; (b) 

Estim. ˆ ˆ,L Gλ λ : 3Dim. model; (c) Estim. ˆ ˆ,L Gλ λ : 2Dim. model; (d) Estim. ˆ ˆ,FN FPε ε : 4Dim. model; (e) Hist. of ε̂  3Dim. model. 
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Table 4. Mean of the parameter estimates of the two, three and four dimensional models where, 2Dim = two dimensional model, 
3Dim = three dimensional model and 4Dim = four dimensional model. 

Par. 
Misclassification probability and model. 

2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim Theo 

ε  0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2 N/A 

ˆ
Lλ  0.094069 0.10023 0.10309 0.088669 0.099995 0.10278 0.030611 0.099752 0.11092 0.1000 

Ĝλ  0.29291 0.28987 0.28513 0.29577 0.29005 0.28576 0.33108 0.29038 0.28831 0.29 

π̂  0.41882 0.42013 0.42827 0.41765 0.41995 0.42737 0.42125 0.41992 0.4268 0.4199 

ẑ  0.72472 0.72974 0.72572 0.72004 0.72962 0.72606 0.6369 0.72901 0.72763 0.7298 

ˆFNε  N/A N/A 0.013024 N/A N/A 0.022364 N/A N/A 0.20014 N/A 

ˆFPε  N/A N/A 0.030605 N/A N/A 0.037319 N/A N/A 0.18729 N/A 

ε̂  N/A 0.010366 N/A N/A 0.019881 N/A N/A 0.19867 N/A N/A 

R̂∗  2.188 2.2167 2.2018 2.161 2.2159 .2029 1.7367 2.2124 2.2105 2.2166 

 
Table 5. Standard deviation of the parameter estimates of the two, three and four dimensional models where, 2Dim = two dimen-
sional model, 3Dim = three dimensional model and 4Dim = four dimensional model. 

Par. 
Misclassification probability and model. 

2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 

ε  0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2 

ˆ
Lλ  0.0014753 0.0042391 0.0066601 0.0014404 0.0050092 0.0081937 0.0010274 0.01126 0.047973 

Ĝλ  0.0024073 0.0031445 0.0090772 0.0023992 0.0032744 0.010904 0.0022198 0.0060073 0.044444 

π̂  0.0046921 0.0048705 0.015706 0.0046184 0.0048262 0.018881 0.0037478 0.0067691 0.077563 

ẑ  0.0038545 0.0049281 0.0093312 0.0037818 0.0056181 0.011074 0.0029132 0.010631 0.040697 

ˆFNε  N/A N/A 0.0079028 N/A N/A 0.0091772 N/A N/A 0.017635 

ˆFPε  N/A N/A 0.037529 N/A N/A 0.043826 N/A N/A 0.11707 

ε̂  N/A 0.0064795 N/A N/A 0.0077986 N/A N/A 0.012364 N/A 

R̂∗  0.01685 0.024641 0.039134 0.016008 0.028788 0.046484 0.0076039 0.057059 0.16838 

 
theoretical parameters, 0.2Lλ = , 0.12Gλ = , 0.8999π = , 0.2144z = , 

1.1653R∗ = , we simulate household epidemic, estimate the parameters of the 
models and examined their precision from the plots of the root mean square er-
ror for misclassification probabilities region [ )0,0.1ε ∈  (Table 6). 

Figure 9 shows Plots of the RMSE of the Parameter Estimates when, 0.2Lλ = , 
0.12Gλ = , 0.8999π = , 0.2144z = , 1.1653R∗ = . 

Figure 10 shows Plots of the RMSE of the Parameter Estimates when 
0.1Lλ = , 0.29Gλ = , 0.4199π = , 0.7298z = , 2.2166R∗ = . 
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Figure 9. Plots of the RMSE estimates of Lλ  for three and two dimensional optimization when 0.2Lλ = , 0.12Gλ = , 

0.8999π = , 0.2144z = , 1.1653R∗ = . (a) Estim. of ˆ
Lλ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim. models; (b) Estim. of Ĝλ : 

Green = 4Dim, Yellow = 3Dim; Red = 2Dim models; (c) Estim. of π̂ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim models; (d) 
Estim. of ẑ : Green = 4Dim, Yellow = 2Dim; Red = 2Dim models; (e) Estim. of the Miscla. prob: Green = ˆFNε , Yellow = ˆFPε , 

Red = ε̂ ; (f) Estim. of R̂∗ : Green = 4Dim, Yellow = 3Dim, Red = 2Dim models. 
 
