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Abstract 
Tumor is a serious disease that threatens human health and has a high mor-
tality. Chemotherapy is the most commonly used treatment, but it has a lot of 
side effects due to its toxicity. It has been found that ginsenosides exert an ef-
fective antitumor role. Ginsenosides are a class of triterpenoid saponins pri-
marily found in the plant genus Panax. Many monomer components are stu-
died, the most often investigated are Rg3, and Rh2, etc. Reports have shown 
that ginsenosides can inhibit tumor cells by suppressing proliferation and 
metastasis, and promoting apoptosis. In addition, ginsenosides can enhance 
sensitivity to conventional chemotherapeutic drugs. In this review, the recent 
articles about anti-tumor of ginsenosides were reviewed to promote the fur-
ther development of anti-tumor therapy. 
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1. Introduction 

Tumor is a life-threatening disease that affects human health, and both the inci-
dence and mortality are very high [1]. At present, that surgery, radiotherapy and 
chemotherapy are the most commonly used ways of treatment for tumor. How-
ever, conventional chemotherapy has a lot of side effects due to its toxicity, and 
natural products with low side effects drugs are expected as alternative choice for 
tumor treatment [2]. Ginseng is derived from the root or rhizome of P. ginseng 
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C.A. Meyer, which has become one of the most commonly used alternative her-
bal medicines all over the world, and it has been widely and extensively used in 
China for medicinal purposes for thousands of years due to its rich content of 
saponins [3]. Ginsenosides are a class of triterpenoid saponins primarily found 
in the plant genus Panax, which has a wide variety of biological effects including 
cardio-protector, neuro-protector, anti-cancer, vasodilating, antioxidant, an-
ti-diabetic activities and hepatoprotective effects [4]. Ginsenosides include many 
monomer components, such as Rg3, Rh2, Rh4, Rg2, Rg5, etc. The mechanisms 
of anti-tumor effects of ginsenosides are discussed in detail in this review. Gin-
senosides can inhibit tumor cells by suppressing proliferation and metastasis, 
and promoting apoptosis. In addition, ginsenosides can enhance sensitivity to 
conventional chemotherapeutic drugs, summarized in Table 1. 

2. Anti-Proliferation 

Proliferation plays an important role in the occurrence and development of tu-
mor. Recent studies showed that ginsenoside can inhibit tumor by inhibiting cell 
proliferation. 

2.1. Ginsenoside Rg3 

Ham et al. [5] showed that Rg3 up-regulated tumor-related genes through alte-
ration of epigenetic methylation levels, thereby inhibiting the growth of breast 
cancer cells. Rg3 down-regulated hypermethylated TRMT1L, PSMC6 and NOX4, 
and up-regulated methylated ST3GAL4, RNLS and KDM5A. Yang et al. [6] 
found that ginsenoside Rg3 inhibited the proliferation of colorectal cancer 
SW-480 cells by down-regulating the transcriptional activity of C/EBP beta 
NF-kappaB. Sun et al. [7] found that ginsenoside Rg3 inhibited the proliferation 
of Lewis lung cancer (LLC) cells by reducing ROS and down-regulating the ex-
pression of cyclin and cyclin dependent kinase. Shan et al. [8] showed that gin-
senoside Rg3 can inhibit malignant melanoma by inducing G0/G1 cell cycle ar-
rest, reducing histone deacetylase 3 (HDAC3) and up-regulating p53 acetylation. 
In a further study, Shan et al. [9] pointed out that ginsenoside Rg3 prevented the 
growth of melanoma through deactivation of EGFR/MAPK pathway mediated 
by decreased FUT4/LeY expression. In pancreatic cancer, ginsenoside Rg3 en-
hanced erotinib-induced apoptosis by increased the expression levels of cas-
pase-3, 9 and cleaved PARP, and reduced the expression levels of p-EGFR, 
p-PI3K, and p-AKT. Therefore, ginsenoside Rg3 could enhance the role of eroti-
nib on proliferation suppression and apoptosis induction via down-regulating 
the EGFR/PI3K/AKT pathway [10]. 

2.2. Ginsenoside Rh2 

Li et al. [11] found that ginsenoside Rh2 induced cell cycle arrest by down-regulated 
cyclin dependent kinase 4 and cyclin D, and significantly reduced the level of 
phosphorylated AKT. Therefore, ginsenoside Rh2 inhibited proliferation of  
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Table 1. The anti-tumor effects and mechanisms of ginsenosides. 

