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Abstract 
The nodal solutions of equations are considered to be more difficult than the 
positive solutions and the ground state solutions. Based on this, this paper 
intends to study nodal solutions for a kind of Schrödinger-Poisson equation. 
We consider a class of Schrödinger-Poisson equation with variable potential 
under weaker conditions in this paper. By introducing some new techniques 
and using truncated functional, Hardy inequality and Pohožaev identity, we 
obtain an existence result of a least energy sign-changing solution and a 
ground state solution for this kind of Schrödinger-Poisson equation. Moreo-
ver, the energy of the sign-changing solution is strictly greater than the ground 
state energy. 
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1. Introduction 

In this paper, the following nonlinear Schrödinger-Poisson system will be dis-
cussed 

( ) ( ) ( ) 3

2 3

, ,
, ,

u V x u x u f u x
u x

λφ
φ

−∆ + + = ∈

−∆ = ∈




            (1.1) 

where the potential function 3:V →  , 0λ >  is a parameter and  

( )3 ,f C∈   . We can assume that f satisfies the following assumptions: 

(f1) 
( )

0lim 0t

f t
t→ = ; 
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(f2) 
( )
5lim 0t

f t
t→∞ = ; 

(f3) 
( )
2limt

F t
t→+∞ = +∞ , where ( ) ( )

0
d

t
F t f s s= ∫ ; 

(f4) 
( )f t
t

 is an increasing function of { }\ 0 . 

To avoid involving too munch details for checking the compactness, we may 
assume that [ )( )3 , 0,V C∈ +∞  and satisfies: 

(V1) ( ) ( )0 : lim yV V x V V y∞ →∞≤ ≤ =  for all 3x∈ , where 0V  is a positive 
constant; meanwhile, we set up the weak decay hypothesis on V∇ : 

(V2) there is [ )0,1θ ∈  such that ( ) { }3
2 , \ 0

2
V x x x

x
θ

∇ ⋅ ≤ ∈ . 

We could also call system (1.1) as Schrödinger-Maxwell system, which is used 
in physics. In fact, the coupled nonlinear Schrödinger equation and Poisson eq-
uation can be used to describe the interaction of charged particles with electro-
magnetic fields. To learn more about the physical aspects of the Schrödin-
ger-Poisson equation, the reader can read the related literature [1] [2] [3] and 
the references therein. What’s more, readers can also read the following articles, 
including [4] [5] [6], which show the mathematical and physical background of 
system (1.1). 

In recent years, there has been a lot of research on the solutions of Schrödin-
ger-Poisson equation, especially the existence of positive solutions, multiple so-
lutions, sign-changing solutions, ground state solutions and semi-classical states, 
we can look at literatures [2] [5] [7]-[14] and references therein. In addition, the 
research on the existence of sign-changing solutions is in [15]-[20], etc. 

As we can see, Wang and Shuai in [17] also studied problem (1.1) and they 
obtained the existence of sign-changing solution to problem (1.1). They assumed 
that ( )3 ,V C∈    and ( )1f C∈   satisfies (f1), (f2) and the following condi-
tions: 

(f3)’ 
( )
4limt

F t
t→∞ = +∞ ; 

(f4)’ ( )
3

f t

t
 is an increasing function of { }\ 0 . 

By introducing a parameter [ ]0,1µ ∈ , they show that any sign-changing so-
lution for system (1.1) is strictly greater than twice the least energy solution. 
What’s more, they combine the constrained variational method with the quan-
titative deformation lemma to prove the existence of the least energy sign- 
changing solution. In addition, the energy doubling and asymptotic properties of 
the solution are also discussed. In contrast to Wang and Shuai’s proof, we refer 
to the truncation function, which is inspired by [21] [22] [23] [24]. 

In [13], the following system is considered 

( )2

,

, lim 0,

p

x

u u u u
u x

λφ

φ φ→+∞

−∆ + + =
−∆ = =

                 (1.2) 
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where 1V ≡ , ( ) pf u u=  and 1 5p< < . The authors obtained some existence 
and nonexistence results of positive radial solutions by using variational method, 
depending on the parameters λ  and p. It turns out that 2p =  is the critical 
value for the existence and nonexistence of solutions. However, their study of 
the existence of positive radial solutions for system (1.2) is dependent on the pa-
rameter 0λ > , which seems difficult to be applied to similar systems with vari-
able potential. 

Zhang in [22] consider the following Schrödinger-Poisson equation 

( ) 3
1

2 3

, in ,
, in ,

u V u u f u
u

µφ
φ µ

−∆ + + =

−∆ =




               (1.3) 

where 1, 0V µ > , f has a critical growth. The author obtained the existence of 
solutions for system (1.3) with a general nonlinearity in the critical growth by 
variational method. But he did not study the existence of sign-changing. 