Table 6. Root mean square error of the parameter estimates of the two, three and four dimensional models where, 2Dim = two 
dimensional model, 3Dim = three dimensional model and 4Dim = four dimensional model. 

Par. 
Misclassification probability and model. 

2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 2Dim 3Dim 4Dim 

ε  0.01 0.01 0.01 0.02 0.02 0.02 0.2 0.2 0.2 

ˆ
Lλ  0.006111 0.0042409 0.0073379 0.011422 0.0050042 0.0086443 0.069397 0.011252 0.049154 

Ĝλ  0.0037761 0.0031442 0.0073379 0.0062438 0.0032715 0.0086443 0.041142 0.0060135 0.049154 

π̂  0.0048073 0.0048714 0.017787 0.0051303 0.0048218 0.02029 0.0039827 0.0067624 0.077793 

ẑ  0.0063716 0.0049235 0.010172 0.010457 0.0056151 0.011675 0.092936 0.010648 0.040714 

ˆFNε  N/A N/A 0.0084544 N/A N/A 0.0095477 N/A N/A 0.017617 

ˆFPε  N/A N/A 0.04278 N/A N/A 0.0094679 N/A N/A 0.11764 

ε̂  N/A 0.0064833 N/A N/A 0.0077917 N/A N/A 0.012423 N/A 

R̂∗  0.033136 0.024617 0.041799 0.057782 0.028766 0.048413 0.47997 0.057153 0.16832 
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Figure 10. Plots of the RMSE estimates of Lλ  for three and two dimensional optimization when 0.1Lλ = , 0.29Gλ = . 

0.4199π = , 0.7298z = , 2.2166R∗ = . (a) Estim. of ˆ
Lλ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim. models; (b) Estim. of Ĝλ : 

Green = 4Dim, Yellow = 3Dim; Red = 2Dim models; (c) Estim. of π̂ : Green = 4Dim, Yellow = 3Dim; Red = 2Dim models; (d) 
Estim. of ẑ : Green = 4Dim, Yellow = 2Dim; Red = 2Dim models; (e) Estim. of the Miscla. prob: Green = ˆFNε , Yellow = ˆFPε , 

Red = ε̂ ; (f) Estim. of R̂∗ : Green = 4Dim, Yellow = 3Dim, Red = 2Dim models. 

9. Results and Discussion 

In Figures 1(a)-(c), we see that the estimates of the local and global infection 
rates from the two and three dimensional models are biased, while those of the 
four dimensional models have more variability around their true values. 

In Figure 2(b) and Figure 2(c), the estimates of the two and three dimen-
sional models are biased and imprecise when the misclassification probabilities 
are large and far apart from each other as theoretically expected. 

In Figure 3(a) and Figure 3(b), the scatter points of the estimates from the 
three and four dimensional models are centered at their true value with less va-
riability for the three dimensional model, while those of the two dimensional 
model in Figure 3(c) are biased. The estimates of the three dimensional model 
are more precise than those of the two and four dimensional models. 

Figures 4(a)-(g) are plots of the root mean square error of the maximum li-
kelihood estimates of the parameters of the three models with regions of preci-
sion when the theoretical parameters corresponds 0.4275z = . We see that the 
root mean square error of the estimates from the four dimensional model are 
consistently stable throughout the misclassification probabilities region. 
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From Figure 6(c) the two dimensional models is beginning to struggle fitting 
to the three four dimensional data when 0.01ε = , while those of the three and 
four dimensional models are unbiased and precisely estimated as in Figure 6(a) 
and Figure 6(b). 