Anti-tumor 
function 

Cancer 
types 

ginsenosides cells or tissues Mechanisms Ref. 

anti-proliferation 

breast cancer Rg3 breast cancer cells 

up-regulated tumor-related genes through alteration of 
epigenetic methylation levels down-regulated 
hypermethylated TRMT1L, PSMC6 and NOX4, 
up-regulated methylated ST3GAL4, RNLS and KDM5A 

[5] 

colorectal cancer Rg3 SW-480 cells 
down-regulating the transcriptional activity of C/EBP beta 
NF-kappaB 

[6] 

Lewis lung cancer Rg3 lung cancer cells 
reducing ROS and down-regulating the expression of cyclin 
and cyclin dependent kinase 

[7] 

malignant 
melanoma 

Rg3 
malignant 

melanoma cells 
inducing G0/G1 cell cycle arrest, reducing histone deacetylase 
3 (HDAC3) and up-regulating p53 acetylation 

[8] 

melanoma Rg3 melanoma cells 
deactivation of EGFR/MAPK pathway mediated by decreased 
FUT4/LeY expression 

[9] 

pancreatic cancer Rg3 
pancreatic 
cancer cells 

increased the expression levels of caspase-3, 9 and cleaved 
PARP, down-regulating the EGFR/PI3K/AKT pathway, 
reduced the expression levels of p-EGFR, p-PI3K, and p-AKT 

[10] 

glioma Rh2 
human A172 
glioma cell 

regulating CDK4/CyclinD complex and AKT, down-regulated 
CDK4 and cyclin D, reduced the level of phosphorylated AKT 

[11] 

lung cancer Rh2 H1299 cells 

induced ROS mediated endoplasmic reticulum 
stress-dependent apoptosis, and up-regulated the expression 
of activated transcription factor 4 (ATF4), CCAAT/enhanced 
binding protein homologous protein (CHOP), and caspase-4 

[12] 

prostate cancer Rh2 
prostate 

cancer cells 
inhibiting microrna-4295, activates the cell cycle inhibitor 
p21 (CDKN1A) 

[14] 

colorectal cancer Rp1 
colorectal cancer 

LoVo cells 
up-regulate apolipoprotein apo-a1 [15] 

breast cancer Rp1 
breast 

cancer cells 
inhibit the Akt/mTOR/P70S6 kinase signaling pathway. [16] 

Pro-apoptosis 

lung cancer Rg3 
Lewis lung cancer 

(LLC) cells 
regulating apoptosis-related proteins, such as Bcl-2, Bax, 
PARP-1, and lysed caspase-3 

[7] 

lung cancer Rg3 
non-small cell 

lung cancer 
(NSCLC) cells 

up-regulated the pro-apoptotic protein Bax, down-regulated 
the anti-apoptotic protein Bcl-2, thereby activating caspase-3. 

[17] 

gastric cancer Rg3 
gastric 

cancer cells 
up-regulated the expression of SP1, activated caspase 3, 8, 9 
and PARP, down-regulated HSF1 

[18] 

human 
osteosarcoma 

Rg3 
osteosarcoma 

cell lines 

reduced the protein expression of Bcl2, repressed 
PI3K/AKT/mTOR signaling pathway and increased the 
expression of lysed caspase3 

[19] 

ovrian cancer Rg3 HO-8910 cells 
suppression of the PI3K/Akt pathway, reducing the expression 
of caspase-3 and caspase-9 

[20] 

breast cancer Rh4 McF-7 cells 
down-regulating Bcl-2, up-regulating Bax, and activating 
caspase-8, -3 and PARP 

[21] 

colorectal cancer Rh4 
colorectal 

cancer cells 
activating the ROS/JNK/p53 pathway [22] 
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Continued 

 

colorectal cancer Rh2 
HCT116 and 
SW480 cells 

induce the caspase-mediated apoptosis, activated the p53 
pathway, increasing the level of pro-apoptotic protein Bax 
and reducing the level of anti-apoptotic protein Bcl-2 

[23] 

prostate cancer Rh2 DU145 cells 
up-regulating the expression of PPAR-delta and p-STAT3, 
induction OF ROS/superoxide 

[25] 

autophagy 

breast cancer Rg3 
breast 

cancer cells 
decreased P62 levels, increased generation of LC3-II cleaved 
from LC3-I 

[29] 

ovarian cancer Rg3 SKOV3 cells increasing the levels of LC3-II, Atg5, and Atg7 [28] 

colorectal cancer Rh4 
colorectal 

cancer cells 

activating ROS/JNK/p53 pathway, increased the 
Beclin 1 levels, increase the expression of Atg-7 and LC3-II, 
promote the autophagy 

[22] 

breast cancer Rg2 MCF-7 cells 
Increased p53 levels by transcriptional activation of GR, 
activated TSC1 and TSC2, phosphorylated AMPK, 
inhibited the mTOR pathway, and increased autophagy 

[32] 

breast cancer Rg5 
breast 

cancer cells 

inhibiting P13K/AKT/mTOR pathway, decreased P62 levels, 
increased Atg5, Atg7, Atg12, accelerated the LC3-I to LC3-II 
transformation 