Sofiane Khoutir in [25] considered the following system 

( ) 3
2
2 3

, ,
, ,

u V u u f u x
u x

λφ
φ

−∆ + + = ∈

−∆ = ∈




               (1.4) 

where 2V  is a positive constant. By using variational methods in combination 
with the Pohožaev identity, Sofiane Khoutir proved that system (1.4) has the 
least energy sign-changing solution and a ground state solution provided that 
λ  is sufficiently small. However, if the potential is not a positive constant, for 
example, the potential is variable, that is ( )V x , it is very difficult to verify the 
Sobolev embedding compactness. 

In our work, we consider variable potential ( )V x  and put some constraints 
on it, and then study the least energy sign-changing solution and ground state 
solution of the Schrödinger-Poisson Equation (1.1). 

We now need to introduce some symbolic notations. As usual, for 1 p≤ < +∞ , 
let 

( )3
3: d , .p p p

pu u x u L= ∈∫


                 (1.5) 

Let 

( ) ( ) ( )( ){ }3

21 3 2 3 2: d ,H u L u V x u x= ∈ ∇ + < +∞∫         (1.6) 

with the inner product and norm 

( )( ) ( )( )3 3

2 2 2, d , d .u v u v V x uv x u u V x u x= ∇ ∇ + = ∇ +∫ ∫ 
   (1.7) 

Therefore, the embedding ( )1 3H   ↪ ( )3pL   is continuous for [ ]2,6p∈ , 
moreover, there exists a constant 0pC′ >  such that 

( ) [ ]1 3, , 2,6 .ppu C u u H p′≤ ∈ ∈
             (1.8) 

Let 

( ) ( ) ( ) ( ){ }1 3 1 3: : = .rH H u H u x u x= = ∈              (1.9) 

Then, ( )1 3H H⊂  , for 2 6p< < , the embedding H  ↪ ( )3pL   is 
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compact. 
Let ( ) ( ) ( ){ }1,2 3 6 3 2 3: :u L u L= ∈ ∇ ∈     be the Sobolev space with norm 

1,2 3

2 2 d .u u x= ∇∫ 
                    (1.10) 

Then, the embedding ( )1,2 3   ↪ ( )6 3L   is continuous (see [26]) and the 
best Sobolev constant is 

( ) { } ( )
3

1,2 3

3

2

1
\ 0 6 3

d
: inf .

d
u

u x
S

u x
∈

∇
= ∫

∫








                (1.11) 

We have known that for any ( )1 3u H∈  , if uφ  is the unique solution of 
2uφ−∆ =  in ( )1,2 3 , then 

( ) ( )
3

21 d .
4u

u y
x x

x y
φ

−π
= ∫                   (1.12) 

What’s more, the properties of uφ  are as follows (the detail proof can be seen 
in [27]): 

Lemma 1.1. For ( )1 3u H∈  , we have 
(i) ( )1 30,u u Hφ ≥ ∀ ∈  ; 
(ii) ( ) ( )2 1 3, 0,t uu t t u Hφ φ= ∀ > ∀ ∈  ; 
(iii) If nu u→  weakly in ( )1 3H  , then 

nu uφ φ→  weakly in ( )1,2 3  
and 

3 3
2 2d liminf d ;

nu u nn
u x u xφ φ

→∞
≤∫ ∫ 

                (1.13) 

(iv) There exists a constant 1 0C > , by Hölder inequality, such that 

( ) ( )1,2 3 3 3

1 1
2 42 2 42 2

1d d d : , ;u u uu x x u x C u u Hφ φ φ= ≤ = ∀ ∈∫ ∫ ∫   
   (1.14) 

(v) If u is a radial function, then uφ  is radial. 
Now, we consider a family of :K Hλ →   defined by 

( ) ( )( ) ( )3 3 3

2 2 21 d d d .
2 4 uK u u V x u x u x F u xλ

λ φ= ∇ + + −∫ ∫ ∫  
   (1.15) 

Hence, by (f1), (f2), (V1) and (V2), Kλ  is well defined and ( )1 ,K C Hλ ∈  . 
For any ,u v H∈ , there is 

( ) ( ) ( )3 3 3, d d d .uK u v u v V x uv x uv x f u v xλ λ φ′ = ∇ ∇ + + −  ∫ ∫ ∫  
  (1.16) 

Note that ( ) ( ) ( )1 3 1,2 3, uu Hφ ∈ ×   is a solution of problem (1.1) if and 
only if ( )1 3u H∈   is a critical point of Kλ  and uφ φ= . Moreover, the criti-
cal points of Kλ  on H are the critical points of Kλ  on ( )1 3H   by the criti-
cal principle of symmetry. So, finding the weak solution of problem (1.1) is 
equivalent to finding the critical point of the functional Kλ . 

