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Abstract 

Generally in this paper, we show how the new version of parameter 2U ∈ �  
in Jacod decomposition will change an expression of entropy-Hellinger process 
of order one, order q and order zero and consequently an equation of mi-
nimal entropy Hellinger sigma martingale density for all orders. This is be-
cause even the measurable function W ∈ ��   which is an important parame-
ter of an equation of minimal martingale density changes. In order to get a 
required parameter W P∈� � , we introduce the function 1tm f= − ∈ �  dur-
ing our calculation for all orders. The result is different to order zero because 
we failed to get an equation of minimal entropy-Hellinger sigma martingale 
density of order zero. 
 

Keywords 
Sigma Martingale Density, Jacod Decomposition, Entropy-Hellinger Process, 
Compensator, Minimal Entropy-Hellinger Sigma Martingale Density 

 

1. Introduction 

Hellinger processes concepts have been interested in the part of probability theory 
which addresses the notion of distance between two probability measures [1]. 
This method is explicitly described in time and arises from the dynamic approach 
to the Kakutani Hellinger distance between two probability measures. We can 
say in general Hellinger processes measure an infinitesimal rate of separation of 
two measures: an equivalent martingale measure (Q) and a physical martingale 
measure (P). There is an intimate relationship between this entropy-Hellinger 
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process and a relative entropy which is used also as a measure of the distance 
between two probability measures although it is not a metric. In our case, we are 
going to concentrate on the entropy-Hellinger process which is expressed as a 
non decreasing process of a jump of local martingale of Jacod decomposition. In 
this entropy-Hellinger process it is possible to describe the variation of entropy- 
Hellinger martingale measure or its entropy-Hellinger martingale density process 
with respect to the variation of market’s factors or parameters [2]. Moreover, the 
entropy-Hellinger martingale measure has a property of being robust with re-
spect to stopping time. The minimal entropy-Hellinger martingale measure is 
based on minimizing the entropy-Hellinger process for a nonnegative Doleans- 
Dade exponential local martingale [3]. 

In the research papers [3] and [4] the description of minimal entropy Hellin-
ger local martingale density is done on the Jacod decomposition of the following 
form ( )cN S W g Nβ µ ν µ ′= ⋅ + − + +   where  

{ } ( )1
1

ˆ

1 loca
UW U

a
µ<= + ∈

−
1 . This description of minimal entropy Hellinger lo-

cal martingale density was used by [5] and [6] as sigma martingale density to 
express its entropy-Hellinger process and also a description of a minimal entro-
py Hellinger sigma martingale density under its required set when there is a 
change of probability measure done by [5] and [6]. According to [7] and [8] we 
can choose a version of U such that if 1N∆ > −  then also 1U > −  and setting 

1U f= − , this gives { }1

ˆ
1

1 a
f aW f

a <

−
= − +

−
1 . 

This study gives other expression of entropy-Hellinger process for positive 
sigma martingale of order one, order q and order zero when  

( )cN S W g Nβ µ ν µ ′= ⋅ + − + +   and { }1

ˆ
1

1 a
f aW f

a <

−
= − +

−
1 . Further, we 

find an equation of minimal entropy Hellinger sigma martingale density of order 
one, order q and order zero.  

Methods of Equivalent Martingale Measure 

There has been an increasing interest in providing quantitative approaches to 
the portfolio optimization, pricing and hedging of contingent claims since the 
emergence of modern finance. Since martingale methods have been introduced 
by [9] and [10], these problems can be addressed very elegantly in complete mod-
els. The major key tool they came up with in providing solutions of these prob-
lems to the complete model is the unique equivalent martingale measure. Ac-
cording to [11], by computing conditional expectations of some random va-
riables under this unique equivalent martingale measure it yields important part 
of the solution: the unique arbitrage free contingent claim value in the derivative 
pricing problem, the value of a replicating portfolio in the hedging problem and 
optimal wealth process in utility maximization problems. 

However, in the situation of incomplete markets the case is more involved be-
cause one is facing a mathematical and a conceptual problem. Mathematically, 
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because the use of martingale methods is complicated by the fact that, there are 
infinitely many equivalent martingale measures. The question that an investor 
faces in this case, is concerned with an appropriate equivalent martingale meas-
ure to be chosen. Thus many research works have proposed several methods to 
be used to choose the appropriate equivalent martingale measure. 

