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Abstract 
Sufficient conditions are given for any local minimum of a function of two 
integer variables to be a global minimum. An example is given to show that a 
function of two integer variables need not be discrete convex for this condi-
tion to hold. 
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1. Introduction 

Integer programming problems occur in many real-life situations: production 
planning, scheduling, telecommunication networks, cargo loading, vehicle 
routing, and inventory maintenance, for example. There are numerous com-
mercial software packages available for solving integer programming prob-
lems, such as CPLEX, Gurobi, KNITRO, and LINDO. There are also many 
open-source programs available. However, since the integer programming 
problem, in general, is NP-complete [1], it is very difficult to obtain a global 
optimum, and so, at best, a local optimum is generally found. For the case in 
which all of the decision variables are continuous, a sufficient condition for 
any local minimum to be a global minimum is that the Hessian matrix be posi-
tive definite [2]. If the objective function has two variables, one of which is in-
teger and the other continuous, sufficient conditions for any local minimum to 
be a global minimum can be found in [3]. If the objective function has two in-
teger variables, we give below sufficient conditions for any local minimum to 
be a global minimum. The function need not be integer convex for this condi-
tion to hold. 
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2. Two Integer Variables 

Definition 1: Let ( )g z  be a real mapping from the integers into the real 
line. The first difference of ( )g z  is denoted by ( )g z∆  and is defined as fol-
lows: 

( ) ( ) ( )1g z g z g z∆ = + −  
Second and subsequent difference of ( )g z  are defined by 

( ) { ( )}1r rg z g z+∆ = ∆ ∆
 

Definition 2: A function ( )g z , z∈  is integer strictly convex if ( )g z∆  is 
a strictly increasing function of z, that is, if ( )2 0g z∆ > . 

Definition 3: The function ( ) ,g z z∈  has a local minimum at z  if 
( ) ( )1g z g z+ ≥  and ( ) ( )1g z g z− ≥ . 
Definition 4: The function ( ) ,g z z∈  has a global minimum at *z  if 

( ) ( )*g z g z≤  for all z. Ponstein [4] considers ( )f x  to be a real, continuous, 
and differentiable scalar function with continuous first partial derivatives, of the 
vector X, which is contained in a convex region R of n-dimensional Euclidean 
space. He then defines a function to be strictly quasi-convex if 

( ) ( ) ( ) ( )2 1 1 2 1 1 21 , 0 1, , .f x f x f x x f x x x Rλ λ λ< ⇒ + − < < < ∈    
Kumin [3] extended this definition to give. 
Definition 5: A function ( ) ,g z z∈  is integer strictly quasi-convex if for 

any two points 1z  and 2 1z z>  we have the following: 
Case I: ( ) ( )1 2g z g z<  implies ( ) ( )2g j g z<  for 1 1 21, 2, , 1j z z z= + + − . 
Case II: ( ) ( )1 2g z g z>  implies ( ) ( )1g j g z<  for 1 1 21, 2, , 1j z z z= + + − . 
Ponstein [4] also showed that any local minimum of a strictly quasi convex 

function is also a global minimum, and Kumin [3] extended his result to show 
that any local minimum of an integer strictly quasi convex function is also a 
global minimum. 

Now consider a function ( ),f k w  where ,k w∈ . Also, define  
( ) ( )*, kg k f k w=  where ( ) ( )*, min ,k wf k w f k w= . 
Theorem 1: Assume that ( ),f k w  is integer strictly quasi-convex in w for all 

k and that ( )g k  is integer strictly quasi-convex in k. Then, any local minimum 
of ( ),f k w  is also a global minimum. 

Proof: Let ( ),j m  be a local minimum of ( ),f k w  and suppose it is not a 
global minimum. Then there exists a ( ),l v  such that 

( ) ( ) ( )*, , , lf j m f l v f l w> ≥
 

Now, since ( ),f k w  is strictly integer quasi-convex in w for all k 

( ) ( ) ( )*, , jf j m f j w g m= = . Thus, 

( ) ( ) ( ) ( )* *, ,j lf j w f l w g j g l> ⇒ >  

Assume j l> . The proof follows similarly if j l> . From Definition 5, since 
( )g n  is integer strictly quasi convex, then ( ) ( ) ( ) ( )g j g l g r g j> ⇒ <  for 
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1, 2, , 1r j j l= + + − . In particular, for 1r j= +  we have  
( ) ( ) ( ) ( ) ( )* *

11 1, , ,j jg j g j f j w f j w f j m++ < ⇒ + < = . But this contradicts the 
assumption that ( ),j m  is a local minimum. 