In this paper, we denote 

( ){ } ( ){ }max ,0 and min ,0 ,u u x u u x+ −= =          (1.17) 

then u u u+ −= + . 
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We define the Nehari manifold for the energy functional Kλ  of problem 
(1.1) as 

{ } ( ){ }\ 0 , , 0 ,u H K u uλ λ′= ∈ =               (1.18) 

and the nodal-Nehari manifold 

( ){ }, 0 and , 0 .u H u K u uλ λ
± ±′= ∈ ≠ =           (1.19) 

What’s more, we denote 

( ) ( ): inf and : inf .
u u

c K u g K u
λ λ

λ λ λ λ∈ ∈
= =

 
           (1.20) 

Moreover, 1 2, ,C C   denote positive constants possibly different in different 
places. Strong convergence is expressed in terms of →  and weak convergence 
is expressed in terms of  . 

The main result of this paper is presented as follows. 
Theorem 1.1. Assume that (f1)-(f4), (V1) and (V2) hold. Then there exists a 

positive ϒ  such that for all ( )0,λ ∈ ϒ , problem (1.1) has a least energy sign- 
changing solution zλ λ∈  and a ground solution uλ λ∈  which is constant 
sign. In addition, these two solutions satisfy the following relationship 

( ) ( ) .g K z K u cλ λ λ λ λ λ= > =  
Remark 1.1. It is easy to see that (f3) and (f4) are weaker than (f3)’ and (f4)’, 

respectively, so our result can be seen as a generalization of the result in [17]. 
Besides, we consider variable potential, from this point, our result can be seen as 
a slight generalization and improvement of [25]. 

The paper is organized as follows. In Section 2, we provide some lemmas, 
which are crucial to prove the main result of this paper. Section 3 is devoted to 
the proof of Theorem 1.1. 

2. Preliminaries 

We shall obtain a critical point of tλ  by a mountain pass type argument, how-
ever, even though it is likely that critical point has a mountain pass geometry, 
showing that the (PS) sequence at the mountain-pass level are bounded seems 
out of reach under our weak assumptions on f. To overcome this difficulty, in-
spired by [21] [22] [23] [24], which consists in truncating the “rest” term of tλ  
outside of a ball centered at the origin and to show that, as 0λ >  goes to zero, 
all (PS) sequences at the mountain-pass level lie in this ball, which is called 
truncated technique. Precisely, let 0T >  be the truncation radius and consider 
a smooth function ( )1 ,Cη +∈    satisfying ( )0 1tη≤ ≤ , 2η

∞
′ ≤ , 

( ) [ ]
[ )

1, 0,1 ,
0, 2, ,

t
t

t
η

 ∈=  ∈ ∞  
and η  is not increasing on [ ]1,2 . Similar to [21] [22] [23] [24], for any posi-
tive constant 0T > , we consider the truncated functional , :TK Hλ →   de-
fined by 

https://doi.org/10.4236/jamp.2021.910159


Y. L. Tang, Q. F. Zhang 
 

 

DOI: 10.4236/jamp.2021.910159 2488 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( )3 3

2 2
,

1 d d ,
2 4T T uK u u D u u x F u xλ

λ φ= + −∫ ∫
 

        (2.1) 

where ( )
2

2T

u
D u

T
η
 
 =
 
 

. From (f1), (f2), (V1) and (V2), it is easy to check that 

( )1
, ,TK C Hλ ∈   and 

( ) ( )

( )

3 3

3

2
2

, 2 2, , d , d
2

d .

T T u u

u
K u v u v D u uv x u v u x

T T

f u v x

λ
λλ φ η φ

 
′ ′ = + +

 
 

−

∫ ∫

∫

 



 (2.2) 

In the following, we try to find a critical point zλ  of ,TKλ  on H for small 
0λ > . Then, by showing that z Tλ ≤ , we will prove that zλ  also solves the 

original problem (1.1). Similarly, we can define the Nehari manifold of ,TKλ  as 

{ } ( ){ }, ,\ 0 , , 0 ,T Tu H K u uλ λ′= ∈ =              (2.3) 

and the nodal-Nehari manifold 

( ){ }, ,, 0 and , 0 .T Tu H u K u uλ λ
± ±′= ∈ ≠ =           (2.4) 

What’s more, we denote 

( ) ( )
, ,

, , , ,: inf and : inf .
T T

T T T Tu u
c K u g K u

λ λ
λ λ λ λ∈ ∈

= =
 

          (2.5) 

We have the following result. 
Theorem 2.1. Assume that (f1)-(f4), (V1) and (V2) hold. Then there exists 

0λ >  such that for all ( )0,λ λ∈  , the functional ,TKλ  possesses one least 
energy critical point ,Tuλ λ∈  which is constant sign and one least energy 
sign-changing critical point ,Tzλ λ∈ . Moreover, the energy of the sign-changing 
critical point is strictly greater than the least energy, that is 

( ) ( ), , , , .T T T Tg K z c K uλ λ λ λ λ λ= > =  
Lemma 2.1. For each u H∈  with 0u± ≠ , there exists a pair ( ),u ut s ∈ ×   

with , 0u ut s >  such that ,u u Tt u s u λ
+ −+ ∈ , moreover 

( ) ( ), ,, 0
max .T u u Tt s

K t u s u K tu suλ λ
+ − + −

≥
+ = +

 
Proof. For any u H∈  with 0u± ≠ , define the function [ ) [ ): 0, 0,ϕ ∞ × ∞ →   

by 

( ) ( ),, : ,Tt s K tu suλϕ + −= +
 

and its gradient is 

( ) ( ) ( )( ) ( ) ( )