The first class of methods which were proposed deal with some sort of dis-
tance minimization between an equivalent martingale measure and physical 
probability measure. An appropriate martingale measure is the one which has a 
smallest distance compared to the other martingale measures. The selection of 
appropriate martingale measure with the smallest distance compared to the oth-
er is due to different optimization criteria for the set of all equivalent martingale 
measures. For instance, minimal martingale measure proposed by [12] [13] [14] 
and [15]. Mean-Variance Martingale measure proposed by [16] and [17]. The 
minimal entropy martingale measure defined and introduced by [18] [19] [20] 
and [21]. Minimax martingale measure introduced by [22] and [23]. According 
to [24], all the above martingale measures were defined and characterised in a 
way that is far from practical use except in the case of market driven by Levy 
processes. Because of that reason [25] derived the minimal Hellinger martingale 
measure for a market driven by processes with independent increments. 

The second class of methods consists of concepts of utility based pricing. We 
can call this method an equilibrium-based pricing approach. This method is in-
vestigated by [26]. According to [26] if option pricing is inculcated in a utility 
maximization framework, then a unique martingale measure emerges in a very 
natural way. Fair price of the contingent claim was based on the assumptions 
that an investor is willing to divert only an infinitely large amount of his initial 
amount of wealth to sell (or purchase) a claim. The concept of utility based 
pricing is related to utility maximization and its dual problem was discussed by 
[22] [23] [27] and [28] in different ways and in different frameworks. For exam-
ple, in a continuous time diffusion incomplete model [27] showed that one way 
to handle the utility maximization problem from terminal wealth is to consider 
the dual problem. This dual problem can be formulated as a minimization prob-
lem over the set of martingale measures. In order to find the solution of this mi-
nimization problem, martingale methods were used to recover the solution of 
the original problem. The minimum is attained by an element in the martingale 
measure set. The derivation of martingale measures of these research works were 
based in a static manner which means that the evolution over time of these ex-
tremal solutions is not described in these works. 

Because of that reason a dynamic version of these works were proposed by [11] 
[29], and [30]. For example the problem of hedging which is based on utility 
maximization solved by [29]. The utility maximization solved by [29] was dif-
ferent from expected utility of consumption or terminal wealth. This is because 
it was done as optimization of the expected utility of gains over infinitesimal 
time intervals. One advantage of it is that there is no dependence on a terminal 
date. In [30] a problem based on the utility method for the valuation and hedg-
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ing of non replicable contingent claims was solved. The issuer’s valuation process 
and hedging strategy are defined via utility indifference arguments. The density 
process used in this paper is written in a particular form in order to get a re-
quired solution. In this dynamic version a derivation of a portfolio or a critical 
martingale measure is independent of the initial/or maturity time investment. 

On this dynamic concept another method which was proposed is known as en-
tropy-Hellinger process. This method is expressed as a jump of local martingale of 
Jacod decomposition [24]. The first paper to create the concept of entropy-Hel- 
linger process which is expressed as local martingale of Jacod decomposition is [24]. 
The author obtained the minimal entropy-Hellinger local martingale density for the 
case where the discounted price process is bounded and it has a property of qua-
si-left continuous. Because the discounted price process is bounded there was no 
need to introduce a truncation function on its decomposition function. The results 
of [24] were extended by [3] by finding the minimal entropy-Hellinger local mar-
tingale density when the discounted price process is unbounded and may have pre-
dictable jumps. In this paper there is an introduction of the truncation function due 
to unbounded condition of discounted price. The results of [3] was extended by [4] 
where the author created the concept of Hellinger process of order q for local mar-
tingale densities and give its properties. The researcher obtained the minim-
al-entropy Hellinger local martingale densities of order q. 