Figures 5(a)-(g) provides general summary of the properties of the estimates 
of the three models on four dimensional final size epidemic data. Their beha-
viours along the diagonal of the misclassification probabilities region [ ]0,0.2  
are similar to those examined along the vertical and horizontal axes of [ ]0,0.2  
but have only chosen to present those of the former to avoid repetition. 

From Figures 7(a)-(c), we see that when 0.02ε = , the parameter estimates 
from the two dimensional model become biased and imprecise, while those of 
the three and four dimensional models are unbiased and precise. 

From Figure 8(c), we see that estimates from the two dimensional model are 
biased and imprecise while those from the three and four dimensional models in 
Figure 8(a) and Figure 8(b) are precise and unbiased as expected. 

With large misclassification probability 0.2ε =  the three and four dimen-
sional models are the appropriate fit to three dimensional epidemic data. The 
three dimensional model with less number of parameters is often chosen in line 
with the principle of parsimony. 

In Figures 10(a)-(f), similar pattern of behaviour are observed except that the 
estimates of Gλ  in Figure 10(c) for the four dimensional are less precise than 
those of the two dimensional model. This may be attributable to the size of the 
proportion infected z as compared to its behaviour with 0.2144z =  in Figure 
9(c). 

We see from Table 4 that the maximum likelihood estimates of the two di-
mensional models are precise only when the misclassification probability is close 
to 0 and hence outperforms the three and four dimensional models, otherwise 
those of the three and four dimensional models have better precision. 

Also, from the regions where the models outperform each other on the three 
dimensional final size household epidemic data for the set of theoretical para-
meters and misclassification probabilities [ ]0,0.1ε ∈ , we see that the two di-
mensional model is sufficient on the three dimensional final size epidemic data if 
ε  is close to 0, while the three and four dimensional model are also sufficient 
model fits, if the misclassification probability is large. 

The estimates of the two dimensional model are initialized according to [10], 
with minimum computational cost. For example from the [1] A (H3N2) Ter-
cumseh Michigan epidemic, we found the computational time for the estimates 
to be 1.2 seconds, while those of the Seattle 1975-9176 B (H1N1) epidemic, [15] 
is 9 seconds, those of 1978-1979 A (H1N1) epidemic, [15] is 4.2 seconds. 

In summary, the computational time required for convergence of the maxi-
mum likelihood estimates depends on the choice of the starting values and pop-
ulation size. With appropriate choice of the starting values away from the boun-
daries and large population size the computational time is large compared to 
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small population size. However inadequate population size leads to lack of in-
formation and hence makes convergence of the estimates impossible. 

10. Conclusions and Suggestions 

We observed that, once there is no misclassification error in the final size epi-
demic data, the best model fit to the two dimensional final size data is the two 
dimensional model. The model with smaller number of parameters is therefore 
preferred. Making the two dimensional model the appropriate model fit to two 
dimensional final size epidemic data if 0ε = . 

However, if ε  is far from 0, then the two dimensional model struggled fitting 
to three dimensional final size data. 

With increasing ε , it becomes unreliable to use the two dimensional model. 
The three and four dimensional models provide good fit to the theoretical 
chi-square distribution in the face of increasing values of the misclassification 
probabilities. 

Also, with large and different misclassification probabilities far apart from 
each other, the four dimensional model has precise estimates and therefore out-
performs the two and three dimensional models on the four dimensional final 
size epidemic data as demonstrated. 

With increasing misclassification probabilities, the two and three dimensional 
models struggled fitting to the four dimensional final size data, with dispropor-
tionate parameter estimates. 

In summary, with large misclassification probabilities, the estimates of the 
four dimensional model are more precise than those from the two and three di-
mensional models in agreement with the discussion in Subsection 6.1. 

Possible extension includes estimating the shape parameter of the Gamma in-
fectious period distribution, if the infectious period distribution is unknown. For 
example if ( )Gamma ,a k a  is the assumed infectious period distribution, 
where k is known, then the shape parameter a can then estimate from the final 
size epidemic data.  
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