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Abstract 
There has been an increasing interest in research on using bio-renewable po-
lymers as a replacement to traditional synthetic polymers based on petroleum 
resources for adhesive applications. Cellulose, which is the most abundant 
biopolymer finds application as a reinforcing agent in conventional adhesives. 
However, natural polymer cellulose suffers from a few drawbacks like poor 
water resistance, low mechanical strength, and compatibility within the hy-
drophobic matrix. For emerging as sustainable alternatives for synthetic po-
lymers, cellulose and its derivatives must have comparable physical, chemical, 
thermal, and mechanical properties to those of synthetic polymers. To 
achieve this, cellulose has been chemically modified as it has free hydroxyl 
groups which act as a site for modification. Among various techniques used 
crosslinking and silane modification have shown better properties. Various 
silanes have been identified and used for modifying both micro-cellulose and 
nano-cellulose, by the formation of covalent bonds. Silanes have the ability to 
react with the low number of free hydroxyl groups present in the cellulose 
surfaces, therefore promotes surface modification. Hence referring to the in-
crease in the research works related to the silane modification of cellulose and 
its applicability focusing on wood adhesives, the main aim of this review pa-
per is to summarize various works relating to this field. 
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1. Introduction 

The realization of pollution in air [1] [2], water [3] [4], and soil [5] [6] due to the 
over-exploitation of using non-renewable and toxic petrochemicals, research is 
now shifting to the development and innovations in the areas of biopolymers [7] 
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[8] [9] [10]. As the global energy crisis demands materials that are cost effective 
and comparable properties with petrochemicals, chemical modification of bio-
polymers has huge potential in the coming future. The researchers have identi-
fied usage of bio-based materials like starch [11], cellulose [12], lignin [13], tan-
nin [14] [15], natural rubber latex [16], soy protein [17] [18] [19] and vegetable 
oils [20] [21] as an alternative resource for petroleum based materials. These 
materials have huge applications in the development of bio-based adhesives 
which have a lower negative impact on the environment. The increase in the 
amount of research works using these materials is due to the advantages of ab-
undance in its availability, eco-friendliness, low cost, and very low emission of 
volatile organic solvents in adhesives [22] [23]. Although adhesive manufactur-
ing industries use these bio-based materials at a relatively lower amount com-
pared to petrochemicals and are at the introductory stage, the advantages like 
lower cost, readily available greener materials and chemical modification possi-
bilities are much bigger.  

With the ongoing research and development in bio-based adhesives and by 
continuous improvement in its properties, meeting the standards which can 
compete with commercial petrochemical-based adhesives, bio-based adhesives 
have huge scope in the point of commercialization [24] [25]. Cellulose being the 
most abundant biopolymer has been identified as a potential material for many 
applications [26]. The advantages the cellulose offer includes the possibility to 
undergo chemical modification and the easiness in preparation of composite 
materials using cellulose [27] [28]. 

Cellulose belongs to the high molecular weight polysaccharide family with 
glycosidic linkages. Cellulose consists of repeating units, cellobiose, which is a 
dimer of D-glucose with β-1,4 glycosidic linkage [26]. There are intramolecu-
lar hydrogen (H) bonding and intermolecular hydrogen bonding in cellulose 
polymers. The terminal groups have a directional asymmetry whereas reducing 
ends contains a hemiacetal group. Figure 1 shows a detailed structure of cellu-
lose. 

Nanocellulose (NC) is a detached cellulosic material with one dimension in 
the nanometer range [29]. They may be nano fibrillated celluloses (CNF), cellu-
lose nanocrystals (NCC or CNC), and bacterial nanocellulose. These are ob-
tained by a top-down approach from biomasses by chemical or mechanical 
processes [30]. The general procedure for isolation of micro or nano cellulose is 
shown in Figure 2. 

The cellulose can be used as reinforcement for thermoplastic and thermoset-
ting polymers, as well as the template for functional composites [31]-[47]. Cel-
lulose has the ability to adhere makes it an ideal biomaterial for developing green 
adhesives and coatings [48]-[53]. Nanocellulose in adhesives contributes to the 
enhancement in physical, mechanical, and thermal properties of wooden sub-
strates and creates better adhesion. The hydroxyl group of cellulose makes the 
possibility for functionalization, and hence the binding property of nanocellu-
lose has been enhanced [54]. 
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Figure 1. Structure of cellulose. 