The concept of minimal entropy Hellinger sigma martingale density is intro-
duced by [5] [6]. According to [6] the existence of minimal entropy Hellinger 
sigma martingale density is due to the fact that, when there is minimal sigma mar-
tingale density Z�  which can minimize the entropy-Hellinger process over its 
defined set. One of the important difference between the minimal entropy Hel-
linger sigma martingale density and minimal entropy Hellinger local martingale 
density is the kind of set in which the minimization is taking place and necessary 
and sufficient conditions for an exponential local martingale to be a local mar-
tingale density or a sigma martingale density. 

This paper contributes to the existing literature because we show how the en-
tropy-Hellinger process for positive sigma martingale of order one, order q and 
order zero can be modified when we have another version of its important pa-
rameter U. Also we proved that even a description of minimal entropy-Hellinger 
sigma martingale density of all orders is going to change when we are solving 
minimization problems based on those entropy-Hellinger processes. 

The rest of the paper is organized as follows. Section 2, discusses an expres-
sion of entropy Hellinger process for a positive sigma martingale of order one 
followed by a solution of minimization problem based on entropy Hellinger 
process of sigma martingale density of order one in Section 3. In Section 4, we 
provide an expression of entropy Hellinger process for a positive sigma martin-
gale of order q followed by a solution of minimization problem based on entro-
py-Hellinger process of sigma martingale density of order q in Section 5. A dis-
cussion on an expression of entropy-Hellinger process for a positive sigma mar-
tingale of order zero is in Section 6. In Section 7, we provide a solution of the 
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minimization problem based on the entropy-Hellinger process of sigma martin-
gale density of order zero. 

2. An Expression of Entropy Hellinger Process for a Positive  
Sigma Martingale of Order One  

According to [6] a σ-martingale density for a discounted price S is any positive local 
martingale Z such that ZS is a σ-martingale. If furthermore ZS is locally integrable 
then Z is called a local martingale density. This means according to Ito’s formula we 
deduce that ZS is a σ-martingale if and only [ ],S S N+  is a σ-martingale. 

According to [5] if ( )Z N=   is a positive local martingale and  
( ), , ,U g Nβ ′  be the Jacod component of N. Then Z is a σ-martingale density 
for ( ),S P  if and only if  

( ) ( )( ) ( )1 dx U x h x F x+ − < ∞∫                   (1) 

( ) ( )( ) 0b A c A x h x xU xβ ν⋅ + ⋅ + − + =                (2) 

Furthermore, if Z is a σ-martingale density for ( ),S P  then the following 
holds  

( )( ) ( )1 d 0x U x F x A+ ∆ =∫                     (3) 

According to [3] [4] [24] [31] if we let ( )0,locN P∈  such that 1 0N+ ∆ ≥ . 

Then there exist a predictable and cS -integrable process β , some  

( )0,locN P′∈  with [ ], 0N S′ =  and functionals U ∈ �  and g ∈ �  such that  

( )
0

d ,dd

T
U x tν < +∞∫ ∫  and ( )( )

1
2 2

00 ,
ss Ss t g s S ∆ ≠< ≤

∆∑ 1  and ( )| 0P gµ =  .  

( )
ˆ

where
1

c UN S W g N W U
a

β µ ν µ ′= ⋅ + − + + = +
−

        (4) 

The above Equation (4) is called the Jacod decomposition with parameters  
( ), , ,U g Nβ ′ . 

According to [31] if ( )1
locW µ∈ , Then the stochastic integral ( )W µ ν−  

of W with respect to ( )µ ν−  is the unique element of d
loc  satisfying  

( ) ( ) ( ) ( ) { } ( )0
ˆwhere , ,t t tSW W w W w W w t W w tµ ν ∆ ≠∆ − = = −   1     (5) 

Also according to [31] If ( )1
locg µ∈  where  

( ) ( ) ( )
1

1 2 2| 0 : andP
loc locg gµµ µ

  = = ∈ 
  

     , Then the stochastic integral  

g µ , of g with respect to µ  is the unique element of d
loc  satisfying  

( ) ( ) { }0, Stg g t wµ ∆ =∆ = 1                      (6) 

Therefore from above Equations (4), (5) and (6) we can build the equation of 
jump of Jacod decomposition N as follows  

