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Abstract 
It is becoming an important social problem to make maintenance and reha-
bilitation of existing infrastructures such as bridges, buildings, etc. in the 
world. The kernel of such structure management is to develop a method of 
safety assessment on items which include remaining life and load carrying 
capacity. The purpose of this paper is to summarize the finding of up-to-date 
research articles concerning the application of knowledge-based systems to 
assessment and management of structures and to illustrate the potential of 
such systems in the structural engineering. In here, knowledge-based systems 
include knowledge-based expert systems incorporation with artificial neural 
networks, fuzzy reasoning and genetic or immune algorithms. Specifically, 
two modern bridge management systems (BMS’s) are presented in the paper. 
The first is a BMS to assess the performance and derive optimal strategies for 
inspection and maintenance of concrete bridge structures using reliability 
based and knowledge-based systems. The second is the concrete bridge rating 
expert system (J-BMS BREX) to evaluate the performance of existing bridges 
by incorporating with artificial neural networks and fuzzy reasoning. 
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1. Introduction 

In the field of structure management engineering, a great deal of decision mak-
ing often depends on the judgment and experience of the domain experts in re-
lated fields, such as technologists and engineers. Then an important parameter 
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in management for structures is the assessment that should include technologi-
cal evaluation and economical analyses referring to initial cost and diagnostic 
technologies for maintenance throughout service life. Since the necessity of de-
veloping a computer-aided structure assessment and management system has 
been pointed out for maintenance, diagnosis, repair and rehabilitation of exist-
ing structures [1]. There are multiple processes of damage with a lot of damage 
factors in existing structures in service. Then in the processes of the structure 
assessment and management are included a subjective uncertainty of the domain 
experts such as professional experience, knowledge on structure management, 
etc. [2]. 

On the other hand, new technologies are applicable to structure assessment 
and management such as information technology (IT), artificial intelligence (AI) 
which based on a soft computing technique, are making remarkable progress. 
Knowledge-based expert systems (KBESs) with “if-then” rules as one of the ar-
tificial intelligence techniques are the most common technology which can be 
effectively utilized as the structure management supportive tool when such ex-
periences and knowledge are organized, coordinated and developed into a 
knowledge-based system. As another promising new technology, artificial neural 
networks (ANNs) originated from a desire to simulate how the human brain 
processes information. ANNs with the back propagation of error algorithm are 
able to lean from the past experiences and knowledge by a teacher data. The 
mechanism of the organization of the neurons and modification of weights of 
the connections among the neurons in ANNs usually called the machine learn-
ing in KBESs (see Figure 1) [3] [4] [5]. 

The aim of this paper attempts to review and analyze the potential of utilizing 
knowledge-based expert systems in structure assessment and management and  

 

 
Figure 1. Required technologies for knowledge-based system. 
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to make clear the limitations such expert systems based on the qualitative and 
quantitative information. In here, it reviews the latest applications involving 
knowledge-based systems for structure assessment and management, including 
KBESs incorporation with ANNs, fuzzy reasoning and genetic or immune algo-
rithms. Finally, the details of a practical knowledge-based expert system for con-
crete bridge management are shown as an example of a hybrid system by 
above-mentioned new technologies. The sections that follow will review two 
quite different knowledge-based BMSs. The first is a BMS to assess the perfor-
mance and derive optimal strategies for inspection and maintenance of concrete 
structures using reliability based [6] and knowledge based systems [7] [8] [9]. 
The second is the concrete bridge rating expert system (J-BMS BREX) to eva-
luate the performance of existing bridges by incorporating with artificial neural 
networks and fuzzy reasoning [10]-[15]. 

2. Combined Knowledge-Based and Reliability-Based  
Systems for Bridge Performance Assessment 

2.1. Concept of the System 

In this chapter BMS’s are discussed with special emphasis on reinforced concrete 
bridges. However BMS’s for prestressed concrete bridges, steel bridges, or com-
posite bridges can be developed in a similar way. 

The present bridge management systems are in most cases based on a deter-
ministic approach and the assessment of the reliability or the safety is therefore 
in general based on subjective statements. In future bridge management systems, 
we will see a change to stochastically based systems with rational assessment 
procedures. Future management systems will be computerized and different 
types of knowledge-based systems will be used. The format of future bridge 
management systems is illustrated by the EU supported management systems 
BRIDGE1 and BRIDGE2. 

For many years it has been accepted that steel bridges must be maintained due 
to the risk of corrosion of steel girders etc. The situation is a little different for 
reinforced concrete bridges. Although a vast majority of reinforced concrete 
bridges have performed satisfactorily during their service life, numerous in-
stances of distress and deterioration have been observed in such structures in 
recent years. The causes of deterioration of reinforced concrete bridges are often 
related to durability problems of the composite material. One of the most im-
portant deterioration processes, which may occur in reinforced concrete bridges, 
is reinforcement corrosion, caused by chlorides present in de-icing salts and/or 
carbonation of the concrete cover zone. 

Improved stochastic modelling of the deterioration is needed to be able to 
formulate optimal strategies for inspection and maintenance. However, such 
strategies will only be useful if they are combined with expert knowledge. It is 
believed that future management systems will be expert systems or at least 
knowledge-based systems [7] [8] [9]. 
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2.2. Optimal Strategies for Inspection and Maintenance of Bridges 

Diagnostic methods: Diagnosis of bridges showing signs of functional or struc-
tural deterioration is the first step that has to be taken before making any deci-
sions regarding maintenance or repair. It is necessary to define clearly what are 
the damage problems. It is very costly to start diagnosis without knowing which 
information one wants to gather. When the diagnostic method (or methods) is 
selected, it is necessary to gather the know-how, equipment, manpower and fa-
cilities needed. Diagnostic work is usually disruptive for the normal functioning 
of the bridge and must be limited as much as possible in time and space. 

Correlations between defects and diagnostic methods: A correlation matrix 
between the diagnosis methods and the defects can be established so that each 
line represents a defect and each column a diagnostic method. At the intersec-
tion of each line and column a number representing the correlation between de-
fect and diagnostic method can then be introduced. Such a matrix helps the in-
spector in choosing the best inspection method, as a function of the detected de-
fect. 

2.3. Development of Optimal Strategies 

Inspection strategies: Methods and computer programs for determining ra-
tional inspection and maintenance strategies for bridges are developed. The op-
timal decision is based on the expected benefits and the total cost of inspection, 
repair, maintenance and complete or partial failure of the bridge. Furthermore, 
the reliability has to be acceptable during the expected lifetime. Inspections of 
bridges are in this BMS divided into three types: 
• Current inspections, which are performed at a fixed time interval, e.g. 15 

months. The inspection is mainly a visual inspection. 
• Detailed inspections are also done at a fixed time interval. The time interval is a 

multiple of the current inspection time interval, e.g. 5 years. The detailed inspec-
tions are visual inspections but can also include non-destructive in-situ tests. 

• Structural assessments are only performed when a current or detailed inspec-
tion shows some serious defects, which require a more detailed investigation. 
The structural assessment can include laboratorial tests, in-situ tests with 
non-portable equipment, static and dynamic load tests. The tests are usually 
very costly compared with the other two inspection types. 

Maintenance and repair decision systems: It is convenient to divide that 
part of the decision system, which is used to assist in maintenance and repair 
planning into two subsystems. The maintenance subsystem deals with mainten-
ance repair techniques and small repair, i.e. repair of unimportant structural de-
fects. Generally, this subsystem is always used after a current or detailed inspec-
tion. The repair subsystem helps choosing the best option of structural repair 
when an important deficiency that impairs the functionality of the bridge is de-
tected. It is basically an economic decision (based obviously on structural and 
traffic engineering data) in which the costs are quantified. Generally, this sub-
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system is used after a structural assessment. 

2.4. Application of Expert Knowledge 

The objective of using knowledge-based system technology in bridge manage-
ment is to produce a software tool to assist bridge inspectors as well as engi-
neering experts in their tasks of assessing and improving the reliability of con-
crete bridges. 

Architecture: The first step is to identify the various software subsystems and 
the relations between them i.e. the software architecture that will set the basis for 
the development of the knowledge-based systems. It is natural in bridge man-
agement to develop two different modules aimed at different goals. The first 
provides technical support to the inspector during the inspection process at the 
bridge site. The second assists the engineer in the analysis of the safety of bridges 
as well as in the selection of maintenance and repair methods. 