 

 

Figure 2. Procedure followed in the isolation of micro/nanocellulose. 
 

Cellulose has been a part of adhesive as filler which reinforces the adhesive 
giving better properties. With the increasing amount of literature on chemical 
modifications of cellulose and its applications in adhesive sector, this review 
summarizes various works on silane modification in cellulose. As chemical 
modification of cellulose by silane coupling agents has shown improvement in 
physical, mechanical, and thermal properties with better interfacial morphology 
and compatibility of cellulose with matrices which contributed to better adhe-
sion. Hence this review paper aims to showcase the importance of silane mod-
ification in cellulose and its application towards wood adhesives. 
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2. Cellulose Based Wood Adhesives 

For consolidation of wooden substrates, the adhesive must hold the substrates 
together. As the petrochemical based resins have shown their toxicity by formal-
dehyde release, bio-based adhesive found an alternative to this issue. Cellulose 
gets the attention due to its large abundancy and reinforcing behavior with po-
lymer matrices. Various researchers have formulated wood adhesives with cel-
lulose for enhancing mechanical and thermal properties of wood adhesive where 
the addition of cellulose has contributed to enhance the bonding strength. Jiang 
et al. conducted a study where the incorporation of dicarboxylic acid cellulose 
nanofibrils (CNF) into commercial adhesives such as polyvinyl acetate (PVAc) 
and starch adhesives showed enhancement in bonding strength [55]. Nanocom-
posite adhesive prepared by incorporating CNF to PVAc latex showed enhanced 
adhesive properties with reinforcing effects [56]. Another work where CNC in-
corporated PVAc wood adhesive showed enhancement in creep, hardness, and 
modulus of elasticity (MOE) of the adhesive films with better thermal stability 
[57]. 2% CNF incorporated tannin-based adhesive for particleboards resulted in 
developing high performance particleboards with enhanced mechanical proper-
ties [58]. 