( ) ( )( ) 0 0

ˆ

1t t
t

t t t t t S t S
t

U
N U S g S N

a∆ ≠ ∆ =

 
′∆ = ∆ + ∆ + ∆ −  − 

1 1         (7) 
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According to [3] [5] [6] [24], if we let ( )0,locN P∈  such that 1 0N+ ∆ ≥ , 
such that the non-decreasing adapted process  

( ) ( ) ( )
0

1 1 log 1
2

E c
t s s st s t

V N N N N N
< ≤

 = + + ∆ + ∆ −∆ ∑         (8) 

is locally integrable (i.e. ( ) ( )E
loc

V N P+∈ ), then its compensator (with respect 
to the probability P) is called the entropy-Hellinger process of N, denoted by  

( ),E
th N P . 
The entropy-Hellinger process of N with respect to probability measure P de-

noted by ( ( ),E
th N P ) is the same as of sigma density e

locZ ∈  denoted by  
( ( ),E

th Z P ) and of equivalent probability measure aQ∈  denoted by  
( ( ),E

th Q P ). 
According to [7] [8] from Equation (5) where β  is cS  integrable, and  

{ } ( )1
1

ˆ

1 loca
UW U

a
µ<= + ∈

−
1 , ( )1

locg µ∈  and N ′  is a local P-martingale null 

at 0 with [ ], 0S N ′ =  

If 1N∆ > −  then also 1U > − , if we have a new version of 1U f= −  then 

this gives { }1

ˆ 11
1 a
fW f

a <

−
= − +

−
1 .  

Therefore we are going to have the following equation of jump of Jacod de-
composition:  

( ) { } { }0 0

ˆ
1

1S S
f aN f g N

a∆ ≠ ∆ =

 −′∆ = + − + ∆ −  − 
1 1               (9) 

Proposition 1 (The entropy-Hellinger process of order 1) 

The Hellinger process of order 1 for N when { }1

ˆ 11
1 a
fW f

a <

−
= − +

−
1  is equal to  

( ) ( )

( )

T

0

1, ln 1
2

ˆ ˆ1 ˆln 1
1 1

1 ln 1 |

E

s t

P

h Z P c A f f f

f f a f a
a a

g g gf P K
f f fµ

β β ν

ν

< ≤

= ⋅ + − −  

  − −
+ − + −   − −   

    
+ − + − +    

    

∑

�



 

       (10) 

Proof 
To prove the Equation (10) we are going to apply the same method used in [3].  

From (4) and (9), lets define { }0f
gg
f >= 1   

Then we are going to have the following assertions  

{ }

{ }

0

ˆ 1

0

0
f

f a a

g

N
=

− = −

=

′∆ =

1

1                         (11) 

From Equation (8) 

( ) { } { }0 0

ˆ
1 1

1S S
f aN f g N

a∆ ≠ ∆ =

 −′+ ∆ = + + + ∆ −  − 
1 1            (12) 
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Then  
0

ˆ
1 0

1

f g

f aN
a

+ >

−′+ ∆ − >
−

 

By taking the conditional expectation under P
µ  with respect to �  and a 

predictable projection of above equations we are going to get  
0
ˆ

1 0
1

f

f a
a

>

−
− >

−

 

From Equation (12)  

( ) ( )

( ) ( ) ( )

{ }

0

0

1 ln 1

ln 1

ˆ ˆ ˆ
1 ln 1

1 1 1

s s s
s t

S

N N N

f g f g f g

f a f a f aN N N
a a a

µ
< ≤

∆ =

 + ∆ + ∆ −∆ 

= + + − + −  
    − − − ′+ − + ∆ − + ∆ + − ∆       − − −     

∑

∑



1

    (13) 

Thanks to the assertions above on the Equation (11).  

