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Abstract 
Study of gauge symmetry is carried over the different interacting and 
non-interacting field theoretical models through a prescription based on La-
grangian formulation. And the prescription is capable of testing whether a 
given model possesses a gauge symmetry or not. It can successfully formulate 
the gauge transformation generator in all the cases whatever subtleties are 
involved in it. It is found that the prescription has the ability to show a direc-
tion how to extend the phase space using auxiliary fields to restore the gauge 
invariance of a theory. Like the usual phase space, the prescription is found to 
be equally powerful in the extended phase space of a theory. 
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1. Introduction 

The most important model in particle physics now is the standard model; it de-
scribes the weak, strong and electromagnetic interactions between quarks and 
leptons which are now said to be the elementary particles of atom. 

Particle physics is the science of the smallest constituents of matter, and how 
they interact. It evolves from physical chemistry, where it was first resolving that 
all chemical substances, like molecules, are made up of chemical elements, At the 
turn of 19th to 20th century, it was then found out that the atoms were not ele-
mentary, rather they had constituents, a single nucleus and a number of indis-
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tinguishable electrons [1]. 
Early 20th century, it was then found that nucleus was not elementary but a 

constitution of proton and neutron. Later on, constitutes of neutron and proton 
were revealed to be quarks. Consequently, that gave rise of the standard model 
that answered the unresolved questions, by mathematical formulations and theo-
ries. One of the most crucial formulations is the Lagrangian that describes the be-
haviour of a system, with the concept of relativity and quantum mechanics [2]. 

And the main objective of this manuscript is a description of the interaction 
between fundamental particles in terms of the exchange of fundamental force 
particles and gauge coupling on the view of standard model (SM). 

2. Elementary Particles 

Elementary particles are then classified into two according to energy state statis-
tics. Elementary particles that obey Bose-Einstein statistics are called Bosons i.e. 
there can be arbitrary many of them in any given state of fixed quantum num-
bers, they also have spin ( n ). While Fermions are those that obey Fermi-Dirac 
statistics and have to adhere to the Pauli principle i.e. only single fermion can be  

in any given state with fixed quantum number, and they have spin 
1

2
n + 

 
 

  

[3]. 
Elementary particles are known to be 38 in number; 24 are Fermions, 13 Bos-

ons and 1 Higgs. The union of special relativity and quantum mechanics that 
describes these particles is called quantum field theory [4]. 

Standard model explains that fermions are the constituents of matter which 
are subdivided into two: Quarks and Leptons and gauge bosons mediate their 
interactions. Quarks are six particles same as Leptons with anti-particles of the 
same properties except for charge. These twelve particles are of three families or 
generations naturally. 

1) Electron neutrino (νe), electron (e−), up quark (u), down quark (d); 
2) Muon neutrino (νμ), muon (μ−), charm Quark (c), strange quark (s); 
3) Tau neutrino (ντ), Tau (τ−), top quark (t), bottom quark (b). 
Each generation consists of two leptons with charges Q = 0 and Q = −1 and 

two quarks with charges 2
3

Q = +  and 1
3

Q = − . 

All visible matter in the universe is made from the first generation of matter 
particles,up quarks, down quarks, and electrons. This is because all second and 
third generation particles are unstable and quickly decay into stable 
first-generation particles [5]. 

1) Colour charge: a question may rise, why one saw only those combinations 
of quarks and antiquarks that had integer charge, and why no one ever saw a q, 
q-q, q-q-q-bar, or countless other combinations [6]. 

3. Range of the Forces 

The range or limitation of a force explains the distance covered by that force and 

https://doi.org/10.4236/oalib.1107875


M. I. Abdelgabar et al. 
 

 

DOI: 10.4236/oalib.1107875 3 Open Access Library Journal 
 

where you cannot find that force. The range of forces is related to the mass of 
exchange particle M [7]. 

An amount of energy 2E mc∆ =  borrowed for a time Δt is governed by the 
Uncertainty Principle: 

~E T∆ ⋅∆   
The maximum distance the particle can travel is c tχ∆ = ∆ , where c is veloc-

ity of light. 

c E∆ = ∆χ  
2c Mcχ∆ =   forces’ range formula. 

The photon has M = 0, which shows infinite range of EM force. 
W boson has a mass of 80 GeV/c2, Range of weak force is 

197 MeV fm/8 × 105 MeV = 2 × 10−3 fm [8]. 

3.1. Gauge Theory (Symmetry) 

A gauge theory is one that possesses invariance under a set of local transforma-
tions”, i.e. transformations whose parameters are space-time dependent [9]. 

In the case of quantum electrodynamic (QED), the gauge symmetry is abelian, 
[10] in this case the gauge transformations are local complex phase transforma-
tions of the fields of charged particles, and gauge invariance necessitates the in-
troduction of a massless vector (spin-1) particle, called the photon, whose ex-
change mediates the electromagnetic interactions [10]. 