Software modules: A number of software modules interact with the know-
ledge-based systems through specifically designed data files: 
• Updating analysis: Based on inspection information and other new informa-

tion the reliability estimates and the data in the databases is updated. 
• Reliability analysis: The reliability of the bridge is evaluated as a function of 

time. 
• Structural analysis: The system is open so that the user is able to use any fi-

nite element software. 
• Inspection program: Based on the data in the databases and the reliability es-

timates the optimal time for the next inspection is calculated using the up-
dating module. 

The next step is to identify the representation schemes and inference mechan-
isms best suited for the implementation of the knowledge-based systems. 

Implementation of the knowledge based system: As mentioned earlier in 
bridge management it is convenient to have at least two systems, namely one to 
be used in the inspection phase and one to be used during maintenance and for 
repair decisions. The first system is highly based on “correlation matrices”. Cor-
relation matrices are defined for: defects/diagnostic methods, defects/causes and 
defects/repair methods. A pseudo-quantitative classification of the type no cor-
relation, low and high correlation is used. Correlation between defects as well as 
diagnostic and repair methods is also needed. Each matrix is e.g. be organized so 
that each line represents a defect and each column a possible diagnosis method, 
cause or repair method. At the intersection of each line and column a number 
representing the correlation between defect and possible element of reference is 
introduced. 

It is important for the applicability of the knowledge-based system that it gives 
all the information needed during and after inspections. Such information are: 
general information about the bridge, related diagnostic methods, probable 
causes, associated defects and provisional defect report. 

https://doi.org/10.4236/jsea.2021.149030


A. Miyamoto 
 

 

DOI: 10.4236/jsea.2021.149030 510 Journal of Software Engineering and Applications 
 

Databases: A crucial task in the development of knowledge-based systems is 
the definition of the databases. An exhaustive study of the data collected for 
concrete bridges, both at the design stage and after it has been constructed must 
be provided. At relevant moments of the bridge's service life (usually after con-
struction and after important rehabilitation work is performed), its real situation 
must be thoroughly described so that future inspections have something to relate 
to. When the database definition is completed then the set of parameters re-
quired for the reliability estimation, the cost optimization, and additional bridge 
parameters dealing with the bridge repair cost and corrosion descriptive para-
meters are added. 

Most existing bridge management databases are insufficient for e.g. reliability 
assessment and for implementing modern decision-making tools. 

Expert modules: A number of expert modules are needed to define the archi-
tecture of the knowledge-based system: database module, inspection module and 
a decision module. The decision is divided into a number of sub-modules such 
as: a maintenance/small repair sub module, an inspection strategy sub module 
and a repair/upgrading/replacement sub module. 

The inspector’s functionalities: The inspector must be able to perform activ-
ities like: 
• Review all the information contained in the database of the bridges. Different 

types of data are recorded for each bridge: identification and bridge site in-
formation, design information, budget information, traffic information, 
strength information, load information, deterioration information, factors 
that model the costs and data for the cross-sections defined for the bridge. 

• Define new cross-sections. 
• Receive technical support regarding the most appropriate diagnostic methods 

to be used in order to conclude about the existence of a defect. 
• Receive technical support regarding the possible causes responsible for a de-

fect. 
• Record the results of the inspection. 

The inspection engineer’s functionalities: The inspection engineer must at 
his office be able to: 
• View the inspection results recorded at any previous inspection performed in 

any of the bridges of the database. 
• Enter the data of a bridge in the bridge's database. 
• View the data of a bridge and edit it. 
• Define new critical cross-sections for any of the bridges in the database. 
• Complete the data of the defects detected at the inspection by describing the 

defect in greater detail and by entering the results of the tests performed. 
• Update data for the cross-sections and inspection results after repair. 

2.5. Bridge Management Systems for Concrete 

In this section some important issues related to advanced BMSs are discussed 
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namely: 
• Deterioration of bridges 
• Stochastic modeling of failure modes 
• Stochastic modeling of the inspection 
• Stochastic modeling of repair 
• Updating techniques 
• Reliability analysis. 

Deterioration of bridges: Corrosion is one of the most important deteriora-
tion mechanisms for steel as well as reinforced concrete bridges. In this section a 
stochastic model for corrosion of reinforcement in reinforced concrete bridges is 
shown. 

Fick’s law of diffusion often models the rate of chloride penetration into con-
crete 

( ) ( )2
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, ,
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C x t C x t
D

t x
∂ ∂
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                    (1) 

where, DC is the chloride diffusion coefficient, x  is the distance from the sur-
face and t is time. The solution of Equation (1) is 

( ) 0, 1
2 C

xC x t C erf
D t

   = −    ⋅   
                 (2) 

where, ( ),C x t  is the chloride content at the distance x  from the surface and 
at the time t, C0 is the initial chloride content, and ( )erf  is the error function. 
The corrosion initiation period 
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where, iC  is the initial chloride concentration, crC  is the critical chloride 
concentration, and 1 1 2d D−  is the concrete cover. The diameter ( )1D t  of the 
reinforcement bars at the time t after initiation of corrosion can be modeled by 

( ) ( ) ( )1 1 0 corr corrD t D C i t= −                    (4) 

where, ( )1 0D  is the initial diameter, corrC  is a corrosion coefficient, and corri  
is the rate of corrosion. 

Stochastic modeling of failure modes: A number of failure modes for struc-
tural elements must be modeled. In this section is shown as illustration modeling 
of an ultimate limit state (ULS) and a serviceability limit state for a concrete slab 
bridge namely [8]: 
• An ultimate limit state (ULS): collapse limit state (using yield line analysis). 
• A serviceability limit state (SLS): crack width limit state (using linear elastic 

analysis). 
The following safety margin can be used for the collapse limit state: 

c c D DZ V E W= −                         (5) 

where, VC is a model uncertainty variable, ED is the energy dissipated in yield 
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lines, and WD is the work done by the applied loads. 
The basic variables used in the yield line ULS are: thickness of slab, cube 

strength of concrete, density of concrete, depth of reinforcement, yield strength 
of reinforcement, and two load parameters. 

Cracking shall be limited to a level that will not impair the proper functioning 
of the structure or cause its appearance to be unacceptable. In the absence of 
specific requirements (e.g. water tightness), it may be assumed that limitation of 
the maximum design crack width Wmax to about 0.3 mm will generally be satis-
factory for reinforced concrete members with respect to appearance and dura-
bility. 

A crack width limit state can be formulated by 

maxw w dZ W Z W= −                        (6) 

where, Wmax is the maximum allowable crack, Wd is the design crack width, and 
Zd is a model uncertainty stochastic variable. 

Stochastic modeling of the inspection: Two types of uncertainty in the 
models for inspections must be considered. The first type of uncertainty is re-
lated to the uncertainty (reliability) of an inspection method, i.e., how good is an 
inspection technique to detect a defect if a defect is present and what is the risk 
that the inspection method indicates a defect when there is no defect (false 
alarm). The second type of uncertainty is related to the measurement uncertain-
ty when a detected defect is being quantified. Stochastic models must be derived 
for the most important inspection methods. 

Stochastic modeling of repair: Repair implies that new and/or modified val-
ues of parameters are needed to model the behavior of the bridge after the re-
pair. In relation to stochastic modeling of repair the quantities can be divided 
into the following groups: 
• Quantities (deterministic or stochastic), which are the same before and after 

repair. 
• Quantities, which can be modeled by deterministic variables. The values for 

these quantities are known rather precisely after the repair. 
• Quantities, which can be considered new outcomes of the old stochastic va-

riables used before the repair. A variable of this type is modeled by introduc-
ing a new stochastic variable with the same distribution function but statisti-
cally independent of the old stochastic variable. 

• Quantities modeled by new stochastic variables correlated or not correlated 
with the old stochastic variables. 

In addition to the above models it can be relevant to update the distribution 
functions of the stochastic variables when observations are obtained in connec-
tion with the repair. The following important structural repair types must be 
modelled: concrete patching (with deteriorated concrete removal), concrete 
patching (with reinforcement cleaning), concrete patching (with reinforcement 
splicing/replacement) and concrete encasing (with reinforcement splicing/ re-
placement). 
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Updating techniques: When new information becomes available the esti-
mates of the probability of failure (and the reliability) of structures can be up-
dated. New information can be divided in three types: 
• Sample information on basic variables. 
• General information on stochastic variables. 
• Linguistic information. 

When new information is available as samples of one or more stochastic basic 
variables Bayesian statistical methods are used to obtain updated (predictive) 
distribution functions of the stochastic variables. 

In some cases the information obtained by measurements is not directly re-
lated to a basic stochastic variable. The information is generally modeled by us-
ing a stochastic variable, which is a function of the basic stochastic variables. The 
event margin is a stochastic variable and it is therefore possible to estimate the 
probability that the event occurs. Further, this type of information can be used 
to update the probability of failure of a structural element. 