( ) ( )T

0
0

0

1, ln 1
2

ˆ ˆ ˆ
1 ln 1

1 1 1

11 ln 1
2

ˆ
1 1 ln 1ˆ ˆ1

1 1
1 1

S
s t

c
t

s t

V N P c A f f f

f a f a f a
a a a

g g gf N
f f f

f a N N
a f a f a

a a

β β µ

µ

∆ =
< ≤

< ≤

= ⋅ + − −  

    − − −
+ − − +       − − −     

     ′+ + + − +    
    

 
   ′ ′− ∆ ∆ + − + +  −  − −  − − − − 

∑

∑





1

( ) { }0
0

ˆ
1

1
ˆ

ln 1
1 S

s t

N
f a

a

f ag f N
a

µ ∆ =
< ≤

   
    ′∆    −
    −

−   −   
 − ′+ + − ∆  − 

∑ 1

(14) 

The dual predictable projection of the two last terms in the RHS of the Equa-
tion (14) of the above equation vanish. We are going to remain with  

( ) ( )T

0
0

0

1, ln 1
2

ˆ ˆ ˆ
1 ln 1

1 1 1

11 ln 1
2

ˆ
1 1 ln 1ˆ ˆ1

1 1
1 1

S
s t

c
t

s t

V N P c A f f f

f a f a f a
a a a

g g gf N
f f f

f a N N
a f a f a

a a

β β µ

µ

∆ =
< ≤

< ≤

= ⋅ + − −  

    − − −
+ − − +       − − −     

     ′+ + + − +    
    

 
   ′ ′− ∆ ∆ + − + +  −  − −  − − 

− − 

∑

∑





1

ˆ
1

1

N
f a

a

   
    ′∆    −
    −

−   −   

(15) 
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Taking dual predictable projection we are going to have the following equation  

( ) ( )

( )

T

0

1, ln 1
2

ˆ ˆ ˆ
1 ln 1 1

1 1 1

1 ln 1 |

E

s t

P

h Z P c A f f f

f a f a f a a
a a a

g g gf P K
f f fµ

β β ν

ν

< ≤

= ⋅ + − −  

    − − −
+ − − + −       − − −     

    
+ + + − +    

    

∑

�



 

      (16) 

where K is a predictable projection of the  

0

ˆ1 1 1 ln 1ˆ ˆ ˆ2 1
1 1 1

1 1 1

c
t s t

f a N N NN
a f a f a f a

a a a

< ≤

     
       ′ ′ ′− ∆ ∆ ∆     ′ + − + + −    −    − − −  − − −     − − −     

∑ . 

Then the required entropy-Hellinger process is  

( ) ( )T

0

1, ln 1
2

ˆ ˆ1 ˆln 1
1 1

1 ln 1 |

E

s t

P

h Z P c A f f f

f f a f a
a a

g g gf P K
f f fµ

β β ν

ν

< ≤

= ⋅ + − −  

  − −
+ − + −   − −   

    
+ + + − +    

    

∑

�



 

        (17) 

which is the same as (10). 
From Equation (4), If we set ( )1 cN S Wβ µ ν= ⋅ + −  and ( )1 1Z N=  . If 

ZS is a σ-martingale. then 1Z S  is also a σ-martingale. 
Since we are going to focus on σ-martingales with finite entropy. The set of 

these measures is given by the following sets. ([5] and [6]).  

( ) ( ) d d| and log
d d

e
f e

Q QS Q S Q E
P Pσ

   = ∈ ∈ < +∞      
        (18) 

( ) ( ) ( ) ( ){ }| 0, log is locally integrable,e
loc locS Z P Z Z Z ZS Pσ= ∈ > ∈    (19) 

The minimization problem of ( )
,

min ,
e loc

E
Z h Z P∈  is equivalent to minimize 

the Hellinger process over the set of densities that have the following predictable 
representation ( 0g =  and 0N ′ = ). 

Therefore we are going to have the following minimization entropy-Hellinger 
process.  

( ) ( )T

0

1, ln 1
2

ˆ ˆ1 ˆln 1
1 1

E

s t

h Z P c A f f f

f f a f a
a a

β β ν

< ≤

= ⋅ + − −  

  − −
+ − + −   − −   
∑



           (20) 

3. Solution of Minimization Problem Based on Entropy  
Hellinger Process of Sigma Martingale Density of Order  
One  

Theorem 2 According to [3], in order to have minimization solution of (20) 
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we have an assumption of discounted price process  

( ) ( )T
| | 1

exp d
x

x x F xλ
>

< +∞∫  

and the solution to  

( )
,

min ,
a loc

E

Z
h Z P

∈
 

exists and is given by  

( )
( )