[33] 

non-small-cell 
cancer 

CK 
non-small-cell 

cancer cells 
induced generation of LC3-II cleaved from LC3-I, and 
decreased the P62 levels 

[34] 

Anti-metasis 

breast cancer Rg3 
MDA-MB-231 

cells 
inhibits CXCR4 expression and [37] 

ovarian cancer Rg3 SKOV3 cells 
down-regulating the expression of VEGF mRNA and protein, 
reducing microvascular density and blocking angiogenesis 

[38] 

ovarian cancer Rg3 SKOV3 cells reduction of MMP-9 expression, promote the invasion [39] 

breast cancer Rd 4T1 cells 
decreasing miR-18a-mediated Smad2 expression,  
decaying migration 

[56] 

hepatocellr cancer Rd HepG2 cells 
down-regulating the expression of MMP-1, MMP-2, and 
MMP-7 by inhibiting ERK and MAPK signaling pathways 

[57] 

melanoma cancer Rp1 B16F10 Cells 
down-regulating the expression of beta1-integrin (CD29), 
inhibiting the formation of blood vessels 

[63] 

glioblastoma 
multiforme 

Rh2 U251 cells inhibit AKT mediated MMP13 activation [58] 

colerectal cancer 20(S)-Rh2 CRC cells 
down-regulatingIL-6-induced signal transducer, STAT3, 
MMPs (MMP-1, -2, and -9) 

[60] 

colorectal cancer 20(S)-Rg3 
SW280 and 
SW620 cells 

inhibited the expression of fatty acid synthetase and 
histone H4 

[10] 

colerectal cancer Rb2 
HT29 and 

SW620 cells 

down-regulating stemness and Epithelial-mesenchymal 
transition (EMT)-related genes via the EGFR/SOX2 
signaling axis 

[61] 

malignant gliomas Rh1 
U87MG and 

U373MG cells 
inhibited mRNA expressions and promoter activity, 
down-regulating the expression of MMP-1, -3, and -9 

[59] 

Inhibiting 
EMT 

lung cancer 20(R)-Rg3 A549 cells 
suppressing the expression of E-cadherin and vimentin by 
inhibiting TGF-ß1 activation 

[46] 

liver cancer Rg1 HepG2 cells 
increased the expression of E-cadherin and inhibited the 
expression of the mesenchymal phenotype marker vimentin 
by inhibiting TGF-β1 

[54] 
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Continued 

 

ovarian cancer Rg1 SKOV3 cells 
recovered the expression of E-cadherin and attenuated 
expression of vimentin by regulating NF-κB pathway 

[55] 

ovarian cancer Rb1 
SKOV3 and 
3AO cells 

by down-regulating the expression of miR-25, E-cadherin 
transcriptional activator EP300 is overexpressed,  
thus increasing E-cadherin level 

[62] 

breast cancer CK MCF-7 cells 
decreasing N-cadherin and vimentin, and increase level of 
E-cadherin through inhibition the activation of PI3K/Akt 
pathway 

[66] 
[67] 

Chemotherapy 
sensibilization 

lung cancer Rg3 
hypoxic lung 

cancer cell 
blocking of NF-κB mediated EMT and stemness, reduced the 
toxicity induced by cisplatin 

[70] 
[71] 
[72] 

lung cancer Rg3 lung cancer cells 
attenuated cisplatin resistance and increased chemosensitivity 
by down-regulating PD-L1 and resuming immune 

[10] 

colon cancer Rg3 colon cancer cells 
enhanced the sensitivity of cisplatin by reducing the basal level 
of nuclear factor erythroid 2-related factor2-mediated heme 
oxygenase-1/NAD(P)H quinone oxidoreductase-1 

[13] 

pancreatic cancer Rg3 
pancreatic 
cancer cells 

enhances the anti-proliferative activity of erlotinib by 
downregulation of EGFR/PI3K/Akt signaling pathway By 
downregulation of EGFR/PI3K/Akt signaling pathway 

[75] 

hepatocellar cancer Rg3 
hepatocellular 

carcinoma cells 
sensitize TRAIL-induced cell death CHOP-mediated DR5 
upregulation 

[59] 

ovarian cancer Rb1 
ovarian 

cancer cells 
promote sensitivity of cisplatin and paclitaxel by suppressing 
the Wnt/β-catenin signaling and EMT 

[76] 

lung cancer Rd 
lung 

cancer cells 
significant sensitization was achieved by inhibiting NRF2 [79] 

esophageal cancer Ro 
esophageal 
cancer cells 

delayed DNA repair and the accumulation of DNA damage 
by potentiating 5-Fu cytotoxicity via delaying CHEK1 
(checkpoint kinase 1) degradation and downregulating 
DNA replication process 