( ) ( )( )
1 2

, ,

, , , , , , ,

, , , .T T

t s t s t s t s t s
t s

K tu su u K tu su uλ λ

ϕ ϕϕ ϕ ϕ

+ − + + − −

∂ ∂ ∇ = ∇ ∇ =  ∂ ∂ 

′ ′= + +
 

By (f1) and (f2), for any 0ε >  and ( )2,6p∈ , there exists ( )C ε  such that 
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( ) ( ) ( ) ( )5 2 61and , .
2 6

C
f u u C u F u u u u

ε
ε ε ε≤ + ≤ + ∀ ∈   (2.6) 

By (1.8), (2.6), the conclusion (i) of Lemma 1.1 and the property of TD , we 
obtain 

( ) ( ) ( )( )

( ) ( ) ( )

( )

( ) ( )

3

3 3

3

3 3

2 2

2

2 2

2 22 2

1, d
2

d d
4

1 d
2

d d
2 2

T tu su

t s tu su V x tu su x

D tu su tu su x F tu su x

tu su F tu su x

t su u F tu x F su x

ϕ

λ φ + −

+ − + −

+ − + − + −
+

+ − + −

+ − + −

 = ∇ + + +  

+ + + − +

 ≥ + − +  

≥ + − −

∫

∫ ∫

∫

∫ ∫



 



   
( )

( )

( )

( )

62 2 22 2 2 6

2 6

62 2 6

2 6

62 2 22 2 2 6

2 6

62 2 6

2 6

2 2 2 6

2 6

2 2 2 6

,
2 6

C tt s tu u u u

C ss u u

C tt s tu u C u C u

C ssC u C u

εε

εε

εε

εε

+ − + +

− −

+ − + +

− −

≥ + − −

− −

′ ′≥ + − −

′ ′− −
 

where every constant ( )2,6pC p′ =  is non-negative and 0ε > . Then, for 
( ),t s  small enough, ( ), > 0t sϕ . On the other hand, we can get that from (f3), 
for 0t >  large enough, there exists a large 0M >  such that 

( ) ( ) 2and .f t M t F t M t≥ ≥                (2.7) 

Hence, for ( ),t s  sufficiently large, from (2.7), we have 

( ) ( )
( ) ( )

( )
( )

3

3

3

,

22

2

,

1 d
2 4

d

1 d
2

T

T tu su

t s K tu su

tu su D tu su tu su x

F tu su x

tu su F tu su x

λϕ

λ φ + −

+ −

+ − + − + −
+

+ −

+ − + −

= +

= + + + +

− +

= + − +

∫

∫

∫





  

( ) ( )3 3

3 3

3 3

2 22 2

2 22 2 2 2

2 22 2 2 22 2

d d
2 2

d d
2 2

d d .
2 2

t su u F tu x F su x

t su u M tu x M su x

t su u Mt u x Ms u x

+ − + −

+ − + −

+ − + −

= + − −

≤ + − −

= + − −

∫ ∫

∫ ∫

∫ ∫

 

 

   
Therefore, we can get ( ),t sϕ → −∞  when ( ),t s → +∞ . We can infer that 

there is a pair of ( ),u ut s + +∈ ×   such that 

( ) ( )
, 0

, max , .u u t s
t s t sϕ ϕ

>
=

 
Then, we prove that , 0u ut s > . Without loss of genreality, we assume that 

( )0, us  is the maximum point of ( ),t sϕ . Hence, we have 
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( ) ( )

( )
( )

3 3

3

3

3

2 2 22 2

2
2 2

2 2

2 2 4

1 2

,
d d

d
2

d

d .

u

u
T u u u

u
utu s u

u

t s
t u tD tu s u t u x s u x

t

tu s ut u tu s u x
T T

f tu u x

tt u C u tu s u f tu u x
T

ϕ
λ φ φ

λ η φ

λ

+ −

+ −

+ + − + +

+ −
+ + −

+

+ +

+ + + − + +

∂  = + + +  ∂
 + ′+ +  
 

−

≥ − + −

∫ ∫

∫

∫

∫

 





  

From (f1), we can get 
( ),

0ut s
t

ϕ∂
>

∂
 for , sλ  small enough, which implies  

that ( ), ut sϕ  is increasing for t small. This contradicts with the fact that 
( )0, us  is the maximum point of ( ),t sϕ . Therefore, ( ),u ut s  is a positive maxi-
mum point of ( ),t sϕ . 