0
c

t t

Z N

N S Wβ µ ν

= >

= ⋅ + −

�

�� �



 

where  

( )
( )
( ) ( )( )

{ }

T

T

0

exp 1

1 exp d

t

t
t

t t

t t A

x
W x

a x t x

λ

λ ν

β λ ∆ =

−
=

− + ×

=

∫

�
�

�

� � 1

             (21) 

where { }0tt Aλ ∆ ≠
� 1  is a root for  

( ) ( )( )exp ; d 0x w t xλ ν× × =∫  

while { }0tt Aλ ∆ =
� 1  is a root for 

( ) ( ) ( ) ( )( ) ( )0 , , e ,dE x
t t tG w t b w c w x h x F w xλλ λ= = + + −∫  

Since we know that ( ) ( )( )cZ N S Wβ µ ν= = ⋅ + −   . We are going to mi-
nimize the following equation  

( )
( )T

, 0

ˆ ˆ1 1 ˆmin ln 1 ln 1
2 1 1f s t

f f ac A f f f f a
a aβ

β β ν
< ≤

   − − ⋅ + − − + − + −        − −    
∑  (22) 

By distinguishing the cases where 0A∆ =  and the case where 0A∆ ≠ , this 
problem can be split into the following two minimization problems. The first 
problem ( 0A∆ = ) is defined by  

( ) ( )T1 d ln 1 d d
2 tc A f f f F x Aβ β + − −  ∫ ∫               (23) 

where the minimization is over all couples ( ), fβ  satisfying  

( )( ) ( )d 0tb c x h x xf F xβ+ + − + =∫                  (24) 

The second problem ( 0A∆ ≠ ) is defined as follows  

( ) ( )
0

ˆ ˆ1 ˆln 1 d ln 1
1 1t

s t

f f af f f v x f a
a a< ≤

  − −
− − + − + −       − −   

∑∫      (25) 

where the minimization is over the functional f such that  

( )d 0txf xν =∫                          (26) 

The conditions (24) and (26) correspond to the conditions given in above 
theorem and conditions which is known for given for a local martingale to be a 
sigma martingale density Equations (2) and (3) 
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3.1. Solving Euler-Lagrange Equation of the First Problem  

Euler-Lagrange equation of the first problem ( 0A∆ = ) which is the combination 
of Equations (23) and (24).  

( ) ( ) ( )

( )( ) ( )( )

T1, d ln 1 d d
2

d d d d

0

t

t

L f c A f f f F x A

b A c A x h x xf F x A

β β β

λ β

= + − −  

− + + − +

=

∫ ∫

∫ ∫ ∫  

( ) ( ) ( )

( )( ) ( )( )

T1, ln 1 d
2

d

0

t

t

L f c f f f F x

b c x h x xf F x

β β β

λ β

= + − −  

− + + − +

=

∫

∫  

d :
d : e xf f λ

β β λ=

=
                         (27) 

Since our 
ˆ

1
1
f aW f

a
−

= − +
−

, we must introduce a new function  

1tm f= − ∈ � .  

Therefore we are going to have the following function for the first Lagrange 
equation 1 e 1x

tm f λ= − = − . 
Therefore the description of β�  and f�  is completely established  

{ }

{ } { } ( )
0

T
00 0 1 exp 1

t

tt t

A

t AA Am f x

β λ

λ

∆ =

∆ =∆ = ∆ =

=

= − = −

� �1

1 1 1
             (28) 

where λ  is the root for ( )( ) ( )T
e d 0x

tb c x h x F xλλ+ + − =∫  

3.2. Solving Euler-Lagrange Equation of the Second Problem  

Euler-Lagrange equation of the second problem ( 0A∆ ≠ ) which is the combina-
tion of Equations (25) and (26).  

( ) ( ) ( ) ( )

( )( ) ( )( )
0

, , , ln 1 d 1 ln 1
1

d d

0

t
s t

t t

L f f f f x a
a

xf x f x a

φφ λ α ν φ φ

λ ν α ν φ

< ≤

  = − − + − − − +      −  

− − − −

=

∑∫

∫ ∫  

d : ln
e x

f f x
f λ α

λ α
+

= +

=
                      (29) 

d : ln 1
1 a
φφ α − = − 

                    (30) 

( )d : d 0txf xλ ν =∫                      (31) 

( )d : d 0txf x aα ν φ− − =∫                   (32) 

Substitute Equations (29) into (31) 

( )
( )

e d 0

e d 0

x
t

x
t

x x

x x

λ α

λ

ν

ν

+ =

=

∫
∫

                      (33) 
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Equation (33) is one of the condition of Z to be σ-martingale density Equation 
(3).  