Basic variable updating is performed within the framework of Bayesian statis-
tical theory [8]. The updating based on general information is mainly based on 
the Bayesian methods suggested by Refs. [16] [17]. 

Let the density function of a stochastic variable X be given by ( ),Xf x Θ , 
where, Θ  are parameters defining the distribution of X. The parameters Θ  
are treated as uncertain parameters (stochastic variables). ( ),Xf x Θ  is therefore 
a conditional density function ( )Xf x Θ . The initial (or prior) density function 
for Θ  is called ( )g θΘ′ . 

When an inspection is performed n  realizations ( )1, , nx x x∗ =   of the 
stochastic variable X are obtained. The inspection results are assumed to be in-
dependent. An updated density function Θ  taking into account the inspection 
results is then defined by 

( ) ( ) ( )

( ) ( )dn

f x g
g x

f x g

θ θ
θ

θ θ θ

∗
Θ∗

Θ ∗
Θ

′
′′ =

′∫
                 (7) 

where, ( ) ( )1
n

X X iif x x f x θ∗
=

=∏ . 
The updated density function of X taking into account the realizations x ∗  is 

then obtained by 

( ) ( ) ( ) ( )dX Xf x x f x g xθ θ θ∗ ∗
Θ′′= ∫                (8) 

In the knowledge-based systems the functions ( )g θΘ′ , ( )g θΘ′′  and 

( )Xf x x ∗  are implemented for several distributions. 
Reliability analysis: The reliability of the bridge is measured using the relia-

bility index β  for a single failure element or for the structural system (the 
bridge) [18] [19]. The reliability is assumed to decrease with time due to the de-
terioration. The failure modes can e.g. be stability failure of columns, yielding or 
shear failure in a number of critical cross-sections of the bridge. If a system 
modeling is used then it is assumed that the structure fails if any one of these 
failure modes fails, i.e. a series system modeling is used. 
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It is assumed that uncertain quantities like loading, strength and inspection 
results can be modeled by N stochastic variables ( )1, , NX X X=  . The struc-
ture is modeled by m  potential failure modes , 1, 2, ,iF i m=  . Failure mode 
i  is described by a safety margin. 

( ),
i iF FM M X t=                         (9) 

The element reliability index, ( )i tβ  at the time t for failure mode iF  is 
connected to the probability of failure ( )

iFP t  by Ref. [18]. 

( ) ( )( )1
ii Ft P tβ −= −Φ                      (10) 

where, Φ  is the standard normal distribution function. The probability of 
failure ( )

iFP t  in the time interval [0, t] is determined from 

( )0
i iF FP P M= ≤                       (11) 

In Ref. [8] is in an example shown how a reliability assessment of a concrete 
bridge taking into consideration corrosion of the reinforcement may be per-
formed. The example is based on an existing UK bridge, but some limitations 
and simplifications are made. 

A plastic collapse analysis and estimation of the load are performed using the 
COBRAS program [20]. The reliability analysis (element and system) is done 
using the programs “RELIAB01” and “RELIAB02” [21] [22]. The “RELIAB” and 
“COBRAS” programs have been interfaced and include an optimization algo-
rithm to determine the optimal yield line pattern for each iteration of the relia-
bility analysis. The estimation of the deterioration of the steel reinforcement is 
based on the program “CORROSION” [23]. 

2.6. Bridge1 & Bridge2 BMS 

Introduction: Some results from the research project “Assessment of Perfor-
mance and Optimal Strategies for Inspection and Maintenance of Concrete 
Structures using Reliability Based Expert Systems”, supported by EU within the 
BRITE/EURAM research program, is presented in this chapter. 

The main objective of the project was to optimize strategies for inspection, 
maintenance and repair of reinforced concrete bridges by developing improved 
methods for modelling the deterioration of existing as well as future structures 
using reliability based methods and knowledge based systems. 

Reliability assessment: In this bridge management system the probability of 
failure is estimated using the reliability program RELIAB. 

The system reliability index ( )s tβ  is connected to the probability of failure 
( )

iFP t  of the series system in the time interval [0, t] by 

( ) ( )( )1s
Ft P tβ −= −Φ                      (12) 

where, the probability of failure, ( )FP t  is determined by the approximation 
[19]. 

( ) ( ) ( )( )1 ,F mP t t tβ ρ≈ −Φ                   (13) 
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where, ( )1, , mβ β β=   and ( )tρ  are a matrix whose elements are the corre-
lation coefficients between the linearized failure margins of the elements in the 
series system. mΦ  is the m-dimensional normal distribution function. 

In the bridge management systems BRIDGE1 and BRIDGE2 the updating of 
stochastic variables etc. is performed using the techniques described earlier. 

Functionalities of BRIDGE1 and BRIDGE2: The expert system is divided 
into two modules BRIDGE1 and BRIDGE2 which are used in two different situ-
ations, namely by the inspector of the bridge during the inspection at the site 
and after the inspector has returned to his office. 

During the inspection the knowledge based system will supply information 
on: the causes of observed defects, appropriate diagnostic methods, and related 
defects. Further, the inspector will be asked to record the inspection results so 
that they can be used later for e.g. assessment of the reliability of the bridge and 
in the decision whether a detailed structural assessment is needed. 

A detailed analysis of the state of the bridge after an inspection is performed 
when the inspector has returned to his office, and after testing in the laboratory 
has been performed. The output of the analysis includes an updated estimation 
of the reliability of the bridge, decision whether a structural assessment should 
be made, decision whether to repair or not, relevant repair procedures, and the 
time for repair. Expert knowledge is used to improve the quality of the decisions. 

Application of BRIDGE1 and BRIDGE2: The general inspection, mainten-
ance and repair model from inspection no. i  at time it  to inspection no. i  + 
1 at the time 1i it t t+ = + ∆  is indicated in Figure 2, where also the application of 
the modules BRIDGE1 and BRIDGE2 is shown. 

The symbols used in Figure 2 are: 
C: Current inspections are performed at a fixed time interval, e.g. 15 months. 
D: Detailed inspections are also periodic at a fixed time interval, which is a 

multiple of the current inspection time intervals, e.g. 5 years. 
A: Structural assessments are only performed when a current or detailed in-

spection shows some serious defects, which require a more detailed investiga-
tion. 

M: Maintenance and repair of minor defects. 
R: Structural repair. 
B1: Application of BRIDGE1 during the inspections. 
B2(M): The maintenance subsystem in BRIDGE2 assists in the selection of 

maintenance work and repair of minor structural defects to be performed. 
B2(I): The inspection module in BRIDGE2 assists in selecting the next type of 

inspection. 
B2(R): The repair subsystem in BRIDGE2 assists in selecting the best repair 

technique. The selection is based on economic considerations and expert know-
ledge. 

After a current or a detailed inspection BRIDGE2 is used to rate the mainten-
ance and minor repair work needed and to decide if a structural assessment has  
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Figure 2. Inspection, maintenance and repair models. 

 
to be performed. The decision is based partly on estimates of the reliability of the 
bridge and partly on expert knowledge. The decision does not include economic 
considerations. 

After a structural assessment BRIDGE2 is used to decide if a repair has to be 
performed and also to give the optimal point of time for the repair. Expert 
knowledge as well as numerical algorithms is used. The decisions are partly 
based on a cost-based optimization where different repair possibilities (selected 
by expert knowledge) and no repair are compared. 

Decision model with regard to structural assessment: A structural assess-
ment is recommended if the updated reliability index for the bridge Uβ  is 
smaller than or equal to a minimum reliability index minβ  as shown in Figure 
3. If the updated reliability index for the bridge is greater than the minimum re-
liability index then the decision is taken based on expert knowledge. 

Let it  be the time of a periodic inspection and let the updated reliability in-
dex at the time t be ( ), it tβ . The general decision model with regard to the 
structural assessment can then be formulated as: 
• If ( ) min

1,i it tβ β+ >  then the inspection at the time 1it +  should be a current 
or detailed inspection unless the damage is so serious that a structural as-
sessment is needed. This decision is based on expert knowledge. minβ  is the 
minimum acceptable reliability index (e.g. 3.72). 

• If ( ) min
1,i it tβ β+ ≤  then a structural assessment should be performed before 

the next periodic inspection. 
Modeling of repair: After a structural assessment it must be decided whether the 

bridge should be repaired and if so, how the repair is to be performed. Solution of 
this problem requires that all future inspections and repairs be taken into account. 
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Figure 3. Decision model for structural assessment. 