Finally, according to the definition of ϕ , we note that ,u u Tt u s u λ
+ −+ ∈  is 

equivalent to ( ), 0t sϕ′ =  for any , 0t s > . Since the pair of ( ),u ut s  is a posi-
tive maximum point of ( ),t sϕ , we observe that 

( )
( )

( )
( ), ,

, ,
0,

u u u ut s t s

t s t s
t s

ϕ ϕ∂ ∂
= =

∂ ∂
 

then, 

( ) ( ), ,, , 0,T u u T u uK t u s u u K t u s u uλ λ
+ − + + − −′ ′+ = + =

 
which implies that ,u u Tt u s u λ

+ −+ ∈ , because of , 0u ut s > . This completes the 
proof.  

Corollary 2.2. For each { }\ 0u H∈ , there exists a ut ∈  with 0ut >  such 
that ,u Tt u λ

+ ∈ , moreover 

( ) ( ), ,0
max .T u Tt

K t u K tuλ λ
+ +

≥
=

 
Lemma 2.3. (see [28] [29]) Let 0r >  and [ )2,6p∈ . If { }nu  is bounded in 

H and 

( )3,
limsup d 0,

r

p
nB y

n y
u x

→∞ ∈

=∫
  

then we have 0nu →  in ( )3qL   for ( )2,6q∈ . 
Similar to [25], we have the following lemma. 
Lemma 2.4. Assume that (f1)-(f4), (V1) and (V2) hold. Then, for any u H∈  

with 22u T> , one has 

( ) ( ) ( )
2

, , ,
1 , , 0.

2T T T
tK u K tu K u u tλ λ λ

− ′≥ + ∀ ≥
 

Lemma 2.5. Let { } ,n Tu λ⊂   be a minimum sequence of ,Tcλ , then { }nu  
is bounded in H. 

Proof. We prove this lemma by contradiction. Set the unit normal vector of 

the level surface of the functional ϕ  is : n
n

n

u
v

u
= , and suppose nu →∞  as  
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n →∞ . Therefore, we have 1nv = . Going to a subsequence if necessary, we 
may assume that 

in ;nv v H  
( )3in , 2 6;p

nv v L p→ < <
 

3a.e. in .nv v→   
Hence, we’re going to consider two cases: 0v =  or 0v ≡/ . 
Case (i). 0v = . For [ )2,6p∈ , then 

( )3,
limsup d 0.

r

p
nB y

n y
v x

→∞ ∈

=∫


                   (2.8) 

By Lemma 2.3 and (2.8), we have 0nv →  in ( )3qL   for ( )2,6q∈ . Let 

( )2
1 ,2 TT c Tλ= + . By (f1) and (f2), for any 0ε >  and ( )2,6p∈ , there is 
( ) 0C ε >  such that 

( ) ( ) ( )

( ) ( )

5 1

2 61 1and ,
2 6

p

p

f u u u C u

C
F u u u u u

p

ε ε

ε
ε

−≤ + +

 ≤ + + ∀ ∈ 
 


        (2.9) 

Then, by (1.8), (2.8), (2.9), Lemma 2.4 and the property of TD , for n suffi-
ciently large such that 22

1 1nT u ≤ , one has 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3 31

3

, ,

2
1

, 1 ,2

2 2
221 1

1 1

2
21

1

1

1 , 1
2 2

d d 1
2 4

d 1
2

n

T T n

T n T
n

n T n T v n n

n n

c K u o

TK T v K u u o
u

T Tv D T v v x F T v x o

T v F T v x o

λ λ

λ λ

λ
φ

= +

 
  ′≥ + − +
 
 

= + − +

= − +

∫ ∫

∫

 

  
( ) ( )

( )

( )

3

3

2
2 61

1 1 1

2 2 6
2 61 1 1

2 6 1

2
, 3

1 1 d 1
2 2 6

( ) d 1
2 2 6

1 ,

p
n n n

pp
n n n

T

CT T v T v T v x o
p

T T T CC v C v T v x o
p

c T C oλ

ε
ε

εε ε

ε

  ≥ − + + +  
  

′ ′≥ − − − +

= + − +

∫

∫





 
which is a contradiction by the arbitrariness of ε . 

Case (ii). 0v ≡/ . There are , 0r δ >  and a sequence { } 3
ny ⊂   such that 

( )
lim d > 0.

r n

p
nB yn

v x δ
→∞

≥∫                   (2.10) 

Let ( ){ }3 : 0x v xΩ = ∈ ≠ . Hence, for x∈Ω , one has ( )nu x →∞  as 
n →∞ . From (f3) and Fatou’s Lemma, we have 

( ) ( ) ( )

( ) ( )

3 3

3 3

2 2

,
2 2

2
2

1 d d
2 40 lim lim

1 lim d lim
2 4

n

n

n T n u n n
T n

n n
n n

n
T n u nn n

n

u D u u x F u xK u

u u

F u
D u v x dx

u

λ

λ φ

λ φ

→∞ →∞

→∞ →∞

+ −
≤ =

= + −

∫ ∫

∫ ∫

 

 
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( ) ( )

( )

3

2 2
2 2

2
2

1 1lim d liminf d
2 2

1 liminf d ,
2

n n
n nn n

n n

n
nn

n

F u F u
v x v x

u u
F u

v x
u

Ω→∞ →∞

Ω →∞

= − ≤ −

≤ − = −∞

∫ ∫

∫



 

a contradiction. Therefore, { }nu H⊂  is bounded.  
Corollary 2.6. Let { } ,n Tu λ⊂  be a minimizing sequence of ,Tgλ , then 

{ }nu  is bounded in H. Hence, there exists a constant 0a >  such that  

nu a≤ . 

