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Abstract 
In the first step the extremal values of the vibrational specific heat and entro-
py represented by the Planck oscillators at the low temperatures could be 
calculated. The positions of the extrema are defined by the dimensionless ra-
tios between the quanta of the vibrational energy and products of the actual 
temperature multiplied by the Boltzmann constant. It became evident that 
position of a local maximum obtained for the Planck’s average energy of a vi-
bration mode and position of a local maximum of entropy are the same. In 
the next step the Haken’s time-dependent perturbation approach to the pair 
of quantum non-degenerate Schrödinger eigenstates of energy is re-examined. 
An averaging process done on the time variable leads to a very simple formu-
la for the coefficients entering the perturbation terms. 
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1. Introduction 

Planck has developed—a time ago—a quantum approach to the oscillator en-
sembles for which both the vibrational energy and entropy are considered [1]. In 
the thermal equilibrium these parameters are given respectively by the formula  

 0 e 1h kT

hE N N ν

νε= +
−

                         (1) 

in the energy case, and by  
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 1 log 1 e
e 1

h
kT

h kT

NhS Nk
T

ν

ν

ν − 
= − −  −  

                   (2) 

in the entropy case. N is the number of the component particles oscillating in the 
system:  

 0 1 2N N N N+ + + =                         (3) 

and  

 0 0 1 1 2 2N N N Eε ε ε+ + + =                      (4) 

is the energy E given by N. This E is composed by the groups of oscillating par-
ticles entering (3), symbols iε  denote the energy contributed by a single par-
ticle belonging to the set iN . 

The parameter T is the absolute temperature, ν —the symbol of frequency of 
the particle oscillation, h and k are the Planck and Boltzmann constants, respec-
tively. We note that any oscillator has the energy  

 0n nhε ε ν= +                           (5) 

where 0ε  is a common energy component in the system. 
Beyond of the general formulae for E and S presented in (1) and (2), Planck 

examined also a limiting situation when T becomes very high. In this case we 
obtain  

 e 1 .h kT h
kT

ν ν
≅ +                          (6) 

In effect of (6):  

 e 1h kT h
kT

ν ν
− ≅                          (7) 

and by neglecting the term having 0ε —we obtain for energy  

 .kTE Nh NkT
h

ν
ν

≅ =                       (8) 

A substitution similar to (7) done in the case of S in (2) gives (see [1]):  

 log .ekTS Nk
hν

 =  
 

                      (9) 

This is an approximate formula in which a small term having  

 0T                            (10) 

in the denominator in (7) has been neglected. 
The low temperatures have not been much examined in [1]. In this case we 

have for the oscillatory energy  

 0 e h kTE N Nh νε ν −= +                    (11) 

because the first term entering the denominator in the formula (1) highly pre-
dominates over the absolute value of the second term of the denominator equal 
to 1. 

The idea of the present paper is to examine the case of very small T more ac-
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curately than before. The examination of the energy behaviour is based mainly 
on the formula (11), a suitable basis of the examination of entropy is also taken 
from [1]; see Section 2. 

The problem of the Planck oscillators for energy and entropy could be con-
nected with the Haken’s time-dependent perturbation calculation of a single non- 
degenerate quantum state. The solutions are shown to become similar to those 
of an oscillator-like equation having one term fully independent of time. Since 
an averaging process makes the time-dependent terms equal to zero, the coeffi-
cients entering the final solution approach the terms characteristic for the har-
monic oscillator. 

2. Properties of Planck’s E and S Characteristic for Small  
Temperature T   

Very small T give for energy the formula (11), the same T assumed for the en-
tropy S in (2) give (see [1]):  

 e .h kTNhS
T

νν −=                          (12) 

On the basis of E in (11) we examine also its derivative with respect to T repre- 
senting the specific heat  

 ( )d d de de .
d d d d

x
h kTE xNh Nh

T T x T
νν ν

−
−= =                (13) 

Here we put  

 ,hx
kT
ν

=                             (14) 

so  

 2

d .
d

x h
T kT

ν
= −                           (15) 

In effect the term (13) for the specific heat becomes:  

 ( ) ( )
2

2
2

d d e 1 e e .
d d e

h kT x x
x

E h xNh Nh Nkx Nk
T T kT

ν νν ν− − − = = − − = = 
 

    (16) 

In order to examine the external properties of (16) we calculate  

 ( )
2

2 2d d e 2 e e 0
d de

x x x
x

x x x x
x x

− − − 
= = − = 

 
              (17) 

which gives  

 22x x=                              (18) 

or  
 2.x =                               (19) 