 
In order to decide which repair type is optimal after a structural assessment; 

the following optimization problem is considered for each repair technique: 

( ) ( ) ( ) ( )
,

max , , , ,
R R

R R R R R R R F R RT N
W T N B T N C T N C T N= − −        (14) 

( ) min. . , ,U
L R Rs t T T Nβ β≥                    (15) 

where the optimization variables are the expected number of repair NR in the 
remaining lifetime and the time TR of the first repair. W is the total expected 
benefits minus costs in the remaining lifetime of the bridge. B is the benefit. CR 
is the repair cost capitalized to the time t = 0 in the remaining lifetime of the 
bridge. CF is the expected failure costs capitalized to the time t = 0 in the re-
maining lifetime of the bridge. TL is the expected lifetime of the bridge. Uβ  is 
the updated reliability index. minβ  is the minimum reliability index for the 
bridge (related to a critical element or to the total system). 

The repair decision is then based on the results of solving this optimization 
problem but also on expert knowledge. 

Elicitation. Expert knowledge plays a very important role in this 
project:As a simple example decisions resulting in Structural assessment or No 
structural assessment are described for one of the most important defects name-
ly “rust stain”. 

If rust stain is observed at the inspection then the following question is asked: 
Question 1:What is the extent of rust stain? 
Possible answers to question 1: 
1) Single rust stains ⇒  No structural assessment (it is assumed that single 

rust stains do not question the structural safety or the global functionality of the 
bridge). 

2) Locally many rust stains ⇒  question 2. 
3) Widespread rust stains ⇒  Structural assessment (it is assumed that there 

is a global corrosion of the reinforcement in the bridge). 
If item 2 is the result of question 1 then question 2 is asked. 
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Question 2: What is the location of rust stains? 
Possible answers to question 2: 
1) A critical place regarding humidity ⇒  Structural assessment (a place is 

critical if it e.g. is exposed to splash of water from cars passing under the bridge). 
2) Near places where maximum moments occur ⇒  Structural assessment. 
3) Other places ⇒  No structural assessment. 
The result of the elicitation is illustrated in Figure 4. 
BRIDGE1: As mentioned earlier, the expert system module BRIDGE1 is used 

at the bridge site during an inspection. This expert system module contains use-
ful information concerning the bridge inspected and the defects observed. The 
information includes: general information about the bridge, appropriate diag-
nostic methods for each defect, probable causes for each defect, and other de-
fects related to a defect. It is also possible to create a provisional defect report. 

The general information about the bridge stored in the database for the se-
lected bridge can be reviewed. The database contains information about: bridge 
site, design, budget, traffic, strength, load, deterioration, factors that model the 
costs, and the cross-sections entered for the bridge. 

New cross-sections can be entered for the selected bridge. The information 
stored in the database for each cross-section contains: cross-section identifica-
tion, geometry of cross-section (detailed description of the reinforcement layers 
for cross-sections in the deck), failure mode, and load data. Technical support 
can be provided for a defect. 

The technical support includes a list of diagnostic methods that can be used to 
observe a selected defect. The list is divided into high and low correlated diag-
nostic methods for the selected defect. 

A list of defects associated with the selected defect is also included. This list is 
very useful since the defects, which can be found with a high probability, can be 
reviewed if the selected defect is observed. Measures for the correlations between 
the selected defect and the related defects are shown. 

BRIDGE2: The expert system module BRIDGE2 is used to make a detailed 
analysis of the bridge after an inspection when testing has been performed in the  

 

 
Figure 4. Elicitation. 
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laboratory. New bridges and cross-sections can be entered into the database and 
existing bridges and cross-sections can be edited. For the bridges in the database 
the following options are available: review provisional defect reports, enter in-
spection results, estimate the reliability index, plan maintenance work and esti-
mate costs, plan structural repair work and estimate costs, and review the agenda 
of inspection for one bridge or all bridges. Further, the database can be updated 
after repair. 

New bridges can be entered and existing bridges can be edited. The general 
information about the bridges stored in the database contains information 
about: bridge site, design, budget, traffic, strength, load, deterioration, factors 
that model the costs, and the cross-sections entered for each bridge. 

After an inspection the provisional defect reports recorded at previous inspec-
tions can be reviewed. A description of the detected defects and measurements of 
diagnostic methods can be entered. After a repair the databases can be updated. 

The integrated FORTRAN program RELIAB can estimate the reliability index 
for the bridge. The reliability index when no inspection results are taken into 
account and the updated reliability index when all inspections performed for the 
bridge are both taken into account can be estimated. 

The following sub modules are integrated into BRIDGE2: 
• BRIDGE2(M) is the maintenance/small repair sub module. This sub module 

assists in selecting the maintenance work and repair of minor structural de-
fects to be performed and estimates the maintenance costs. The defects are 
rated based on the defect classification in terms of rehabilitation urgency, 
importance of the structure’s stability, and affected traffic recorded during 
the inspection. 

• BRIDGE2(I) is the inspection strategy sub module. This assists in the deci-
sion whether a structural assessment is needed before the next periodic in-
spection. The decision made in BRIDGE2(I) is mainly based on the updated 
reliability index for the bridge calculated by RELIAB. If the value of the up-
dated reliability index for the bridge is acceptable then each of the defects 
detected at the latest periodic inspection and the combination of defects are 
investigated based on a cost-benefit analysis by the FORTRAN program 
INSPEC. 

The FORTRAN program RELIAB can be used to estimate the reliability of a 
bridge. The FORTRAN program INSPEC can be used to estimate the optimal re-
pair time and number of repairs for a given repair method. The estimation is based 
on a cost-benefit analysis for the bridge. The total expected benefits minus ex-
pected repair and failure costs in the remaining lifetime of the bridge is optimized. 

3. Practical Hybrid Knowledge-Based Expert Systems for 
Concrete Bridge Management 

3.1. Concept of the System 

The author has been developing a knowledge-based expert system which can be 
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used to evaluate the performance of existing concrete bridges on the basis of 
knowledge and experience acquired from domain experts [10]-[15] [24] [25]. 
The proposed expert system is called the Concrete Bridge Rating EXpert System 
(J-BMS BREX). The objective of the system is to evaluate the present perfor-
mance of target bridge members in terms of factors such as serviceability, 
load-carrying capability, and durability. The input data for rating a concrete 
bridge are the technical specifications of the target bridge, environmental condi-
tions, traffic volume, and other subjective information that can be obtained 
through simple visual inspection. In this study, load-carrying capability and du-
rability are used to estimate serviceability. Load-carrying capability is defined as 
the aspect of bridge performance that is based on the load-carrying capacity of a 
bridge member, and durability is defined as the ability of a bridge member to 
resist material deterioration and is based on the rate of material deterioration of 
the member. These two aspects of bridge performance are applied as indices for 
considering the necessity of performing maintenance on deteriorated bridges. 
Specifically, load-carrying capability is applied as an index for estimating the 
necessity of strengthening, and durability is applied as an index for estimating 
the necessity of repair. 

In the expert system, the performance of a target bridge is evaluated according 
to a diagnostic process, which is modeled on the inference process domain ex-
perts employ for rating an existing concrete bridge. This process is expressed by 
a hierarchical structure and has twelve main judgment items. The ultimate goal 
of this process is “serviceability.” The hierarchical structure expresses the rela-
tionship between judgment items and input data, such as inspection data and 
technical specification data, or between judgment items. In practice, these rela-
tionships are expressed by “If-then” rules with fuzzy variables. Consequently, the 
fuzzy inference of the expert system is drawn from these rules. Naturally, these 
rules could be written directly into a computer in a computer language. In this 
study, however, these rules are implemented in a computer after a set of the rules 
relating judgment items and input data or relating judgment items is trans-
formed to a hierarchical neural network. In other words, hierarchical neural 
networks identify a diagnostic process. The system can easily refine the know-
ledge base; that is, “If-then” rules with fuzzy variables, by use of a machine 
learning method. More specifically, the system refines the knowledge base by 
applying the “Back-Propagation” method [4]. Therefore, since the network is 
capable of performing fuzzy inference and machine learning, the system can be 
called a Neuro-Fuzzy expert system. Generally, although a neural network is a 
powerful machine learning tool, the inference process of a neural network be-
comes a “black box,” which renders the representation of knowledge in the form 
of rules impossible. However, the hierarchical neural network proposed in the 
present study contributes to prevent an inference process from becoming a black 
box. As described later, the effectiveness of the hierarchical neural network and 
machine learning method was verified by comparison of the diagnostic results of 
bridge experts and those of the proposed system. 
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3.2. Knowledge-Based Expert System  
for Existing Concrete Bridges 

In the expert system, the target bridge is diagnosed according to a diagnostic 
process, which is modeled on the inference mechanism used by domain experts 
for rating bridges (see Figure 5). In a previous study, the authors used the Fuzzy 
Structural Modeling (FSM) method [5] to create the diagnostic process for main 
girders and slabs. Each process employs twelve main judgment items. These 
judgment items are evaluated by about 90 input data items, such as technical 
specifications, traffic volume, and results of visual inspection. The process is a 
hierarchical structure in which the ultimate goal is “serviceability.” 