Lemma 2.7. If 
2

4
1

0, T
a C

λ
 

∈ 
 

, then ,TKλ  satisfies ( )
,TmPS

λ
 condition. 

Proof. In view of Corollary 2.6, let { } ,n Tu λ⊂  be such that 

( ), , , as .T n TK u g nλ λ→ →∞  
Then, { }nu  is bounded in H. Since ,nu λ∈  , we have 

( )

( )

3 3

3

2
2 2 2 2

2 2d d
2

d .

n n

n
n T n u n n u n

n n

u
u D u u x u u x

T T

f u u x

λλ φ η φ± ± ±

± ±

 
′ + +
 
 

=

∫ ∫

∫

 



  (2.11) 

Then, by (f1), (f2), (1.8) and (2.11), one has 

( )

( )

3

3 3

4 2 2 2 4
1 12 2

2
2 2 2

2 2

2 6

2 6

2 6

1

d
2

d d

.

n

n n n n

n
n n u n

n n

n n

a C u u u C u
T T

u
u u u x

T T

u x C u x

C u C C u

λ λ

λ η φ

ε ε

ε ε

± ± ±

± ±

± ±

± ±

 
− ≤ − 

 
 
′ ≤ +
 
 

≤ +

′ ′≤ +

∫

∫ ∫



 

     (2.12) 

Therefore, there exists a constant 0ρ >  such that 
22

4
1

, 0, .n
Tu

a C
ρ λ±  

≥ ∀ ∈ 
 

                (2.13) 

Let { }nu H⊂  be a ( )
,TgPS

λ
 sequence for ,TKλ , i.e. 

( ) ( ), , ,lim and lim 0.T n T T nn n
K u g K uλ λ λ→+∞ →+∞

′= =           (2.14) 

We can derive from Lemma 2.3 that nu  is bounded in H, up to a subse-
quence, there exists u H∈  such that 

in ;nu u H  

( )3in , 2 6;q
nu u L q→ < <                (2.15) 

3a.e. in .nu u→   
From (1.8), (2.9), (2.15), Corollary 2.6 and Hölder inequality, we have 

( )( )3 d 0 as .n nf u u u x n− → →∞∫              (2.16) 
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From (1.11), (2.15), Lemma 1.1 and Hölder inequality, we obtain 

( )3

1,2

2 36
1
2

2 3

2

2 3

d

0 as .

n n

n

u n n u n n

u n n

n n n

u u u x u u u

S u u u

C u u u u n

φ φ

φ
−

− ≤ −

≤ −

≤ − → →∞

∫


     (2.17) 

By (2.2), (2.14), (2.16), (2.17), for n large enough, we have 

( ) ( )
( ) ( )

( )( )

( )

3

3 3

3

,

2
2

2 2

2
2

2 2

1 ,

, d

, d d
2

1 d , 1 ,
2

n

n

n

T n n

n n T n u n n

n
n n u n n n

n
u n n n

o K u u u

u u u D u u u u x

u
u u u u x f u u u x

T T

u
u x u u u o

T T

λ

λ φ

λ η φ

λ η φ

′= −

= − + −

 
′ + − − −
 
 

  
 ′ = + − +

    

∫

∫ ∫

∫



 



 (2.18) 

Hence, from (2.18), we have nu u→ . The proof is completed.  
Lemma 2.7. The ,Tgλ  is achieved at some ,Tzλ λ∈  for λ  small, which 

is a critical point of ,TKλ  in H. 
Proof. By Lemma 2.6, we know that ,TKλ  satisfies ( )

,TmPS
λ

 condition, then, 
there exists a u H∈  such that 

,

,

,

n

n

n

u u

u v

u w

+

−

→

→

→

                        (2.19) 

in H as n →∞ . Then, by (2.12), one has 4 0nu C− ≥ > , likewise, 5 0nu C+ ≥ > . 
It means that , 0v w ≠ . Since H is a Hilbert space and the project mapping 
u u±
  is continuous in H, we get u v+ =  and u w− = , then u u u+ −= +  is a 

sign-changing function. And then we show that ,Tu λ∈ . Since ,n Tu λ∈ , 
one has 

( ) ( ), ,, , 0,T n n T n nK u u K u uλ λ
+ −′ ′= =

 

by (2.19) and passing to the limit, one has 

( ) ( ), ,, , 0,T TK u u K u uλ λ
+ −′ ′= =

 

which means that ,Tu λ∈  and ( ), ,T TK u gλ λ= . So the minimum value of 

,
,

T
TK

λ
λ 

 is achieved at u, therefore u is a nontrivial critical point of ,TKλ  in 

,Tλ . 
We also need to show that u is the critical point of ,TKλ  in H. Because u is a 

critical point of ,TKλ  in ,Tλ , we have that ( ), 0TK uλ′ =  in ,Tλ . Then, 
there is a Lagrange multipiler ς  such that 