In the 1950’s Yang and Mills considered (as a purely mathematical exercise) 
extending gauge invariance to include local non-abelian (i.e. non-commuting) 
transformations such as SU (2). 

In this case one needs a set of massless vector fields (three in the case of SU 
(2)), which were formally called “Yang-Mills” fields, but are now known as 
“gauge fields”. 

3.2. Gauge Transformation for QED 

Consider the Lagrangian density for a free Dirac field ψ: 

( )i mµ
µγ= Ψ ∂ − Ψ                      (1.1) 

This Lagrangian density is invariant under a phase transformation of the fer-
mion field 

e , e ,iQ iQω ωΨ → Ψ Ψ = Ψ                    (1.2) 

,Q QΨ = +Ψ Ψ = −Ψ  
where Q is the charge operator ω is a real constant (i.e. independent of x) and 
ψ  is the conjugate field. 

The set of all numbers e−iω form a group2. This particular group is “abelian” 
which is tosay that any two elements of the group commute. This just means 
that [11] 
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1 2 2 1e e e e .i i i iω ω ω ω− − − −=                      (1.3) 

This particular group is called U(1) which means the group of all unitary 1 × 1 
matrices. A unitary matrix satisfies U+ = U−1 with U+ being the adjoint matrix.  

We can now state the invariance of the Lagrangian Equation (1.1) under phase 
transformations in amore fancy way by saying that the Lagrangian is invariant 
under global U (1) transformations. By global we mean that ω does not depend 
on x. 

We assume that the parameter ω is sufficiently small that we can expand in ω 
and neglect all but the linear term. Thus, we write 

( )2e 1i i Oω ω ω− = − +                      (1.4) 

Under such infinitesimal phase transformations, the field ψ changes according 
to: 

iQδ ωΨ →Ψ + Ψ = Ψ + Ψ                   (1.5) 

and the conjugate field ψ  by 

iQ iδ ω ωΨ →Ψ + Ψ = Ψ + Ψ = Ψ − Ψ              (1.6) 

such that the Lagrangian density remains unchanged (to order ω). 
At this point we should note that global transformations are not very attrac-

tive from a theoretical point of view. The reason is that making the same trans-
formation at every space-time point requires that all these points ’know’ about 
the transformation [12]. 

Thus, we have two options at this point. Either, we simply note the invariance 
of Equation (1.1) under global U (1) transformations and put this aside as a cu-
riosity, or we insist that invariance under gauge transformations is a fundamen-
tal property of nature. If we take the latter option, we have to require invariance 
under local transformations. Local means that the parameter of the transforma-
tion, ω, now depends on the space-time point x. Such local (i.e. space-time de-
pendent) transformations are called “gauge transformations”.  

If the parameter ω depends on the space-time point then the field ψ trans-
forms as follows under infinitesimal transformations 

( ) ( ) ( ) ( ) ( ); .x i x x i x xδ ω δ ωΨ = Ψ Ψ = − Ψ            (1.7) 

Note that the Lagrangian density Equation (1.1) now is no longer invariant 
under these transformations, because of the partial derivative between ψ  and 
ψ. This derivative will act on the space-time dependent parameter ω(x) such that 
the Lagrangian density changes by an amount δ , where 

( ) ( )( ) ( ).x Q x xµ
µδ γ ω= −Ψ ∂ Ψ                (1.8) 

The square brackets in [∂µQω(x)] are introduced to indicate that the derivative 
∂µ acts only inside the brackets. It turns out that we can restore gauge invariance 
if we assume that the fermion field interacts with a vector field Aµ, called a 
“gauge field”, with an interaction term [13] 
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e A Qµ
µψγ ψ−                        (1.9) 

Added to the Lagrangian density which now becomes: 

( )( )i ieQA mµ
µ µψ γ ψ= ∂ + −                (1.10) 

In order for this to work we must also assume that apart from the fermion 
field transforming under a gauge transformation according to Equation (1.7) the 
gauge field, Aµ, also changes according to 

( )( ) ( )eQA eQ A A x eQA Q xµ µ µ µ µδ ω− → − + = − + ∂        (1.11) 

So ( ) ( )Q x
A x

e
µ

µ

ω
δ

− ∂
= . 

This change exactly cancels with Equation (1.8), so that once this interaction 
term has been added the gauge invariance is restored. We recognize Equation 
(1.10) as being the fermionic part of the Lagrangian density for QED, where e is 
the electric charge of the fermion and Aµ is the photon field [14]. 

In order to have a proper quantum field theory, in which we can expand the 
photon field Aµ in terms of creation and annihilation operators for photons, we 
need a kinetic term for the photon, i.e. a term which is quadratic in the deriva-
tive of the field Aµ. Without such a term the Euler-Lagrange equation for the 
gauge field would be an algebraic equation and we could use it to eliminate the 
gauge field altogether from the Lagrangian. We need to ensure that in introduc-
ing a kinetic term we do not spoil the invariance under gauge transformations.  