For instance, Figure 5 shows the diagnostic process for main girders. The 
lowest-rated judgment items, such as “Condition state of cracking” and “Condi-
tion state other than cracking,” are first evaluated by use of input data such as 
visual inspection data and technical specifications. The “Condition state of 
cracking” is evaluated from inspection data such as [Crack conditions] and 
[Maximum crack width (mm)]. Next, the higher-rated judgment items, such as 
“flexural cracks,” “shear cracks,” and “material deterioration,” are diagnosed 
from the results of lower judgment items and/or input data. The damage degree 
of “flexural cracks” is determined from the results of “Condition state of cracking”  

 

 
Figure 5. Example of the diagnostic process for main girder. 
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and “Condition state other than cracking.” Then, the higher-rated judgment 
items, such as “whole damage,” “execution of work,” and “service conditions,” 
are also evaluated from the results of lower judgment items and/or input data. 
The final judgment item is “serviceability,” which is evaluated according to the 
results of “load-carrying capability” and “durability.” Each of these judgment 
items is assigned a soundness score, on a scale of 0 - 100, which is output from 
the expert system. The output score is categorized into one of five groups: 0 - 
12.5, 12.6 - 37.5, 37.6 - 62.5, 62.6 - 87.5 and 87.6 - 100. These groups are classi-
fied as “dangerous,” “slightly dangerous,” “moderate,” “fairly safe,” and “safe,” 
respectively. In the present study, “safe” indicates that the bridge has no prob-
lems; “fairly safe” indicates no serious damage; “moderate” indicates the pres-
ence of some damage that requires continuous inspection; “slightly dangerous” 
indicates that the bridge should be repaired and/or strengthened; and “danger-
ous” indicates that the bridge should be removed from service and requires re-
building. In the expert system, the relationships between judgment items and 
input data and those between judgment items are expressed by “If-then” rules 
with fuzzy variables. In addition, by introduction of machine learning into the 
expert system, these rules are implemented by hierarchical neural networks. A 
hierarchical network expresses a set of rules for evaluating a judgment item. 

3.3. Knowledge Representation 

The expert system evaluates the performance of a target bridge according to the 
diagnostic process, which expresses the relationships between judgment items 
and input data or between judgment items, as shown in Figure 5. In the know-
ledge base of the system, the diagnostic process is stored in the form of “If-then” 
rules with fuzzy variables. Consequently, these rules enable the system to per-
form fuzzy inference. The knowledge representation of the system is as follows: 

1 1: is and and is isi
m m iR if x A x A then y B            (16) 

where, iR : i th fuzzy rule. 

1, , mx x : input items (input data such as technical specifications and results 
of visual inspection). 

y: output item (diagnosis item; that is, judgment item). 

1, , mA A : fuzzy variables. 

iB : constant (soundness score on the scale of 0 - 100). 
For example, If ([Crack condition] is serious) and ([Maximum crack width] is 

huge) then ([Condition state of cracking] is 0.0). This rule is used in order to 
evaluate the judgment item “Condition state of cracking.” 

Fuzzy inference process: This section describes in detail the fuzzy inference 
process performed in the expert system. The portion of Figure 5 enclosed in a 
dotted box; namely, the inference process that evaluates “Condition state of 
cracking,” is explained as an instance. Table 1 shows the fuzzy rules for evaluat-
ing the judgment item” Condition state of cracking.” For example, Rule No. 12 
expresses the following fuzzy rule; If ([Crack conditions] is OK) and ([Maxi-
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mum crack width] is OK) then ([Condition state of cracking] is 100.0). Since 
these rules employ some fuzzy expressions; namely, antecedents of the rules em-
ploy some fuzzy propositions, the initial form of membership functions for fuzzy 
rules must be prepared. Figure 6 shows an example of the assigned membership 
functions related to the fuzzy rules for evaluating “Condition state of cracking.” 
Table 2 shows an excerpt of the inspection sheet used for the system. The solid 
circles indicate inspection results. The inference process of “Condition state of 
cracking” diagnosis is described below, and is performed in 4 steps: 

[Step 1] Input of data 
Input data are entered into the computer. As shown in Figure 5, the diagnosis  

 
Table 1. Fuzzy rules for evaluating “Condition state of cracking”. 

No. 

Antecedents Consequents 

Crack conditions Maximum crack width 
Condition state of cracking 

(soundness score) 

1 serious huge 0.0 

2 serious large 7.5 

3 serious small 49.9 

4 serious OK 60.1 

5 not serious huge 20.8 

6 not serious large 28.2 

7 not serious small 69.9 

8 not serious OK 76.1 

9 OK huge 40.8 

10 OK large 52.8 

11 OK small 75.6 

12 OK OK 100.0 

 

 
Figure 6. Fuzzy sets used in antecedents. (a) Membership function for crack conditions; (b) Mem-
bership function for maximum crack width. 
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of “Condition state of cracking” requires the input data [Crack conditions] and 
[Maximum crack width (mm)]. In the present study, these input data are ac-
quired by simple visual inspection (see Table 2). Therefore, the values of G1-1 
and G1-2 in Table 2; that is, 0.7 and 0.5 (mm), are used as the input data for the 
diagnosis. 

[Step 2] Calculate the grade of membership functions used in antecedents 
(see Figure 6 and Figure 7) 

The rules of the expert system employ some fuzzy propositions in antecedents 
of “If-then” rules. In the present study, a fuzzy set is expressed by membership 
functions. Consequently, from the values of input data for evaluating a judgment 
item, the grades of membership functions used in antecedents are first calcu-
lated. In this example, since the inspection value of [Crack conditions] is 0.7, this 
value matches two membership functions, which express the fuzzy set for {not 
serious} and that for {serious}. Therefore, these grades of membership functions 
are 0.8 and 0.4, respectively (see Figure 6(a)). However, the grade of member-
ship function that expresses the fuzzy set for {OK} is 0.0, because the inspection 
value doesn’t match the membership function. Similarly, considering the inspec-
tion value of [Maximum crack width (mm)], which is 0.5, the value also matches 
two membership functions, which express the fuzzy set for {small} and that for 
{large}. Therefore, these grades of membership functions are both 0.8 (see Fig-
ure 6(b)). The other grades of membership functions are 0.0, because the value 
doesn’t match the other fuzzy sets; namely, {OK} and {huge}. The left-hand sec-
tion table in Figure 7 indicates the fitness of each fuzzy proposition in antece-
dents to the inspection results; namely, [Crack conditions] = 0.7 and [Maximum 
crack width (mm)] = 0.5. 

[Step 3] Calculate the fitness of each rule to input values (see Figure 7) 
Whereas Step 2 calculates the fitness of each fuzzy proposition in antecedents 

to input values, Step 3 calculates the fitness of each rule to input values. As  
 

Table 2. Partial inspection sheets. 