[28] 

 
human A172 glioma cell by regulating CDK4/CyclinD complex and AKT. In 
lung cancer H1299 cells, Ge et al. [12] found that ginsenoside Rh2 induced ROS 
mediated endoplasmic reticulum stress-dependent apoptosis, and up-regulated 
the expression of activated transcription factor 4 (ATF4), CCAAT/enhanced 
binding protein homologous protein (CHOP), and caspase-4, thereby inhibiting 
cell proliferation. Yong et al. [13] proved that ginsenoside Rh2 significantly in-
hibited the proliferation of nasopharyngeal carcinoma CSCs in vitro, promoted 
apoptosis, and reduced the expression of IL-6. Gao et al. [14] indicated that gin-
senoside Rh2 inhibited the growth of prostate cancer cells by inhibiting micro-
rna-4295, which activates the cell cycle inhibitor p21 (CDKN1A). 

2.3. Other Ginsenosides 

Ginsenoside Rp1 is a new ginsenoside derived from ginsenoside Rk1. Kim et al. 
[15] found that ginsenoside Rp1 can up-regulate apolipoprotein apo-a1 in colo-
rectal cancer LoVo cells, strongly inhibiting cell proliferation and promoting cell 
apoptosis. Zhang et al. [16] found that ginsenoside Rd can inhibit the prolifera-
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tion and induce apoptosis of breast cancer cells, and inhibit the Akt/mTOR/P70S6 
kinase signaling pathway. 

3. Pro-Apoptosis 

Apoptosis refers to the spontaneous and orderly death of cells controlled by 
genes to maintain the stability of the internal environment. Different from cell 
necrosis, cell apoptosis is not a passive process, but an active process, which in-
volves the activation, expression and regulation of a series of genes. It is not a 
phenomenon of self-injury under pathological conditions, but a death process 
that actively strives for better adaptation to the living environment. With the 
development of scientific research, it has been found that inadequate apoptosis 
plays a key role in the occurrence and development of tumor cells. 

3.1. Ginsenoside Rg3 

Sun et al. [7] found Rg3 induced apoptosis of Lewis lung cancer (LLC) cells by 
regulating apoptosis-related proteins, such as Bcl-2, Bax, PARP-1, and lysed 
caspase-3. Dai et al. [17] demonstrated that the combined use of ginsenoside Rg3 
and gefitinib can up-regulated the pro-apoptotic protein Bax and down-regulated 
the anti-apoptotic protein Bcl-2, thereby activating caspase-3 and promoting the 
apoptosis of non-small cell lung cancer (NSCLC) cells. Aziz F.’s et al. [18] 
pointed out that ginsenoside Rg3 up-regulated the expression of specific protein 
1 (SP1) and down-regulated heat shock factor 1 (HSF1) to inhibit the expression of 
brown alginase transferase IV (FUT4), and activated caspase-3, -8, -9 and PARP to 
promote the apoptosis of gastric cancer cells. Li et al. [19] found that ginsenoside 
Rg3 reduced the protein expression of Bcl2 and repressed PI3K/AKT/mTOR sig-
naling pathway in human osteosarcoma cell lines (mg-63, u-2os and saos-2), and 
increased the expression of lysed caspase3. Therefore, Rg3 induced apoptosis of 
human osteosarcoma cell lines. In addition, ginsenoside 20(S) -Rg3 can also in-
duce apoptosis of ovarian cancer HO-8910 cells through suppression of the 
PI3K/Akt pathway. Concordantly, Wang et al. [20] found that 20(S)-ginsenoside 
Rg3 reduced the activity of ovarian cancer HO-8910 cells in dose- and 
time-dependent manners, and induced apoptosis. Apoptosis induction was due to 
down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt family protein and 
apoptosis-inhibiting protein (IAP) family protein, and up-regulation of the ex-
pression of caspase-3 and caspase-9. 

3.2. Ginsenoside Rh4 

Duan et al. [21] found that ginsenoside Rh4 can promote apoptosis of breast 
cancer McF-7 cells by down-regulating Bcl-2, up-regulating Bax, and activating 
caspase-8, -3 and PARP. Another study indicated that Rh4 increased the accu-
mulation of reactive oxygen species (ROS), thereby activating the JNK-p53 
pathway [22]. Reactive oxygen scavenging agents, JNK and p53 inhibitors can 
significantly reduce Rh4-induced apoptosis, suggesting that Rh4 can trigger 
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apoptosis by activating the ROS/JNK/p53 pathway in colorectal cancer cells. 