Urea-formaldehyde (UF) resin adhesive with reduced formaldehyde emission 
was produced upon adding 3-aminpropyltriethoxysilane (APS) and 3-methacryloxy- 
propyltrimethoxysilane (MPS) modified CNC [59]. Cellulose nano-whiskers 
(CNW) were used to enhance the performance of soybean meal-based adhesive 
[60]. The results showed that using the CNW in the adhesive formulation im-
proved the water resistance of plywood. In order to replace chemical adhesive, 
binding effect of CNF, prepared from the same novel nanofiber technology over 
wood flour (WF) board were investigated [61]. The three-dimensional binding 
effect of CNF was found for the board having a WF:CNF of 90:10, which was 
considered the optimal composition as it leads to improvement in the physical 
and mechanical properties. Composite boards of wood flour and a novel lin-
go-cellulose nanofiber (LCNF) were produced to investigate the binding effect(s) 
of LCNF [62]. The 85:15 ratio (of wood flour:LCNF) showed the close binding 
between LCNF and wood flour particles which resulted in the enhancement of 
physical and mechanical properties of the board. Three grades of liquid 
urea-formaldehyde (UF) resins with different formaldehyde emission levels such 
as super E0 (SE0), E0 and E1 were modified by adding different amounts of mi-
cro fibrillated cellulose (MFC, 5 wt%) [63]. The incorporation of the MFC into 
the SE0 up to 30 wt% significantly decreased the formaldehyde emission from of 
the UF resin while this was not observed for E0 and E1 grade resins. The use of 
MFC in the UF resin can be an environmentally friendly solution for reducing 
the VOCs from the wood-based panel used for indoor furniture. A detailed in-
vestigation is being carried out, where particleboards are prepared out of small 
and larger particles from southern pine and sweetgum with varying content of 
MCC (microcrystalline cellulose) [64]. The study suggests that nature of species, 
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its particle size, and MCC are the deciding factors for particleboard properties. 
Though addition of MCC results in higher mechanical properties, the problem 
of thickness swelling was the drawback. Whereas, replacing southern pine with 
sweetgum showed equal or better mechanical and physical properties. Thus, 
hardwood natured sweetgum performs favourably compared with southern 
pine. The effects of cellulose nanofibrils (CNFs) ratio, press program, particle 
size, and density on the vertical density profile (VDP) and internal bond (IB) 
strength of the wet-formed particleboard were investigated [65]. As the CNF ra-
tio increased, there were noticeable increases in face density, while the core den-
sity slowly increased. A study by C.I.K. Diop et al. showed that lignocellulose 
nanofibrils (LCNF) act as a sustainable adhesive with good bonding ability for 
fiberboards [66]. An investigation on usage of cellulose nanofibrils (CNF) as a 
binder in the formulation of particleboard (PB) panels was conducted [67]. The 
panels were produced in four different groups of target densities with varying 
amounts of CNF binder. The panels were produced in four different groups of 
target densities with varying amounts of CNF binder. Cellulose nanofibers 
(CNF) incorporated cottonseed protein-based wood adhesives were found to be 
most effective at about a 2% additive level, giving 22% improvement in dry ad-
hesive strength over the blank cottonseed protein as wood adhesive [68]. To in-
crease bond strength, cellulose nanofibers were added to create nanocomposite 
adhesives and glutaraldehyde was also used to crosslink the proteins [69]. The 
bond strength of both zein and gluten adhesives was significantly increased by 
the addition of the cellulose nanofibers and/or glutaraldehyde. Aqueous solu-
tions of dialdehyde cellulose (DAC) with various degrees of oxidation (DOs) and 
distinct concentrations were evaluated as robust adhesives for wood bonding 
[70]. DAC adhesives possessed a stronger bonding strength than the wood itself. 
UF adhesive mixtures with a 5% suspension of MFC at 0.5, 1, 3, and 5 wt% 
loading levels based on the solid weight (62.4%) of the UF adhesive were pre-
pared [71]. The specimens bonded with UF adhesive containing the MFC 
showed better tensile shear strengths as compared to the control. LCNF showed 
improvement in the performance of polymeric diphenylmethane diisocyanate 
(pMDI) as a wood adhesive [72]. Output demonstrated the promise of develop-
ing high adhesion performance pMDI adhesive systems by using sustainable 
LCNF as reinforcement additives. The bonding strength, compatibility and 
thermal properties of the cellulose-based adhesive have improved significantly, 
confirming the positive effect of adding the silane coupling agent to the adhesive 
system. Silane coupling agent is commonly used to strengthen the interfacial in-
teraction between cellulose hydroxyl groups. The alkoxysilanes have been dem-
onstrated to be able to directly react with –Si-OH groups of silica thereby form-
ing –Si-O-Si- bonds without any requirement of pre-hydrolysis [73]. First step is 
to activate the alkoxysilane by hydrolyzing the alkoxy groups off thereby form-
ing the more reactive silanol groups [74]. As a result, the silanol may react with 
the hydroxyl groups of cellulose or condense themselves on the surfaces of cel-
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lulose and forming macromolecular network as shown in Figure 3 [75] [76].  
Cellulose fibers are being considered as prospective reinforcing materials 

due to a number of advantages, including their abundance, low weight, biode-
gradability, low abrasive character, intriguing particular features, and the fact 
that they are waste biomass [77] [78] [79]. Whereas, moisture absorption, quali-
ty changes, limited heat stability, and poor compatibility with the hydrophobic 
polymer matrix are all downsides of cellulose fibers [80] [81]. In the current 
scenario, these disadvantages are the most significant obstacle limiting the pro-
ductive and global development of cellulose as a bio-based alternative to develop 
modern adhesive. This paper reports new strategies for these issues by chemical 
modification. 