( ) ( ), 0,TK u uλ ςχ′ ′= =                    (2.20) 

where ( ) ( ), ,Tu K u uλχ ′= . That’s enough to prove that 0ς = . By (2.20), one 
has 

https://doi.org/10.4236/jamp.2021.910159


Y. L. Tang, Q. F. Zhang 
 

 

DOI: 10.4236/jamp.2021.910159 2494 Journal of Applied Mathematics and Physics 
 

( ) ( ), , , 0, for any .TK u v u v v Hλ ς χ′ ′− = ∈          (2.21) 

Taking v u= , meanwhile, for any u H∈  with 2 22u T> , we calculated that 

( ) ( )

( ) ( ){ }

3 3

3 3

3 3

3

2 2
2 2 2

2 2

2 2 2
2 22 2

2 2 2 2 2

2
2 2 2

2 2

2
2 2

2

2
, 2 2 d d

2
d d

2

d d

2 d 2 4

T u u

u u

u

u T

u u
u u u D u u x u x

T T

u u u
u u x u u x

T T T T T

u
u u x f u u f u u x

T T

u
u u x D

T

ς λ φ λη φ

λ λη φ η φ

λ η φ

λ φ η

 
′ ′ = + +

 
 

   
′′ ′   + +
   
   

 
 ′ ′ + − ⋅ + ⋅  

 
 
′= + +



∫ ∫

∫ ∫

∫ ∫

∫

 

 

 



( ) ( )3

2 4 2

2 4 2

2 d

u u u
T T T

f u u f u u x

η
 
 ′′ +

  
 ′− ⋅ − ⋅ ∫



 

( ) ( )

( ) ( )

3

3

2 2 4 2
2 4

1 2 2 4 2

2

2 2
2 4

1 2 2

2

2 4

d

2 8 4

d .

u u u u
u C u

T T T T

f u u f u u x

u u
u C u

T T

f u u f u u x

λ η η

λ η η

    
 ′ ′′   ≤ + +

        
 ′− ⋅ − ⋅ 

    
 ′ ′′   ≤ + +

        
 ′− ⋅ − ⋅ 

∫

∫





 

And we can find out from (f4) that there is a positive constant β  such that 

( ) ( )
3

2 d 0.f u u f u u x β ′ − ≥ > ∫
  

Hence, ( ) , 0u uς ′ <  for λ  sufficiently small, which together with (2.21) 
shows that 0ς = . Thus, the proof is completed.  

Corollary 2.8. The ,Tcλ  is achieved at some ,Tu λ∈ , which is a critical of 

,TKλ  in H. 
Proof of Theorem 2.1. Through the lemmas and corollaries in this Section, 

we know that ,TKλ  has a least energy critical point and a least energy sign- 
changing critical point, which are uλ  and zλ  respectively. For zλ

+ , by the 
above discussions, there exists a 

z
t t

λ
+=  such that ,Tz

t z
λ

λ λ+
+ ∈ , then 

( ) ( ) ( )
( ) ( )

, , , ,

, , ,

0 0

.

T T T Tz z

T T T

c K u K t z K t z z

K z z K z g
λ λ

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ

+ +
+ + −

+ −

< = ≤ = +

< + = =
 

Finally, we’re going to prove that uλ  is a constant sign. By assuming indi-
rectly, assume that uλ  is sign-changing, then ,Tuλ λ∈  and 

( ) ( ), , , , , ,T T T T Tc K z K z g cλ λ λ λ λ λ λ= ≥ = >  
it is absurd. We’ve done the proof. 

3. Proof of the Main Result 

First, an important identity is given, which will be used to prove that zλ  and 
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uλ  are uniformly bounded in H. For details of Pohožaev identity, one can see 
[30]. 

Lemma 3.1. If u H∈  is a critical point of ,TKλ , then for 0λ >  small, u 
satisfies 

( ) ( )

( )

( )

3 3

3 3

3

2 2

2
22 2

2 2

1 1d 3 d
2 2

5 3d d
4

3 d .

T u u

u x V x V x x u x

u
D u u x u u x

T T

F u x

λ λφ η φ

∇ + +∇  

 
′ + +
 
 

=

∫ ∫

∫ ∫

∫

 

 

  
Lemma 3.2. For zλ  and uλ  obtained in Theorem 2.1, if 0T >  large enough 

and 0λ >  small enough, then we have z Tλ ≤  and u Tλ ≤ . 
Proof. This part of proof is similar to [22]. However, it plays a key role in the 

proof of Theorem 1.1, so we give in detail here for completeness and conveni-
ence to the readers. 