 

 G1 Flexural cracks □ yes (go next) 　　□no (go to G1-3)

G1-1 Crack conditions
(mainly consider the number
of cracking points)

　0.0       　　　　　0.5       　　　　　1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5： not serious
1.0： serious

G1-2 Maximum crack width
　　　　ｍｍ

G1-3 Free lime 　0.0       　　　　　0.5       　　　　　1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5： not serious
1.0： serious

G1-4 Spalling of concrete cover 　0.0       　　　　　0.5　　　　　 1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5： not serious
1.0： serious

0.5

G1 Flexural cracks □ yes (go next) 　　□no (go to G1-3)

G1-1 Crack conditions
(mainly consider the number
of cracking points)

　0.0       　　　　　0.5       　　　　　1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5： not serious
1.0： serious

G1-2 Maximum crack width
　　　　ｍｍ

G1-3 Free lime 　0.0       　　　　　0.5       　　　　　1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5： not serious
1.0： serious

G1-4 Spalling of concrete cover 　0.0       　　　　　0.5　　　　　 1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5：

G1 Flexural cracks □ yes (go next) 　　□no (go to G1-3)

G1-1 Crack conditions
(mainly consider the number
of cracking points)

　0.0       　　　　　0.5       　　　　　1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5： not serious
1.0： serious

G1-2 Maximum crack width
　　　　ｍｍ

G1-3 Free lime 　0.0       　　　　　0.5       　　　　　1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5： not serious
1.0： serious

G1-4 Spalling of concrete cover 　0.0       　　　　　0.5　　　　　 1.0
　□　□　□　□　□　□　□　□　□　□　□
0.0： none
0.5： not serious
1.0： serious

0.5
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Figure 7. Fuzzy inference process (1). 

 
shown in Figure 7, the fitness of each rule employs the following equations from 
the grades of membership functions estimated in Step 2: 

1

ˆ i
i n

k
k

µ
µ

µ
=

=

∑
                         (17) 

( )ji i j j
j

xµ µ=∏                        (18) 

where, ˆiµ : fitness of ith rule to input values, such as inspection results. 
( )ji j jxµ : grade of a membership function. 

i : identification number of fuzzy rule. 
j : identification number of input variable and fuzzy variable. 

jx : input variable. 

ji jµ : fuzzy variable for input variable. 

ji : identification number of fuzzy set on fuzzy variable. 
n : the number of fuzzy rules. 
Equation (18) indicates that all fitness values of fuzzy propositions in the same 

fuzzy rule are multiplied; that is to say, all grades of membership functions in the 
same rule are multiplied. Therefore, when the inspection results [Crack condi-
tions] = 0.7 and [Maximum crack width (mm)] = 0.5 are entered into the sys-
tem, the values given in the right-hand section in Figure 7 are estimated by Eq-
uation (17) and Equation (18). Rule No. 2 and Rule No. 3 both have a fitness of 
17%, and Rule No.6 and Rule No.7 both have a fitness of 33%. 

[Step 4] Calculate a soundness score for a judgment item (Figure 8) 
In the final step, a soundness score for a judgment item is calculated from the 

fitness of rule acquired in Step 3 and soundness scores described in consequents 
of fuzzy rules. A soundness score for input values is estimated by the following 
equation: 
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Figure 8. Fuzzy inference process (2). 

 

1
ˆ

n

k k
k

y µ ω
=

= ∑                          (19) 

where, ˆkµ : fitness value of kth rule, which is acquired by Equation (17). 

kω : soundness score described in consequents of k th fuzzy rule. 
Consequently, a judgment item is assigned a soundness score on a scale of 0 - 

100. For example, when the input [Crack conditions] = 0.7 and [Maximum crack 
width (mm)] = 0.5 is entered, the expert system outputs the soundness score of 
42.2 as the result of diagnosis of input data (see Figure 8). 

3.4. Fuzzy Inference Based on Neural Network 

Structure of fuzzy inference system using a hierarchical neural network: 
the expert system, the inference mechanism for evaluating a judgment item is 
constructed with a hierarchical neural network consisting of 5 layers, as shown 
in Figure 9 [15] [3]. The knowledge for diagnosing “Condition state of crack-
ing”; that is to say, Table 1 and Figure 6 (fuzzy rules and membership functions 
for fuzzy sets), are implemented in the computer by the neural network shown 
in Figure 9. Therefore, the neural network can carry out the fuzzy inference 
mentioned in the previous section. In the present study, the layers of the net-
work are referred to as layers (A), (B), (C), (D) and (E), respectively. These lay-
ers have neurons of three different types. The neurons in layers (A), (C) and (E) 
are linear neurons. The neurons in layer (B) are sigmoid neurons. The neurons 
in layer (D) are referred to as normalization neurons which employ Equation 
(17). The Arabic numerals in the layer (D) neurons correspond to the number 
(No.) in Table 1. Therefore, clearly the connections from layer (C) to layer (E) 
express a fuzzy rule. A boxed value represents the initial connection weight be-
tween neurons or the initial threshold for a neuron. 

Next, is described the manner in which the initial values of weight and threshold  
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Figure 9. Hierarchical neural network for evaluating “Condition state of cracking”. 

 
are set. The layers (A)-(B)-(C) in the network identify the fuzzy sets in antece-
dents of fuzzy rules. If the membership function of a fuzzy set is an increasing 
function or a decreasing function, the form is identified by a sigmoid function; a 
sigmoid neuron is employed in layer (B) for an increasing function or a de-
creasing function. If the membership function is a convex function, the form is 
identified by the combination of two sigmoid functions; two sigmoid neurons 
are employed in layer (B) for a convex function. Then, the weights (ω) between 
layer (A) neurons and layer (B) neurons, and the thresholds (θ) of the (B) neu-
rons are calculated according to the following equations: 

1) Approximation of decreasing function 

( )
( )

1 1 1

2 2 2

1 2

, 1.0,

, 0.0,
,

h A
hB A

x B A x x X

x B A x x X
x x X

ω
θ

µ

µ

 = −


=
 = − = ∈
 = + = ∈
 ∈

                (20) 

2) Approximation of increasing function 
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( )
( )

1 1 1

2 2 2

1 2

, 1.0,

, 0.0,
,

h A
hB A

x B A x x X

x B A x x X
x x X

ω
θ

µ

µ

 =


= −
 = + = ∈
 = − = ∈
 ∈

                (21) 

3) Approximation of convex function 
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                   (22) 

Note that h  is a real number, which satisfies ( ) 0f h ≈ . where, ( )f h : sig-
moid function. In the present study, 3.5h = . In the case of approximation of an 
increasing function or a decreasing function, the weights between layer (B) neu-
rons and layer (C) neurons are set to 1.0. In the case of approximation of a con-
vex function, the weights between layer (B) neurons and layer (C) neurons are 
set to −1.0 for smaller threshold and 1.0 for larger threshold. In addition, initial 
weights between layer (C) neurons and layer (D) neurons are all 0.5. The initial 
weights between layer (D) neurons and layer (E) neurons are set according to 
Table 1. These weights express soundness scores described in consequents of 
fuzzy rules. Consequently, when input data are entered into the system, layers 
(A)-(B)-(C) perform the processing of [Step 1] and [Step 2] described earlier. 
Next, layers (C)-(D) perform the processing of [Step 3]. Finally, layers (D)-(E) 
perform the processing of [Step 4]. 

Modification of Fuzzy Rule by Machine Learning: In the hierarchical net-
work shown in Figure 9, each weight and threshold is set for a specific purpose 
as mentioned above. Therefore, the network is capable of modifying fuzzy rules 
by altering these parameters, such as weight and threshold. Thus, applying the 
Back Propagation algorithm to the network as a machine learning method is 
easy, because the structure of neural network is hierarchical. More specifically, 
the elements modified by machine learning are the weights between layer (A) 
neurons and layer (B) neurons, the thresholds of layer (B) neurons, and the 
weights between layer (D) neurons and a layer (E) neuron. The weights of layers 
(A)-(B) and the thresholds of layer (B) neurons are used in order to express 
membership functions in antecedents of fuzzy rules. Consequently, weight alte-
ration after learning indicates the slope alteration of the corresponding mem-
bership function, and threshold alteration after learning indicates the axis 
movement of the membership function in the horizontal direction. In the learn-
ing of layers (D)-(E) weight, the proposition in consequents of fuzzy rules is 
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changed. For instance, if the weight between a layer (D) neuron and a layer (E) 
neuron is changed from 0.0 to 1.0, the proposition described in consequents of 
fuzzy rule is changed from ([Condition state of cracking] is 0.0) to ([Condition 
state of cracking] is 1.0). 

3.5. Verification of Effectiveness of Machine Learning 

The proposed expert system is developed in Visual Basic and C programming 
languages and runs on a personal computer. In this section, the expert system is 
applied to seven existing bridges (nine spans), all of which are RC T-girder-type 
bridges, in order to test validity of the learning capability. These target bridges 
stand in Yamaguchi Prefecture, Japan. 

Questionnaire survey of domain experts and Visual inspection of bridges: 
The purpose of the questionnaire survey of domain experts is to acquire teacher 
data necessary for learning, whereas, the purpose of visual inspection of bridges 
is to collect inspection data to be entered into the system. The domain experts 
also use the inspection results to fill out the questionnaires. The results of ques-
tionnaire survey and visual inspection were used as training data for carrying 
out machine learning. In the present study, for collecting training data, visual 
inspection of bridges and the questionnaire survey were conducted over 2 days. 
Seven domain experts from four construction consulting companies in and 
around Yamaguchi Prefecture, Japan participated in the survey. The survey cov-
ered nine spans of seven bridges. One set of survey forms, prepared for each span, 
consists of three different handouts; inspection record sheets (8 pages) to be used 
to record visual inspection results, a model drawing of each bridge on which the 
respondents write down whatever comes to mind during inspection, and ques-
tionnaire sheets (10 pages) to obtain teacher data required for machine learning. 
The inspection record sheets are formatted so that the respondents can choose a 
score from an 11-point rating scale ranging from 0.0 to 1.0 in increments of 0.1, 
answer multiple-choice questions, and enter numerical values (Table 2). The 
questionnaire sheets are formatted so that the respondents can answer in the 
form of a score on a 0 - 100 scale in increments of 5 points (Figure 10). 