3. Interfacial Bonding between Cellulose Nanofibers and  
Polymer Matrix 

Crosslinking is a chemical modification, where a crosslinker connects two poly-
meric chains, consolidating and reducing the free spaces between the molecules. 
This causes enhancements in thermal, mechanical, and chemical properties of 
the polymer. Dialdehyde has been found as a class of crosslinker for PVA and 
cellulose blend. A recent study showed enhanced adhesion properties with im-
provements in thermal and mechanical properties on crosslinking PVA and 
MCC blends by glyoxal [7]. On the other hand, glutaraldehyde as a crosslinker 
for PVA hydrogels with different concentrations of CNC showed reinforcement 
[82]. In the study, glutaraldehyde was added to CNC-PVA suspension under the 
acidic condition for reaction initiation, and the blank sample where glutaralde-
hyde is added only with PVA without CNC, were also prepared. Figure 4 shows 
the crosslinking reaction of glutaraldehyde with nanocellulose (NC)-PVA. In the 
study, cross-linked CNC-PVA hydrogels showed a significant increase of 303%  
 

 

Figure 3. Hydrolysis and condensation reaction of silane with Cellulose. 
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Figure 4. Crosslinking reaction of polyvinyl alcohol (PVA) and nanocellulose by gluta-
raldehyde. 
 
in compressive strength with 1 wt% addition of CNCs at 60% strain. Moreover, a 
decrease in the swelling ratio with an increase in CNC content on crosslinked 
hydrogels was observed.  

Thermal and mechanical properties showed enhancements upon introducing 
CNC in PVA matrix and by crosslinking the composite by borax (sodium tetra-
borate decahydrate) [83]. The hydroxyl groups of PVA and CNC are targeted by 
the crosslinker, borate ions from borax act on the hydroxyl groups and forms 
complexes, the crosslinking reaction is shown in Figure 5. The work reported 
that with the addition of CNCs, the crosslinked composite at high temperature 
was able to bear higher loads. 

Crosslinked PVA-CNC films showed an increase in decomposition tempera-
ture, glass transition temperature (Tg), and mechanical properties, while the de-
gree of crystallization, moisture uptake, and melting temperature decreased in 
comparison to blank PVA samples. Upon adding CNC in the crosslinked PVA 
nanocomposites, an increase in crystallization temperature has been reported. A 
study where CNCs having carboxyl and aldehyde functionalities were reinforced 
in different concentration with acetal-bonding cross-linked polyvinyl alcohol 
(PVA) films and its effects on mechanical, thermal, and barrier properties of the 
film were investigated [84]. Mechanically treated partially carboxylated dialde-
hyde cellulose results in carboxyl and aldehyde functional CNCs, and for the 
comparative study, a reference sample where CNC without reactive aldehydes 
was also prepared. An investigation was carried out, in which CNF or nano fi-
brillated cellulose-based hydrogel was physically intermixed with PVA and the 
system crosslinked with borax [85]. An increase in borax content increases cros-
slinking density, which results in a compact structure with enhancement in me-
chanical properties. Glutaraldehyde was used as a crosslinker and hydrochloric 
acid as a catalyst for PVA-CNC and PVA-CNF xerogels. Upon adding nanocel-
lulose, creep strain, and stress relaxation of the system reduced, and thermal  
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Figure 5. Crosslinking reaction of nanocellulose and polyvinyl alcohol (PVA) with borate 
ion. 
 
deterioration was observed at a lower temperature. An investigation has been 
carried out on the reinforcement of CNCs prepared with formaldehyde as a 
crosslinking agent for PVA [86] [87]. With the introduction of CNCs to PVA, an 
increase in density and decrease in water uptake were observed because of the 
reduction in pore size. 

4. Silane as a Modifier for Cellulose 

The silanes considered here bear the general formula R-Si-(X)3, where X is an 
oxy-alkyl group and R is an organic moiety, which is chosen as a function of the 
nature of the matrix. It seemed, therefore, appropriate to test them on cellulosic 
fibers, which bear the same potentially reactive groups, i.e., OH functions. The 
quantitative assessment of the physicochemical equilibrium for several silanes 
indicated that the adsorption of a monolayer and multiple layers of pre-hydrolyzed 
silanes is readily achieved but that a simple extraction with ethanol removes 
these molecules entirely. Only a heat treatment can induce a condensation be-
tween the OH groups of the hydrolyzed silanes and those present at the surface 
of cellulose, giving rise to a real chemical modification [88]. 