Yüceer [5] defines a function to be discretely convex as follows: Let S be a 
subspace of a discrete n-dimensional space. A function :f S R→  is defined to 
be discrete convex, if for all ,x y S∈ , and 0α > , we have  

( ) ( ) ( ) ( ) ( )1 minu N zf x f y f uα α ∈+ −   where ( )1z x yα α= + −  and  
( ) { }: 1N z u S u z= ∈ − < , ( )1z x yα α= + −  and { }1max i n iu u≤ ≤=  
He then considers the following example 

( ) ( ) ( )2 21, 25 2
4

f i j j i i= − + −  where ,i j∈  

Yüceer  then shows that ( ),f i j  is not discretely convex. Below, we show 
that any local minimum of f is also a global minimum although it is not a dis-
cretely convex function. 

We first show that ( ),f i j  is integer strictly quasi-convex in j i∀ . Ac-
cording to Definition 2, ( ) ( )2 , 100 0 ,jf i j f i j∆ = > ⇒  is integer strictly con-
vex in j i∀ . 

Extending Ponstein’s definitions to functions with an integer variable implies 
that ( ),f i j  is also integer strictly quasi convex in j i∀  since it is strictly in-
teger convex. Now consider ( ) ( ) ( )*, min ,i jg i f i j f i j≡ = . *j  will be a local 
minimum of ( ) constant, if i j

=
 if ( )* 0jf j∆ ≥  and ( )* 1 0jf j∆ − ≤ . 

For this function: 
( )

*

1 1 if is odd i.e. 2 1
2

if is even i.e. 2
2

i i i k
j

i i i k

 − = += 
 =


 

If i is odd, then 1i −  is an even integer which is divisible by 2. If i is even, 
then 1i −  is an odd integer and not divisible by 2. Thus, 2 1 2 1i k i k= ⇒ − = −   

and ( )1 12 1
2 2

k k− = −  where k ∈ . Then 
11
2

k k k− < − <  where 
2
ik = . 

Using Definition 3, and by comparing the values of ( ), 1f i k −  and ( ),f i k  

we find that *

2
ij k= =  is a local minimum of ( ) :even and constant, if i j . 

Thus, ( )
( )

( )

2

2

1 2 25 if is odd
4
1 2 if is even
4

i i
g i

i i

 − += 
 −


 

We now verify that ( )g i  satisfies Definition 5. Assume that i is an odd in-
teger. 

1) For any 2 1i i> , ( ) ( )1 2 1 22 2g i g i i i< ⇒ − < − . Now, since 2 1i i>  we 
have two conditions to consider: 1 2, 0i i >  or 0, 1 0i < . 

If 1 0i >  and 2 0i > , then for 1 1 21, 2, , 1k i i i= + + − , we have  
( ) ( )2g k g i<  which satisfies Case I of Definition 5. If 1 0i <  and 2 0i > , k can 

be either positive or negative. If 0k > , then for 1 1 21, 2, , 1k i i i= + + −  we 
have ( ) ( )2g k g i<  which satisfies Case I of Definition 5. 
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If 0k <  then 1 0i k< < . So for 1 1 21, 2, , 1k i i i= + + −  we have  
( ) ( )2g k g i<  since ( ) ( )1 2g i g i<  which also satisfies Case I of Definition 5. 
2) For any 2 1i i> , ( ) ( )1 2 1 0g i g i i> ⇒ <  and 2 0i < . So, for  

1 1 21, 2, , 1k i i i= + + − , we have ( ) ( )1g k g i<  which satisfies Case 2 of Defini-
tion 5. The proof follows similarly if i is an even integer. 

1) and 2) show that ( )g i  satisfies the condition of Definition 5, hence it is a 
strictly integer quasi-convex function. Thus, according to Theorem 1, any local 
minimum of ( ),f i j  is a global minimum. 

3. Conclusion 

A sufficient condition is developed for functions of two integer variables such 
that any local minimum is also a global minimum. This result is important be-
cause many optimization problems in integer programming do not have integer 
convex functions, but still may satisfy this condition. 
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