Practical application and Verification of the expert system: Table 3 sum-
marizes the questionnaire results of main girder diagnosis by domain experts.  

 

 
Figure 10. Partial questionnaire sheets. 
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The numerical values in parentheses represent averages of scores assigned by 
the four domain experts, out of the total of seven, who have more than 10 years’ 
experience. The letters S, f-s, M, s-d, and D in the table represent safe, fairly safe, 
moderate, slightly dangerous, and dangerous. These labels classify the average 
values in parentheses into five categories, the criteria used by the respondents for 
this categorization having been mentioned earlier. A number appearing after a 
bridge name indicates span number. Table 4 and Table 5 present the diagnosis  

 
Table 3. Results of main girder diagnosis by domain experts (Teacher data). 

Bridge name   
Judgment item 

HA① NI⑥ NO① MI① MI③ GE③ TO① TO② OU② 

Girder design M (57.5) M (46.3) M (57.5) f-s (66.3) f-s (65.0) f-s (68.8) f-s (72.5) f-s (72.5) f-s (76.3) 

Girder execution M (51.3) s-d (31.3) f-s (65.0) f-s (71.3) f-s (63.8) f-s (71.3) f-s (71.3) M (50.0) f-s (72.5) 

Service conditions f-s (67.5) M (45.0) f-s (68.8) f-s (78.8) f-s (81.3) f-s (80.0) f-s (76.3) f-s (75.0) f-s (75.0) 

Material deterioration M (50.0) s-d (35.0) f-s (78.8) f-s (78.8) f-s (70.0) f-s (86.3) f-s (81.3) f-s (68.8) f-s (82.5) 

Flexural cracks f-s (76.3) s-d (35.0) f-s (78.8) f-s (77.5) f-s (68.8) f-s (85.0) f-s (81.3) f-s (73.8) f-s (71.3) 

Shear cracks S (95.0) f-s (66.3) S (96.3) S (97.5) S (93.8) S (97.5) S (93.8) S (97.5) S (97.5) 

Corrosion cracks M (41.3) M (47.5) S (87.5) f-s (82.5) f-s (67.5) S (90.0) f-s (77.5) M (57.5) f-s (75.0) 

Bond cracks S (90.0) f-s (80.0) S (92.5) S (87.5) f-s (85.0) S (90.0) S (92.5) S (90.0) S (90.0) 

Whole damage M (52.5) s-d (26.3) f-s (82.5) f-s (77.5) f-s (70.0) f-s (86.3) f-s (76.3) f-s (66.3) f-s (77.5) 

Load carrying capability f-s (66.3) s-d (36.3) f-s (71.3) f-s (75.0) f-s (71.3) f-s (81.3) f-s (72.5) f-s (66.3) f-s (80.0) 

Durability M (51.3) s-d (28.8) f-s (73.8) f-s (78.8) f-s (70.0) f-s (85.0) f-s (73.8) f-s (62.5) f-s (78.8) 

Serviceability f-s (62.5) s-d (30.0) f-s (71.3) f-s (75.0) f-s (65.0) f-s (85.0) f-s (72.5) f-s (66.3) f-s (80.0) 

Note; S: safe (87.6 - 100.0), f-s: fairly-safe (62.6 - 87.5), M: moderate (37.6 - 62.5), s-d: slightly-dangerous (12.6 - 37.5), D: dangerous (0 - 12.5). 
 
Table 4. Results of main girder diagnosis by the initial system before learning. 

Bridge name  
Judgment item 

HA① NI⑥ NO① MI① MI③ GE③ TO① TO② OU② 

Girder design M (60.3) M (58.5) M (50.5) M (59.9) M (59.9) M (62.0) M (56.1) M (56.1) M (54.1) 

Girder execution M (44.9) M (41.4) f-s (69.6) f-s (69.6) M (51.8) M (46.6) M (51.8) M (51.8) M (51.8) 

Service conditions S (92.9) S (92.7) S (91.4) S (97.4) S (97.4) S (94.9) S (97.5) S (97.5) S (97.4) 

Material deterioration s-d (32.0) s-d (25.1) M (51.0) f-s (66.3) M (59.2) M (47.1) M (52.9) s-d (28.9) M (48.7) 

Flexural cracks M (51.2) s-d (16.7) M (53.9) S (96.1) S (91.8) S (87.5) S (91.1) f-s (67.5) S (95.2) 

Shear cracks S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) 

Corrosion cracks s-d (20.3) D (9.1) S (99.9) S (99.9) M (52.3) S (99.9) S (99.9) D (7.1) M (57.8) 

Bond cracks S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) S (99.9) 

Whole damage s-d (23.3) s-d (27.7) f-s (67.4) f-s (80.2) M (55.1) M (58.2) f-s (65.4) s-d (15.1) M (47.4) 

Load carrying capability f-s (70.8) f-s (74.1) S (89.0) S (89.4) S (89.0) f-s (74.9) f-s (67.3) M (47.6) f-s (73.1) 

Durability s-d (22.1) s-d (29.7) f-s (62.7) f-s (83.7) M (52.2) M (53.9) M (60.1) D (10.0) M (48.9) 

Serviceability M (43.9) M (53.3) f-s (75.6) S (91.4) f-s (72.4) f-s (63.2) M (58.9) s-d (27.2) M (60.6) 

Total error 195.0 253.5 158.5 128.4 161.0 197.7 174.6 311.1 238.8 
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Table 5. Results of main girder diagnosis by the system after learning. 

Bridge name   
Judgment item 

HA① NI⑥ NO① MI① MI③ GE③ TO① TO② OU② 

Girder design f-s (65.4) f-s (66.7) f-s (67.6) f-s (65.1) f-s (65.1) f-s (64.5) f-s (66.6) f-s (66.6) f-s (67.7) 

Girder execution M (53.0) M (39.3) f-s (69.4) f-s (69.4) f-s (66.6) M (56.5) f-s (66.6) f-s (66.6) f-s (66.6) 

Service conditions M (59.4) M (59.5) f-s (68.0) f-s (80.4) f-s (80.4) f-s (71.4) f-s (76.3) f-s (76.3) f-s (77.5) 

Material deterioration M (58.7) M (40.1) f-s (79.2) f-s (78.7) f-s (72.5) f-s (76.8) f-s (80.0) M (61.2) f-s (84.6) 

Flexural cracks f-s (75.0) s-d (35.0) f-s (70.7) f-s (76.6) f-s (77.2) f-s (77.8) f-s (76.1) f-s (74.0) f-s (77.0) 

Shear cracks S (93.3) S (93.3) S (93.3) S (93.3) S (93.3) S (93.3) S (93.3) S (93.3) S (93.3) 

Corrosion cracks M (43.8) M (51.6) f-s (84.9) f-s (84.9) f-s (66.8) f-s (84.9) f-s (84.9) M (52.5) f-s (75.5) 

Bond cracks S (90.1) S (90.1) S (90.1) S (90.1) S (90.1) S (90.1) S (90.1) S (90.1) S (90.1) 

Whole damage M (57.6) s-d (27.8) f-s (79.0) f-s (79.2) f-s (71.7) f-s (78.4) f-s (79.6) M (60.9) f-s (78.7) 

Load carrying capability f-s (75.7) M (53.3) f-s (79.4) f-s (77.7) f-s (72.9) f-s (68.1) f-s (67.9) M (54.4) f-s (71.3) 

Durability M (52.0) s-d (31.7) f-s (75.9) f-s (79.8) f-s (70.5) f-s (76.1) f-s (79.3) M (58.0) f-s (78.5) 

Serviceability f-s (67.6) M (40.3) f-s (77.7) f-s (78.4) f-s (70.6) f-s (69.2) f-s (69.9) M (58.1) f-s (72.3) 