According to its structure, CNC possesses a considerable number of hydroxyl 
groups on the surface, where chemical reactions can be conducted [89]. The OH 
group at the sixth position acts as primary alcohol among the three kinds of hy-
droxyl groups, where the modification mostly occurs [90]. Many reactions can 
be used to modify the surface of nanocellulose, such as using coupling agents, 
that is, silane reagents [91]. The synergy of silane coupling agents with natural 
fibers is widely known [92], and the modification involves polymerization on the 
CNC surface [93]. Apart from this, silane coupling agents, such as aminopropyl-
trimethoxysilane, methyltrimethoxysilane, and vinyltrimethoxysilane, are widely 
employed to improve the compatibility between polymers and fibers, such as 
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glass and natural fibers [94]. The authors subjected tunicin nanocrystals to par-
tial silylation with a series of alkyldimethylchlorosilanes and found that the si-
lanes are readily reactive with crystalline cellulose. However, the alkyldimethyl-
silylatednanocrystalslose their structural integrity and do not produce stable 
suspensions in very low polarity solvents. Recently, Mabrouk et al. prepared 
aqueous nanocomposite dispersions of poly (styrene-co2-ethyl hexylacrylate) 
copolymer and cellulose nanocrystals via mini-emulsion polymerization, using 
methacryloxypropyltrietoxysilane as a coupling agent [95] [96]. The authors 
showed that 1 wt% of silane is the optimum value for a reinforcement property, 
as higher values of silane, such as 3 wt%, prevent the formation of percolated 
networks. Cellulose nanocrystals surface modification by using a silane with 
isocyanate groups (isocyanatepropyltriethoxysilane, IPTS), which are very reac-
tive to hydroxyl groups, was followed by hydrolysis-condensation steps of 
ethoxy silane groups to produce an oligomeric network of polysilsesquioxane. 
Despite the small number of free hydroxyl groups, which is a characteristic of 
the highly crystalline nanocrystals surface, the formation of polysilsesquioxane 
can result in an efficient nanocrystal surface covering. As a result, urethane 
groups will be formed at the nanocrystal-siloxane interface, which can give sta-
bility against moisture. 

The surface modification of nanocrystals with IPTS was carried out as an at-
tempt to obtain nanocrystals with a reduced hydrophilic surface character, 
which could enhance the compatibility of these nanocrystals with hydrophobic 
matrices [97]. Figure 6 shows the reaction between IPTS and cellulose. 

Epoxy resin (EP), with excellent comprehensive performance and a wide 
range of applications, has been the most researched thermosetting matrix of cel-
lulose reinforced composites. The cellulose fibers were proved to have a good ef-
fect on improving the specific properties of the EP matrix. Fracture toughness 
and impact behavior were reported to have shown a significant increase after 
adding the cellulose fibers, while flexural strength and young’s modulus hardly  
 

 

Figure 6. Chemical reaction between cellulose nanocrystal and IPTS. 
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increased [98] [99] [100] [101]. The strength improvement was unsatisfied be-
cause of the poor compatibility between the cellulose and the matrix, which li-
mited the application of the cellulose/EP composites. Thus, the poor compatibil-
ity between the cellulose fiber and the matrix is a problem we must overcome to 
get composites with high properties. The strong polarity of cellulose and highly 
dense hydrogen bonds between molecules and intra-molecules in its structure 
lead to reduced accessibility of matrix. Therefore, the interfacial tension between 
the cellulose fiber and the matrix is quite high, which leads to the peeling off the 
fibers and increase in the porosity in the composites [102] [103]. To improve the 
compatibility, physical, chemical, or other modifications of the cellulose are vital 
[104] [105]. 