3.3. Ginsenoside Rh2 

Li et al. [23] confirmed that in colorectal cancer HCT116 and SW480 cells, gin-
senoside Rh2 can induce the caspase-mediated apoptosis of colorectal cancer 
cells. Rh2 activated the p53 pathway, significantly increasing the level of 
pro-apoptotic protein Bax and reducing the level of anti-apoptotic protein Bcl-2. 
It was reported that ginsenoside Rh2 inhibited the proliferation of gastric cancer 
SGC-7901 Side Population cells in a dose-dependent manner. Rh2 arrested cells 
at G1/G0 phase, followed by stimulation of apoptosis through up-regulation of 
Bax and down-regulation of Bcl-2 [24]. Wu et al. [25] found that ginsenoside 
Rh2 induced apoptosis of prostate cancer DU145 cells by up-regulating the ex-
pression of PPAR-delta, which was related to the up-regulation of p-STAT3 and 
induction OF ROS/ superoxide. 

3.4. Ginsenoside F2 

Ginsenoside F2 is the potential bioactive metabolite of main ginsenosides. Mao 
[26] indicated that Ginsenoside F2 induced ROS accumulation, decreased mito-
chondrial transmembrane potential (MTP), stimulated the release of cytochrome 
c, and induced caspase-dependent apoptosis. The regulation of ASK-1/JNK 
pathway also contributed to apoptosis. Results suggested that Ginsenoside F2 
induced apoptosis by inducing ROS accumulation and activating ASK-1/JNK 
signaling pathway. 

4. Ginsenoside Inhibits Tumor Cells by Autophagy 

Autophagy is an intracellular degradation pathway that transports damaged, de-
formed, aging or dysfunctional proteins and organelles in cells to lysosomes for 
digestion and degradation, so as to realize the metabolic needs of cells and the 
renewal of organelles. It has been found that autophagy plays a very important 
role in the genesis and development of tumors, which gradually attracts people’s 
wide attention. Recent studies show that ginsenoside can inhibit tumor cells 
through autophagy. 

4.1. Ginsenoside Rg3 

The effect of ginsenosides on autophagy is controversial. Reportedly, ginseno-
side 20(S)-Rg3 (a type of Rg3 ginsenosides stereo isomer) inhibited autophagic 
flux by suppression of late-stage autophagosome maturation or degradation and 
eventually induced apoptosis in cervical cancer cells [5]. However, Zhang Y et al. 
[27] found that that ginsenoside Rg3 induced autophagy so as to inhibit breast 
cancer tumor growth in tumor-bearing mice, and its mechanism was associated 
with P13K/AKT/mTOR pathway, Rg3 decreased P62 levels, increased generation 
of LC3-II cleaved from LC3-I. Zheng et al. [28] showed that 20 (S)-ginsenosides 
Rg3 induced autophagy in ovarian cancer SKOV3 cells by increasing the levels of 
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LC3-II, Atg5, and Atg7. 

4.2. Ginsenoside Rh2, Rh4 

Lv et al. [29] found that smith-4 can inhibit the phosphorylation of AKT/mTOR 
and reduce the activity of AKT/mTOR pathway to promote autophagy, while 
ginsenoside Rh2 can enhance this autophagy activity in vivo and in vitro to en-
hance the anti-melanoma efficacy of smith-4. Liu et al. [30] found that ginseno-
side Rh2 promoted autophagy and apoptosis of K562 cells. Rh2 ginsenosides re-
duced the expression of HDAC6, promoted acetylation of Hsp90, and increased 
the expression of LC3-I, LC3-II, Beclin 1. Sarkar et al. [31] showed that increas-
ing the acetylation of Hsp90 and decreasing the expression of Hsp90 would both 
cause autophagy and apoptosis of cells.  

Wu et al. [22] et al. investigated the role of ginsenoside Rh4 in colorectal can-
cer cells (Caco 2, HCT116 cell) on growth inhibition, and they found that Rh4 
promoted autophagy of colorectal cancer cells by activating ROS/JNK/p53 
pathway. Rh4 promoted intracellular reactive oxygen species (ROS), which led 
to JNK phosphorylation and further promotes the p53 phosphorylation. Phos-
phorylated p53 increased the Beclin 1 levels, which can further increase the ex-
pression of Atg-7 and LC3-Ⅱ so as to promote the autophagy, optimization in-
hibition of colon cancer cells growth. 

4.3. Ginsenoside Rg2, Rg5 

Chung et al. [32] found that in breast cancer MCF-7 cells, Rg2 can bind to glu-
cocorticoid receptor (GR) as a glucocorticoid-like cellular mechanism. Rg2 in-
creased p53 levels by transcriptional activation of GR, which activated the tu-
berous sclerosis complex 1 (TSC1) and TSC2, then phosphorylated AMPK and 
subsequently inhibited the mTOR pathway, and increased autophagy. Rg2 in-
creased the levels of p-p53, p-AMPK, Atg-7, and LC3-II, while decreased the le-
vels of p62.  