According to Hardy inequality [30], one has 

( )3

2
2 1 3

22

1 d , .
4

uu x u H
x

∇ ≥ ∈∫                 (3.1) 

Since ( ), 0TK zλ λ′ = , by Lemma 3.1, Lemma 1.1 (iv), (V2) and (3.1), one has 

( ) ( )

( )

( )

( )

3 3

3 3

3

2 2
,

2
2 2 2

2 2

2
4 6 2

, 1 2 2 2

2
4 6 2

, 1 2 2

d 3 d
2

3 1d d
2

33
2

33 d ,
2

T T z

z

T T

T T

z x K z D z z x

z
z z x V x x z x

T T

z
g D z C z z z

T T

z
g D z C z z z x

T T

λ

λ

λ λ λ λ λ

λ
λ λ λ

λ
λ λ λ λ λ

λ
λ λ λ λ λ

λ φ

λη φ

λ λ η θ

λ λ η θ

∇ = +

 
′ + + ∇ ⋅ ⋅
 
 

 
′ ≤ + + + ∇
 
 

 
′ = + + + ∇
 
 

∫ ∫

∫ ∫

∫

 

 



 
therefore, we have 

( ) ( )3

2
2 4 6

, 1 2 2

31 d 3 .
2T T

z
z x g D z C z z

T T
λ

λ λ λ λ λ
λ λθ η

 
′ − ∇ ≤ + +
 
 

∫
 

If 2 22z Tλ ≥ , then ( ) 0TD zλ = . Therefore, the following inequality holds 

3

2
2 4 4

, 1 7 82

3 24d .
1 1T

z
z x g C T C C T

T
λ

λ λ λ η λ
θ θ

 
′ ∇ ≤ + = +
 − −  

∫    (3.2) 

By (1.16), (2.9) and ( ), , 0TK z zλ λ λ′ = , we have 

( )

( ) ( )

3 3

3 3 3

2
2 22 2

2 2

2 6

d d
2

d d .

T z z

z
z D z z x z z x

T T

f z z x z dx C z x

λ λ

λ
λ λ λ λ λ

λ λ λ λ

λλ φ η φ

ε ε

 
′ + +
 
 

= ≤ +

∫ ∫

∫ ∫ ∫

 

  

     (3.3) 
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By ( )1,2 3   ↪ ( )6 3L  , (3.3) and (V1), we have 

( )

( )

3 3

3

2 2

0

2
6 2 2

2 2

324
9 10

1 1
( )

d d
2

d .

z

z z
V V x

z
C z x z z x

T T

C T C z x

λ

λ λ

λ
λ λ λ

λ

ε ε

λε η φ

λ

   
− ≤ −   

  
 
′ ≤ −
 
 

≤ + ∇

∫ ∫

∫

 



   (3.4) 

Therefore, for 0

3
V

ε ≤ , according to (3.2) and (3.4), we have 

( )32 4 4
11 7 8 12 .z C C C T C Tλ λ λ≤ + +                (3.5) 

We make the opposite hypothesis that z Tλ > , then, by (3.5), we have 

( )22 4 2 8 3 12
13 1 .T z C T T Tλ λ λ λ≤ ≤ + + +             (3.6) 

Choosing { }2
13max 1,4T C>  and 4

1
T

λ < , then (3.6) yields 

( )2 4 2 8 3 12
13 131 4 ,T C T T T Cλ λ λ≤ + + + <

 
which is impossible. Thus z Tλ ≤ , similarly, we can prove that u Tλ ≤ . This 
completes the proof.  

Proof of Theorem 1.1. Let T be large enough and λ  small. We know from 
Theorem 2.1 that ,TKλ  has a least energy critical uλ  at level ,Tcλ  and a least 
energy sign-changing critical point zλ  at level ,Tgλ , and by Lemma 3.2 we 
have that u Tλ ≤ , z Tλ ≤ , therefore ,TK Kλ λ=  and uλ  and zλ  are crit-
ical points of Kλ  with ( )K u cλ λ λ=  and ( )K z gλ λ λ= . Hence, system (1.1) 
has a least energy sign-changing solution zλ  and a ground state solution uλ  
which is constant sign. Moreover, since ,TK Kλ λ= , it follows from Lemma 2.1 
that 

( ) ( )0 .c K u K z gλ λ λ λ λ λ≤ = < =  
The proof is completed. 

4. Conclusion 

In this paper, we firstly proved that the Schrödinger-Poisson equation has a 
sign-changing solution by using a truncation technique, and then prove that the 
minimum sequence { }nu  is bounded in H. What’s more, according to the con-
dition that ,TKλ  satisfies (PS) sequence, we find out a critical point when the 
least energy sign-changing solution is achieved, and similarly find out a critical 
point when the ground state solution is achieved and prove that the sign-changing 
solution is strictly larger than the ground state solution. Finally, we prove that 
the critical points are uniformly bounded in H using the Pohožaev identity. It is 
obviously that the truncation function has been successfully applied to solve the 
least energy sign-changing solution of the Schrödinger-Poisson system. We hope 
that the truncation technique can be widely used in the study of sign-changing 
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solutions of similar systems. 
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