3-Glycidoxypropyltrimethoxtsilane (GPTMS) with commercial name as KH560, 
a silane coupling agent, was used for modifying cellulose fibers obtained from 
bamboo [106]. The bamboo cellulose fibers were pretreated with silane coupling 
agent and NaOH aqueous solution (alkali treatment) and then incorporated in 
epoxy matrix. Compared to alkali treatment, bamboo cellulose fibers with silane 
treatment showed enhanced mechanical properties by reinforcement in the 
epoxy matrix. From various characterizations, the silane coupling agent made 
chemical bonds with the matrix and the filler in a composite. Figure 7 shows the 
reaction of bamboo cellulose with 3-(GPTMS). A study by Abdelmouleh et al. 
showed treatment of various silane on cellulose fibers and its incorporation in 
unsaturated polyester and epoxy resin matrices observed improvement in the 
interface of fiber and matrix with better reinforcement [107]. Flexural modulus 
showed better results when fiber incorporation up to 40% (v/v) in the composite. 
3-aminopropyl triethoxysilane (APS), methacrylopropyl trimethoxysilane (MPS), 
hexadecytrimethoxysilane, and mercaptopropyl trimethoxysilane (MRPS) were 
treated with cellulose fibers before incorporation in the matrix. The reaction of 
APS and MPS are shown in Figure 8. Although the interface was improved, 
these silane coupling agents could not prevent the water absorption in the com-
posite. 
 

 

Figure 7. Surface modification of bamboo cellulose fibers using GPTMS. 
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Figure 8. Reaction of cellulose fibers with silanes. 
 

Silane coupling agent, (Bis[3-(triethoxysilyl)propyl]tetrasulfide), was utilized 
to modify the nanocellulose (NC) isolated from pineapple leaf fiber. Silane 
treatment reduced the particle size and enhanced the hydrophobicity NC [108]. 
It was observed from the research that the surface modification by vinyl trime-
thoxy silane induced functionalization which affected the physicochemical 
properties of the E. binata fibers and has a potential for making green polymer 
composites [109]. Silane reagents like primary, secondary, and tertiary amines of 
amino silanes have been used for cellulose modification [110]. The hydrolytically 
sensitive center can react with hydroxyl groups or silanols to form a silylated 
surface. APS and GPTMS modified MFC showed conversion of hydrophilic to 
hydrophobic nature and showed enhancement in mechanical property when the 
modified fibers were incorporated in an epoxy matrix [111]. 

5. Conclusions 

The incorporation of cellulose in adhesives shows improvement in both me-
chanical properties of adhesives and performance properties. To further enhance 
the properties of adhesives, the establishment of chemical bonds in the system is 
a crucial step. According to cellulose structure, cellulose possesses OH group at 
the sixth position acts as primary alcohol among the three kinds of hydroxyl 
groups, where the modification mostly occurs. Crosslinking of cellulose is one 
such approach that significantly improves various properties. The advantage of 
the crosslinking of cellulose is to facilitate the interconnected network formation 
without any phase separation and to provide synergetic property of the adhesive 
and cellulose in the adhesive system. Aldehyde and borax crosslinked cellulose 
showed the formation of a crosslinked structure with the enhancement of me-
chanical and thermal properties. 

To improve water resistance, mechanical, thermal properties and compatibil-
ity in resin matrix system, silane modification of cellulose is one such approach 
that significantly improves various properties. The cross-linking reaction had re-
sulted in the formation of covalent bonds between the silanol bonds and hydroxy 
groups. Many reactions can be used to modify the surface of cellulose, such as us-
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ing coupling agents, that is, silane reagents like amino silane, epoxy silane, vinyl 
silane, isocyanate propyl triethoxy silane, Bis[3-(triethoxysilyl)propyl]tetrasulfide. 
Reinforcement of silane modified fibers resulted in significant changes of Tg and 
melting temperature (Tm) with respect to virgin polymers like polylactic acid 
(PLA), epoxy resin with increased polymer crystallinity due to improved interfa-
cial interactions. The improvement in the properties of the cellulose-based adhe-
sive with the addition of the coupling agent was supported by its better compati-
bility and more covalent bond formation that resulted in enhanced thermal sta-
bility and increased bonding strength. 

Hence by these principal investigations, the effective addition of silane- 
modified bio-based functional filler can be one of the ways for developing adhe-
sive with better properties. With continuous research and development in 
bio-based adhesives, the possibilities of replacement for conventional petro-
leum-based material, thereby reducing the reliance on petrochemicals in the 
wood adhesive industry can be achieved. 
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