Liu et al. [33] proved that ginsenoside Rg5 had a strong anti-tumor effect in hu-
man breast cancer cells. Rg5 promoted autophagy by inhibiting P13K/AKT/mTOR 
pathway, which decreased P62 levels, increased by Atg5, Atg7, Atg12, and acce-
lerated the LC3-I to LC3-II transformation to promote autophagy.  

CK, the metabolite of ginsenoside, can increase the phosphorylation level of 
AMPK and reduce the phosphorylation level of mTOR, thereby promoting au-
tophagy and promoting apoptosis. Chen et al. [34] found that CK treatment 
up-regulated the expression of Beclin 1 in non-small-cell cancer cells, induced 
generation of LC3-II cleaved from LC3-I, and decreased the P62 levels. 

5. Anti-Metastasis 

Tumor metastasis is the outcome of combined action of many factors, such as 
transfer signals, extracellular matrix, adhesion molecules, and hyaluronic acid 
receptor family, as well as genes related to angiogenesis [35]. 
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5.1. Ginsenoside Rg3 

It has been found that Chemokine CXC receptor 4 (CXCR4) plays an important 
role in metastasis by acting on the chemokine ligand CXCL12. [36] Chen et al. 
[37] demonstrated that ginsenoside Rg3 inhibited CXCR4 expression and 
CXCL12 (CXCR4 ligand) induced chemotaxis in cultured MDA-MB-231 cell, a 
highly metastatic cell line of breast cancer, thus inhibiting cancer cell migration. 
Pan et al. [38] found that ginsenoside Rg3 can inhibit the growth and metastasis 
of ovarian cancer cells by down-regulating the expression of VEGF mRNA and 
protein, reducing microvascular density and blocking angiogenesis. XU et al. 
[39] found that ginsenoside Rg3 can significantly inhibit the metastasis of ova-
rian cancer. The inhibitory effect was partly due to reduction of MMP-9 expres-
sion, which promoted the ovarian cancer SKOV3 cells to invade.  

Lee et al. [40] investigated the effects of ginsenoside 20(S)-Rg(3) in colorectal 
cancer SW620 cells, and found that ginsenoside 20(S)-Rg(3) inhibited the ex-
pression of fatty acid synthetase and histone H4, thus inhibiting the metastasis of 
SW620 cells. 

The epithelial-mesenchymal transition (EMT) is a physiological and patho-
logical phenomenon, characterized by the loss of typical epithelial characteristics 
and the acquisition of mesenchymal traits. [41] Studies have revealed that EMT 
contributes to cancer progression, invasion and migration in various types of 
cancer [42] [43]. In the process of EMT, the expression of E-cadherin, a mem-
brane protein mediating the tight junction between epithelial cells, is downregu-
lated, and the expression of connexin between mesenchymal cells, such as 
N-cadherin and vimentin, is upregulated. [44] Tian et al. [45] found that Rg3 
significantly up-regulated the mRNA levels of the E-cadherin, and down-regulated 
the mRNA levels of Snail, N-cadherin and Vimentin in NSCLC cells (A549, 
H1299 and H358 cells), thereby effectively preventing EMT process in dose- and 
time-dependent manners. Kim et al. [46] found that 20(R)-Rg3 inhibited the 
EMT by suppressing E-cadherin and vimentin expression in TGF-ß1-activated 
lung cancer A549 cells. Ting et al. [47] found that ginsenoside 20(S)-Rg3 po-
tently blocked hypoxia-induced EMT of ovarian cancer cells in vitro and in 
vivo. They confirmed that 20(S)-Rg3 reduced the expression of hypox-
ia-inducible factor 1a (HIF-1a) by activating the ubiquitin-proteasome path-
way to promote HIF-1a degradation. Decreased HIF-1a suppressed Snail tran-
scription, leading to up-regulation of E-cadherin (the epithelial cell-specific 
marker) and down-regulation of vimentin (the mesenchymal cell-specific mark-
er) under hypoxic conditions. 

5.2. Ginsenoside Rg1 

Transforming growth factor (TGF)-β1 was found to be the main inducer of 
ETM [48] [49]. Ginsenoside Rg1, is one active and abundant components in 
ginseng, which has exerts anticancer properties [50] [51] [52] [53]. Yu et al. [54] 
found that TGF-β1 could induce the expression of vimentin and decrease the 
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expression of E-cadherin, which could make human liver cancer HepG2 cells 
behave as mesenchymal phenotype and significantly enhance the invasion and 
migration of cells. When treated with ginsenoside Rg1, Rg1 increased the ex-
pression of E-cadherin and inhibited the expression of the mesenchymal pheno-
type marker vimentin, showing a typical epithelial morphology. Therefore, gin-
senoside Rg1 inhibited the invasion and migration of hepatocellular carcinoma 
HepG2 cells in vitro by inhibiting EMT. Concordantly, Dan et al. [55] found that 
treatment with ginsenoside Rg1 for 48 h in ovarian cancer cell SKOV3, the EMT 
morphology change induced by hypoxia was partially reversed. Rg1 recovered 
the expression of E-cadherin and attenuated expression of vimentin by regulat-
ing NF-KB pathway. 