The second derivative of the function examined in (17) gives  

 ( ) ( ) ( )
2

2 2 2
2 2

2

d e e 2 4 e 2 0,
d

x x

x
x

x x x
x

− − −

=
=

= − + = − <           (20) 
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so the result in (20) indicates a local maximum of the function d dE T  consi-
dered in (16):  

 2
max

d 4 .
d e

E Nk
T

  = 
 

                         (21) 

A similar behaviour can be observed for the entropy at low T. This case of S is 
represented by the formula given in [1] repeated in (12):  

 e .xS Nkx −=                            (22) 

An examination of the derivative of S leads to the result  

 ( ) ( ) ( )d d e e e e 1
d d

x x x xS Nk x Nk x Nk x
x x

− − − −= = − = −            (23) 

from which we obtain the extremum at  

 1.x =                              (24) 

The second derivative of S in (22) gives  

 ( ) ( )
2

2

d e e e 2 e
d

x x x xS Nk x Nk x
x

− − − − = − − − − = −              (25) 

which calculated at 1x =  becomes:  

 
2

2
1

d 0.
ed x

S Nk
x =

= − <                        (26) 

The negative result in (26) indicates a maximum value of S in (24). Evidently this 
extremal value of S becomes:  

 max 1
e .

e
x

x

NkS Nkx −

=
= =                      (27) 

3. Average Energy for the Planck’s Vibration Mode and Its  
Properties   

This energy is presented in [2]:  

 .
e 1 e 1av h kT x

h hE ν

ν ν
= =

− −
                     (28) 

The variable x entering (28) [see (14)] taken at small T can make x much larg-
er than 1. Evidently in this case we have  

 e e 1x h kTν=                           (29) 

and the term 1 entering the denominator in (28) can be neglected. Because of (14) 
we have approximately  

 ( ) .
eav x

xE f x kT= ≅                       (30) 

This gives the energy derivative calculated with respect to x  equal to  

 ( ) ( )1 1 .
e e ex x x

x kTf x kT x ′ = − = − 
 

               (31) 

The requirement that ( )f x′  should be equal to zero gives  
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 1x =                              (32) 

which is the result much similar to that obtained in (24). The second derivative 
of avE  in (30) with respect to x gives:  

 ( ) ( )2e e 0x xf x kT x− −′′ = − + <                   (31a) 

for 1x =  indicating a maximum of (30) at that x.  

4. Similarities in Behaviour of the Derivatives of E and S  
Calculated with Respect to the Frequency ν    

By taking first the derivative of the energy at low T with respect to ν  we obtain 
from (11):  

 
( ) ( ) ( )

( )

d d d d de e e 1
d d d d d

e 1 e 1 .

h kT x x

x h kT

E x xNh NkT x NkT x
x

hNh x Nh
hT

ν

ν

ν
ν ν ν ν

ν

− − −

− −

= = = −

 = − = − 
 

    (33) 

A much similar result can be calculated from the derivative of S taken at low T 
[see (12)]:  

 
( )

( )

d d d de 1 e
d d d d

e 1 e 1 .

x x

x h kT

S S x xNk Nkx
x

h Nh hNk x
kT T kT

ν

ν ν ν
ν

− −

− −

 = = + − 

 = − = − 
 

             (34) 

Both derivatives in (33) and (34) vanish at  
 1.h kTν =                            (35) 

The second derivatives of E and S calculated with respect to ν  at 1x =  give 
negative values which indicate positions of the maxima of E and S at the variable 

1x = :  

 max ,
e

NhE ν
=                          (36) 

 max ,
e

NhS
T
ν

=                         (36a) 

valid at low T. 

5. Oscillator Properties Representing the Haken’s  
Time-Dependent Perturbation Approach to the  
Schrödinger’s Quantum State   

This approach is rather special because it refers us directly to the time variable 
which, in general, is rather avoided by the quantum physicists. 

Let us assume that only two separate quantum levels, say 1 and 2, of the un-
perturbed Hamilton eigenequation  

 0
ˆ

n n nH Wϕ ϕ=                         (37) 

are for us of interest [3]. This implies that the solution of the time-dependent 
Schrödinger equation  
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 d ˆ ,
d

i H
t
ψ ψ=                           (38) 

where  

 0
ˆ ˆ ˆ

pH H H= +                           (39) 

and ˆ
pH  is the perturbation potential, is constructed with the aid of the combi-

nation of 1ϕ  and 2ϕ  entering (37):  

 ( ) ( )1 1 2 2 .c t c tψ ϕ ϕ= +                      (40) 

The ( )1c t  and ( )2c t  should be found. The equations defining the coefficients 
are:  

 1
1 1 1 11 2 12

d
,

d
p pci c W c H c H

t
= + +                   (41) 

 2
2 2 2 22 1 21

d
.

d
p pci c W c H c H

t
= + +                  (42) 

If we assume that the diagonal matrix elements of ˆ
pH  vanish, i.e.  