Total error 52.3 120.9 51.9 23.7 30.4 99.6 43.4 70.9 47.5 

 
results of main girders before learning and after learning, respectively. As men-
tioned earlier, in the present study, the Back Propagation method was applied as 
a learning method. The re-substitution method was applied to the system as a 
training method. The training method uses all combinations of questionnaire 
survey and visual inspection; nine sets for nine spans, as training data for ma-
chine learning. Therefore, the data of a diagnosed bridge also include the train-
ing data. Evaluating the judgment items of a target bridge span on the basis of 
knowledge modified by the above training method is equivalent to evaluating the 
judgment items of an already-encountered span after completing learning ses-
sions for a number of spans. The shaded areas in the tables indicate the follow-
ing: gray shading indicates a system output value that deviates one order from 
the teacher value (see Table 3), and black shading indicates an output value that 
deviates two or more orders from the teacher value. The total error at the bot-
tom of the table is a span-by-span sum of errors for each judgment item. Com-
parison of these outputs (Table 4 and Table 5) with the questionnaire survey 
results (Table 3) reveals that of the 108 judgment items (9 spans × 12 judgement 
items) for the main girders, 42 items before learning and 88 items after learning 
show agreement with the questionnaire results, 58 items before learning and 20 
items after learning show deviation of one order from the teacher value, and 8 
items before learning show deviation of two or more orders from the teacher 
value. Thus, the total agreement ratios before learning and after learning are 38.9 
and 81.5 percent, respectively. Improvement of agreement ratio shows the valid-
ity of applying the machine learning method to the system. However, since the 
reliability of the system depends on information on the distribution of bridge 
damage used for neural network learning, we must increase the number of sam-
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ple bridge data sets used for learning and acquire data sets for various damage 
conditions. 

Next, modification of fuzzy rules is shown in order to verify the effectiveness 
of the applied neural network structure. Refinement of fuzzy rules for evaluating 
“Condition state of cracking” is presented as an example. Figure 11 and Figure 
12 show the membership functions used in antecedents of fuzzy rules before 
learning and after learning, respectively. The symbols in the figures indicate the 
following: ①, ② and ③ indicate the membership functions of fuzzy sets 
{OK}, {not serious}, and {serious} for input data [Crack conditions], respectively, 
and I, II, III, and IV indicate the membership functions of {OK}, {small}, {large}, 
and {huge} for input data [Maximum crack width (mm)], respectively. Table 6 
shows the weight modification between layer (D)-(E) neurons. No. in the table 
indicates rule number, which corresponds to Table 1. Comparing Figure 11 and 
Figure 12, we notice that after learning, the horizontal width of membership 
function I is reduced by 2/3. The reduction indicates that the system after learning 
treats the input value of [Maximum crack width (mm)], which is smaller than that 
before learning, as the fuzzy set of {OK}. The other membership functions after  

 

 
Figure 11. Fuzzy sets used in antecedents before learning. (a) Membership function for 
crack condition; (b) Membership function for maximum crack width. 

 

 
Figure 12. Fuzzy sets used in antecedents after learning. (a) Membership function for 
crack condition; (b) Membership function for maximum crack width. 
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learning are similar to those before learning. As a result of comparison of the 
weights before learning and the weights after learning in Table 6, the transition 
is summarized as follows: The weights of fuzzy rules 1, 2 and 3 after learning are 
similar. Therefore, the difference between fuzzy sets {huge}, {large}, and {small} 
for the input data [Maximum crack width (mm)] isn’t distinguished when the 
input value of [Crack conditions] entered in the system is categorized into the 
fuzzy set {serious} (see Table 1). The weights of fuzzy rules 5, 6 and 7 after 
learning are similar. Therefore, the difference between fuzzy sets {huge}, {large}, 
and {small} for the input data [Maximum crack width (mm)] isn’t distinguished 
when the input value of [Crack conditions] entered in the system is categorized 
into the fuzzy set {not serious}. The weights of fuzzy rules 9, 10 and 11 after 
learning are similar. Therefore, the difference between fuzzy set {huge}, {large}, 
and {small} for the input data [Maximum crack width (mm)] clearly isn’t dis-
tinguished when the input value of [Crack conditions] entered in the system is 
categorized into the fuzzy set {OK}. Consequently, after learning, although the 
membership functions of fuzzy sets {small}, {large} and {huge} for input data 
[Maximum crack width (mm)] didn’t change, as shown in Figure 11(b) and 
Figure 12(b). Table 6 indicates that these three categories; fuzzy sets {small}, 
{large}, and {huge}, can be regarded as one category. In other words, the domain 
experts don’t use the four categories; fuzzy sets {OK}, {small}, {large} and {huge} 
for input data [Maximum crack width (mm)] in diagnosing the judgment item 
“Condition state of cracking”; rather, they use two categories; fuzzy set {OK} and 
a category that includes {small}, {large}, and {huge}. The weights of fuzzy rules 8 
and 12 are similar; therefore the difference between fuzzy sets {not serious} and 
{OK} for input data [Crack conditions] obviously isn’t distinguished when the  

 
Table 6. Weight modification between layer (D)-(E) neurons. (Modification of soundness 
score in consequents of fuzzy rules). 

No. 
Weights between layer (D)-(E) neurons 

Before learning After learning 

1 0.0 0.0 

2 7.5 0.0 

3 49.9 6.6 

4 60.1 60.1 

5 20.8 20.8 

6 28.2 20.8 

7 69.9 21.0 

8 76.1 76.1 

9 40.8 40.8 

10 52.8 40.8 

11 75.6 42.1 

12 100.0 77.0 
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input value of [Maximum crack width (mm)] is categorized into the fuzzy set 
{OK}. These results show that the number of fuzzy rules for evaluating the 
judgment item “Condition state of cracking” could be reduced by machine 
learning. 

4. Discussion and Summary 

Knowledge-based systems for the assessment and management conjunction with 
the latest information technologies will be becoming more challenging issues in 
the future for maintenance and rehabilitation of existing bridges. In this paper, 
although several methods are available for it, two modern bridge management 
systems which include knowledge-based expert system based on data such as 
inspection results and questionnaire surveys of domain experts incorporation 
with not only reliability approach but also a hierarchical neural network, fuzzy 
reasoning, etc. were introduced and comparative reviwed. 

In the first part of this paper development of advanced bridge management 
systems is discussed, with special emphasis on reinforced concrete bridges. 
Management systems for prestressed concrete bridges, or composite bridges can 
be developed in a similar way. The proposed procedures are illustrated by the 
EU-supported management systems BRIDGE1 and BRIDGE2. 

In the second part, a concrete bridge rating expert system with machine 
learning is presented. By application of a hierarchical neural network, the de-
veloped system not only performs fuzzy inference but also facilitates refinement 
of the knowledge base, based on data such as inspection results and question-
naire surveys of domain experts. Moreover, the proposed neural network con-
tributes to preventing the inference mechanism from becoming a black box. 

The results of the present study can be summarized as follows: 
1) The first knowledge-based system is divided into two modules BRIDGE1 

and BRIDGE2 which are used in two different situations, namely by the inspec-
tor of the bridge during the inspection at the site and after the inspector has re-
turned to his office. In the bridge management systems BRIDGE1 and 
BRIDGE2, the updating of stochastic variables etc. is performed using the tech-
niques described earlier. 

2) The expert system module BRIDGE1 is used at the bridge site during an 
inspection. This expert system module contains useful information concerning 
the bridge inspected and the defects observed. The information includes: general 
information about the bridge, appropriate diagnostic methods for each defect, 
probable causes for each defect, and other defects related to a defect. It is also 
possible to create a provisional defect report. 

3) The expert system module BRIDGE2 is used to make a detailed analysis of 
the bridge after an inspection when testing has been performed in the laborato-
ry. New bridges and cross-sections can be entered into the database and existing 
bridges and cross-sections can be edited. For the bridges in the database the fol-
lowing options are available: review provisional defect reports, enter inspection 
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results, estimate the reliability index, plan maintenance work and estimate costs, 
plan structural repair work and estimate costs, and review the agenda of inspec-
tion for one bridge or all bridges. 

4) In the second knowledge-based system, as a method of knowledge base re-
finement, a learning method based on the hierarchical neural network has been 
presented. The method prevented the neural network from becoming a black 
box. 

5) J-BMS BREX was applied to the main girders of existing bridges in order to 
verify the effectiveness of the machine learning method. The knowledge base 
was refined from the results of questionnaire surveys of domain experts. Close 
agreement between the teaching values and the values after learning, and favora-
ble results achieved as a result of knowledge base refinement confirm the effec-
tiveness of the learning method in the system. However, in order to enhance the 
reliability of the expert system, the knowledge base must be refined through ap-
plication to a greater number of bridges. 

The author would hope that this paper would be some help on this field in the 
future. 
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