5.3. Ginsenoside Rd 

Ginsenoside Rd is a kind of procyanidins found in ginseng ginseng saponin. 
Wang et al. [56] found that Rd treatment increased expression of Smad2 by 
down-regulating microRNA (miR)-18a in cultured 4T1 cells and in tumors 
grown from inoculated 4T1 cells. Smad2, a direct target of miR-18a, significantly 
induced attenuation of migration in 4T1 cells.  

Yoon et al. [57] showed that ginsengside inhibited migration and invasion of 
human hepatocellular cancer HepG2 cells by inhibiting ERK and MAPK signal-
ing pathways, which reduced the expression of MMP-1, MMP-2 and MMP-7. 

5.4. Ginsenoside Rh2, Rh1 

Guan et al. [58] found that Rh2 reduced the invasiveness of glioblastoma cells in 
a dose-dependent manner by inhibiting AKT mediated MMP13 activation, as-
sessed by wound healing test and Transwell assay. Jung et al. [59] showed that 
Rh1 inhibited the mRNA expressions of MMP-1, -3 and -9 in human malignant 
gliomas cells (U87MG and U373MG). Rh1 also inhibits promoter activity of 
MMP-1, -3, and -9. Further studies showed that Rh1 played an important role in 
inhibiting MAPK and PI3K/Akt signaling pathways and downstream transcrip-
tion factors. Han et al. [60] found that ginsenoside 20(S)-Rh2 effectively inhi-
bited the phosphorylation of signal transducers and transcriptional activator 3 
(STAT3), as well as the expression of matrix metalloproteinases (MMPs), in-
cluding MMP-1, -2, and -9, thereby inhibiting the metastasis of colorectal cancer 
cells. 

5.5. Ginsenoside Rb2, Rb1, Rp1 

Phi et al. [61] found that ginsenoside Rb2 inhibited CSC properties and EMT of 
HT29 SW620 cells, thereby inhibiting the transfer of CRC cells in vivo, which 
was achieved by inhibiting EGFR and its downstream signal pathways, SOX2 
and Snail. Liu et al. [62] demonstrated that Rb1 downregulated the expression of 
miR-25, resulting in overexpression of E-cadherin transcriptional activator 
EP300, thus increasing E-cadherin level and inhibiting the hypoxia-induced 
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EMT process in ovarian cancer SKOV3 and 3AO cells. Ginsenoside Rp1, a new 
type of ginseng saponin, was showed to play an anticancer role by inhibiting the 
adhesion of tumor cells and the formation of blood vessels, and by strongly inhi-
biting the cell activity and metastasis process. Park et al. proved that Rp1 inhi-
bited human umbilical vein endothelial cells (HUVECs) tube formed, blocked 
HCT15 and A549 cell viability, and strongly inhibited the pulmonary metastasis 
of B16-F10 melanoma cells [63]. 

5.6. Ginsenoside Compound K (CK) 

CK (20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol) is an active metabolite 
that are synthesized by intestinal bacteria after oral administration of ginseno-
sides Rb1, Rb2, Rc and Rd. [64] It was found that CK increased the level of epi-
thelial marker molecule Ecadherin, and reduced the level of mesenchymal 
markers N-cadherin and vimentin in MCF-7 cells, indicating that CK inhibited 
the EMT process in MCF-7 cells [65]. The activation of PI3K/Akt signalling 
pathway may promote the occurrence of EMT in most tumour cells [66] [67]. 
Studies showed that CK inhibited the EMT in MCF-7 cells, which may be due to 
inhibition the activation of PI3K/Akt pathway [68], since it was clarified that CK 
could inhibit EMT by reducing the level of p-AKT [65]. Peng et al. [69] found 
that CK decreased N-cadherin and increased E-cadherin in liver cancer HepG2 
cells, indicating that CK inhibited the EMT process. Suppression of ERK and 
Akt signaling pathways was involved in this pharmacologic action. 

6. Sensitization to Chemotherapeutic Drugs 

Chemotherapy has been the mainstay of cancer treatment for the past several 
decades. As a result of the heterogeneity of the tumor cell population, the sensi-
tivity of the different clones of the same cell related to the drug is different, and 
it is easy to produce the drug resistance to the chemotherapeutic agent. There-
fore, it has become a new strategy of tumor chemotherapy to seek low toxic 
chemotherapeutic sensitizers to enhance the cytotoxicity of antineoplastic drugs 
or to change the resistance of tumor cells to chemotherapy in the future. 