 11 22 0,p pH H= =                         (43) 

a substitution can be done [3]:  

 ( ) ( )1 1 1exp ,c t d iW t= −                     (44) 

 ( ) ( )2 2 2exp .c t d iW t= −                     (45) 

This leads to the pair of equations for 1d  and 2d  equal respectively to [3]  

 ( )1 2 12
d exp ,
d

pi d d H i t
t

ω= −                    (46) 

 ( )2 1 21
d exp
d

pi d d H i t
t

ω= 
                    (47) 

where  

 ( )21 2 1
1 .W Wω ω= = −



                    (48) 

Our idea is to calculate the second derivatives of 1d  and 2d  entering (46) 
and (47) with respect to t each multiplied by i :  

 

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

2
2

1 2 12 2 122

1 21 12 2 12

1 21 12 2 12

d d exp exp
dd

exp exp exp

exp

p p

p p p

p p p

d i d H i t i d H i i t
tt

d H i t H i t d H i t

d H H d H i t

ω ω ω

ω ω ω ω

ω ω

− = − + − −

= − + −

= + −

  
  

   


 


   (49) 

and  

 

( ) ( ) ( )

( ) ( ) ( )
( )

2
2

2 1 21 1 212

2 12 21 1 21

2 12 21 1 21

d d exp exp
dd

exp exp exp

exp .

p p

p p p

p p p

d i d H i t i d H i i t
tt

d H i t H i t d H i t

d H H d H i t

ω ω ω

ω ω ω ω

ω ω

− = +

= − −

= −

  
  

   


 


    (50) 

The results indicate that a part of the second derivative of both 1d  and 2d  is 
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fully independent of t, being a multiple of 1d  and 2d  respectively. On the 
other side, the next part of each second derivative is very rapidly oscillating with 
t, because usually we have  

 1;ω                             (48a) 

see (48). This means that the average obtained for the time dependent part on 
the right of (49) and (50) is a very small number tending to zero. In effect we 
obtain the equations:  

 ( )
2

2
1 1 21 122

d
d

p pd d H H
t

− ≅                      (51) 

and  

 ( )
2

2
2 2 12 212

d .
d

p pd d H H
t

− ≅                     (52) 

Because the coefficients on the right of (51) and (52) are the same, this imples 
that 1d  and 2d  can be represented respectively by the same function of time, 
say  

 1 2 cos .d d tν≅ =                         (53) 

Since we have  

 ( ) ( ) ( )
2 2

2
1 22 2

d d cos
d d

d d t
t t

ν ν≅ = −                  (54) 

the frequency square 2ν  in (54) becomes  

 2 212 21
2 ~ sec

p pH H
ν −=



                      (55) 

if we note that 12 21~ ~ ergp pH H  and ~ erg sec⋅  
We expect ν  to be a large frequency because of a very small size of  . 

6. Summary   

In the first step of the paper the extremal values of the specific heat of the Planck 
oscillator and the oscillator entropy are calculated. The results are attained by 
considering the well-established Planck’s expressions for the oscillator energy 
and entropy in [1] taken for the limit of the low temperature T. As a variable x 
suitable to the extrema calculations the dimensionless energy ratio (14) has been 
chosen. 

It is found that the specific heat as well as entropy of the oscillators attains 
their maximal values given by the formulae (21)-(27), respectively, at 2x =  and 

1x = . Both results, being proportional to the Boltzmann constant k, are small 
for 1N =  but independent of T. 

The limits of d dE T  and S obtained at very small T become equal to zero for 
both specific heat and entropy:  

 
2

0

dlim lim 0,
d exT x

E xNk
T→ →∞
= =                       (56) 
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0

lim lim 0.
exT x

xS Nk
→ →∞

= =                        (57) 

In the next step the Haken’s time-dependent perturbation method is discussed 
[3]. It is shown that the time-dependent perturbation coefficients representing 
this method can be obtained very easily on the basis of the harmonic oscillations 
having the frequency defined by the non-diagonal matrix element of the pertur-
bation potential and the Planck constant h. 

It should be noted that more recently the classical and quantum behaviour of 
the oscillations was examined with the aid of the linear canonical transforma-
tions in [4]. 
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