This is achieved by defining the field strength tensor, Fµν, as 

F A Aµυ µ υ υ µ= ∂ − ∂                     (1.12) 

where the derivative is understood to act on the A-field only. It is easy to see that 
under the gauge transformation Equation (1.11) each of the two terms on the 
right-hand side of Equation (1.12) change, but the changes cancel out. Thus, we 
may add to the Lagrangian any term which depends on Fµν (and which is Lorentz 
invariant, thus, with all Lorentz indices contracted) [15]. 

Such a term is a FµνFµν. This gives the desired term which is quadratic in the 
derivative of the field Aµ. If we choose the constant a to be −1/4 then the La-
grange equations of motion match exactly (the relativistic formulation of) Max-
well’s equations. 

We have thus arrived at the Lagrangian density for QED, but from the view-
point of demanding invariance under U (1) gauge transformations rather than 
starting with Maxwell’s equations and formulating the equivalent quantum field 
theory. 

The Lagrangian density for QED is: 

( )( )1
4

F F i ieQA mµυ µ
µυ µ µψ γ ψ= − + ∂ + −           (1.13) 

Or we can say the Lagrangian for a fermion coupled to a U (1) gauge field is 
quantum electrodynamics (QED), if we call the fields electron and photon: [16] 
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( )1
4QED F F i mµυ

µυ ψ= + −                  (1.14) 

where 

( )( )iD i ieQA= ∂ +µ
µ µγ

 

3.3. Gauge Transformation for QCD 

QCD is the theory of the strong interaction, [17] strong interaction is mediated by 
gluons, they are massless, spin-1 particles with two polarization states (left-handed 
and right-handed). They are represented by a four-component vector potential 
Aµ(x) with a Lorentz index µ = 0, 1, 2, 3, just as in electromagnetism. Therefore, 
conditions must be imposed on Aµ(x) to select only the physical degrees of free-
dom, as different Aµ(x) can give rise to the same physics. These conditions are 
called gauge conditions or gauge choices. For the same reason, Aµ(x) are called 
gauge potentials, and gluons are called gauge particles. 

QCD is an unbroken gauge theory, belonging to the group of non-abelian SU 
(3) [18]. There are 8 types of gluons mediating the strong interactions. This pro-
liferation of gauge particles has to do with the SU (3) colour symmetry.  

It is easy to see that L is invariant under a global SU (3) transformation 

( ) ( )x U xψ ψ′ =                        (3.1) 

where U is a 3 × 3 unitary matrix acting on colour index, and “global” means 
that the field at different spacetime is transformed in exactly the same way. A 
generic SU (3) matrix requires 8 real parameters, usually written in the form [19] 

( )exp 2a a
aU i θ λ= ∑                     (3.2) 

where ( )2 1, ,8a aλ =   are 3 × 3 hermitian matrices and are called generators 
of SU (3) rotations. 

If we introduce 8 gluon potentials, Aµ a, as well as the associated covariant de-
rivative, 2a

aigD Aµ
µ µ λ≡ ∂ + , the free quark lagrangian can be modified to 

( )q qi mψ ψ= −                       (3.3) 

According to Maxwell theory on magnetism anti symmetric field strength 
tensor Fµνa and the kinetic energy term for the gluons are 

1
4

a
g aF F µυ

µυ=                       (3.4) 

The above equation is the Lagrangian for the gluon. 
The full QCD Lagrangian density is the sum of quark and gluon term 

QCD q g= +                          (3.5) 

( ) 1
4

a
QCD q ai m F Fµυ

µυψ ψ= − −                 (3.6) 

3.4. Gauge Transformation for Weak Interaction 

Gauge transformation of weak interaction is similar to QCD, only which differs 
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from it as discussed in chapter two that it is of 2 × 2 matrix and it is mediated by 
3-gauge bosons [20]. 

( ) 1
2 4WEAK i m g W W Wµ µ α α µνα

µ µ µν α
τ

ψ γ ψ ψγ ψ = ∂ − − − 
 

       (3.7) 

4. Conclusions 

It is discussed in this paper, what is meant by standard model, how it comes to 
existence and also the most crucial part of it. 

Clear explanation is made right from the history of it, to the emergence of 
elementary particles, and what are known to be elementary now and then. A 
wide explanation was made about the theories that explained the four funda-
mental forces, followed by explaining that they are part of gauge theory, and at 
last deriving their Lagrangian formulation. 

This paper can serve as an introduction to the model as well as a good pro-
ductive to someone well acquainted to the model. 

Finally my grateful thanks to my teachers and my colleagues in the Interna-
tional University of Africa (IUA)-Physics Department and my the staff of phys-
ics in the Sudan University of Science and Technology (SUST)for their great 
help. 
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