6.1. Ginsenoside Rg3 

Wang et al. [70] [71] reported that ginsenoside Rg3 sensitized hypoxic lung can-
cer cells to cisplatin via blocking of NF-κB mediated EMT and stemness [72], 
and Rg3 also reduced the toxicity induced by cisplatin. Lee et al. [73] found that 
Rg3 enhanced the sensitivity of colon cancer cells to cisplatin by reducing the 
basal level of nuclear factor erythroid 2-related factor2-mediated heme oxyge-
nase-1/NAD(P)H quinone oxidoreductase-1, and prevented normal tissue dam-
age by scavenging cisplatin-induced intracellular ROS. Jiang et al. [10] showed 
that Rg3 attenuated cisplatin resistance and increased chemosensitivity in lung 
cancer by down-regulating PD-L1 and resuming immune. Tang et al. [74] 
found that Rg3 could strengthen the cytotoxicity of 5-Fluorouracil and oxalip-
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latin against orthotopic xenografts in vivo in colorectal cancer by downregu-
lating the levels of B7-H1 and B7-H3, predictors of adverse clinical outcomes in 
CRC. Jiang et al. [75] found Ginsenoside Rg3 enhances the anti-proliferative ac-
tivity of erlotinib in pancreatic cancer cell lines by downregulation of 
EGFR/PI3K/Akt signaling pathway. Lee [59] et al. found that ginsendoside Rg3 
sensitize TRAIL-induced cell death by via CHOP-mediated DR5 upregulation in 
human hepatocellular carcinoma cells. 

6.2. Ginsenoside Rb1, Rh2, Rp1, Rd, Ro 

Deng et al. [76] proved that ginsenoside Rb1 exerted strong cytotoxicity to tu-
mor stem cells. Rb1 and its metabolites can effectively inhibit the growth of ova-
rian cancer stem cells, promoting cells more sensitive to clinical-related doses of 
chemotherapeutic drugs, such as cisplatin and paclitaxel. The mechanism is that 
by suppressing the Wnt/β-catenin signaling and EMT. Studies delivered by Na-
kata indicated that ginsenoside Rh2 combined with cisplatin can enhance the 
therapeutic effect in ovarian cancer, since Rh2 sensitized ovarian cancer cell to 
cisplatin in vitro and in vivo [77]. The membrane transporter MDR-1, located 
on the lipid rafts of the plasma membrane, and increased MDR-1 activity is an 
important contributor to multidrug resistance. Yun et al. [78] found that ginse-
noside Rp1 repressed MDR-1 activity by redistributing lipid rafts, which re-
versed resistance to anti-tumor drugs, including doxorubicin. Chian found that 
GS-Rd significantly sensitized A549/DDP cells to therapeutic drugs by inhibiting 
NRF2 which could develop multidrug resistance [79]. Zheng K et al. [28] found 
that ginsenoside Ro potentiates 5-Fu cytotoxicity via delaying CHEK1 (check-
point kinase 1) degradation and downregulating DNA replication process, re-
sulting in the delayed DNA repair and the accumulation of DNA damage.  

7. Conclusions 

Malignant tumors are in the forefront of mortality and morbidity in malignant 
diseases, which seriously affects the health of people. Therefore, it is very impor-
tant to explore the effective treatment for malignant tumors. At present, surgery 
and radiotherapy combined with chemotherapy are mainly used in clinic, the 
main chemotherapeutic drugs are cisplatin, paclitaxel and so on. However, mul-
ti-drug resistance, toxic reactions and adverse reactions greatly limit its clinical 
efficacy. Therefore, there is a need to explore more ideal drugs for the treatment 
of tumors.  

To sum up, a large number of feasibility trials have shown that ginsenosides 
can not only interfere with cancer by targeting several molecules and pathways 
involved in cancer development, but also do little harm to normal cells in the 
body. Moreover, when these plant extracts are used in combination with che-
motherapeutic drugs, it is observed a stronger anti-cancer effect and less toxic 
than using chemotherapy alone. More importantly, it can reverse the multi-drug 
resistance of chemotherapeutic drugs. The antitumor effects of ginsenosides and 
signal pathways are shown in Figure 1, including anti-proliferation, pro-apoptosis,  
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Figure 1. This figure shows the antitumor effects of ginsenosides and 
signal pathways. 

 
anti-metasis, and chemotherapy sensibilization. Therefore, it is of great signific-
ance to further study the pharmacological effects of total ginsenosides and their 
monomers. It can be predicted that with the study of the deep human system of 
ginsenosides, many aspects of their biological effects will gradually be revealed. 
The combination of ginsenoside and chemotherapeutic drugs may be a more 
ideal strategy for the treatment of tumors in clinical studies in future. 
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