From Equation (30) we have  

( )( )1 1 ea αφ = − −                       (34) 

Substitute Equations (29) and (34) into Equation (32). 

( )
1e

1 e dx
ta x

α
λ ν

=
− + ∫

                    (35) 

Substitute Equation (35) into Equation (29)  

( )
( )

e
1 e d

x

t x
t

f x
a x

λ

λ ν
=

− + ∫
                   (36) 

If you multiply both equation with ( )dt xν  and integrate both equation we 
are going to have  

( ) ( )
( )

( )
e d

d
1 e d

x
t

t t x
t

x
f x x

a x

λ

λ

ν
ν

ν
=

− +
∫∫ ∫

                (37) 

If we add Equations (36) and (37) we are going to have  

( ) ( )
( )
( )

e e dˆ
1 e d

x x
t

t t x
t

x
f x f x

a x

λ λ

λ

ν

ν

+
+ =

− +
∫
∫

                 (38) 

The LHS of Equation (38) which is ( ) ( )ˆ
t tf x f x+  makes a function  

( ) ( )ˆ
t tW f x f x= +  which is not equal to 

ˆ
1

1
f aW f

a
−

= − +
−

. This function  

( ) ( )ˆ
t tW f x f x= +  makes the 

( )
( )

e e d

1 e d

x x
t

x
t

x
W

a x

λ λ

λ

ν

ν

+
=

− +
∫
∫

� . 

Since our 
ˆ

1
1
f aW f

a
−

= − +
−

, in order to get the required W  and W�  for mi- 

nimum entropy-Hellinger sigma martingale density, we must introduce a new 
equation 1tm f= − ∈ � . 

( ) ( )
0ee1 1 1

1 e d 1 e d

xx
A

t x x
t t

m f
a x a x

λλ

λ λν ν
∆ == − = − = −

− + − +∫ ∫
1

       (39) 

Therefore we have 
That is for the second problem. 
We can summarize Equations (28) and (29) as follows  

( )
e1 1

1 e d

x

t x
t

m f
a x

λ

λ ν
= − = −

− + ∫
                   (40) 

From Equation (40) multiply both sides by ( )dt xν  and find integration both 
sides. Then we are going to get  

( ) ( ) ( )
( )

d e d
1 1 e d

x
t t t

x
t

f x x a x a
a a x

λ

λ

ν ν

ν

− −
=

− − +
∫ ∫

∫
                 (41) 
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By combining Equation (40) and Equation (41) LHS and RHS we get the re-
quired minimal entropy Hellinger sigma martingale density 

( ) ( )

( ) ( ) ( ) ( )
T T1

,

e 1 , 1 e ,dt t

c

x x
t t t t

Z N N S W

W x a t xγ γ

β µ ν

γ γ ν−

= = ⋅ + −

= − = − + ∫� �

�� � � �

� � �

 
         (42) 

which is the same as Equation (21). 
A measurable function W in Jacod decomposition depends U P∈ � . We proved 

that, when we have another version of U it will change a measurable function W, 
an expression of entropy-Hellinger process as well as W� . In order to get a mea-
surable function W�  for an equation of minimal entropy-Hellinger sigma mar-
tingale density we introduce the function 1tm f= − ∈ �  and get  

( )
( )

T

T

e 1
1 e ,d

t

t

x

t x
t

W x
a t x

γ

γ ν

−
=

− + ∫

�

�
� . 

4. An Expression of Entropy Hellinger Process for a Positive  
Sigma Martingale of Order q  

According to [4] if we let ( )0,locN P∈  be such that ( )1 0N+ ∆ >  and 1q ≠ , 
and such that the nondecreasing adapted process  

( ) ( )
0

1 , 0
2

q c
t q st s t

V N N N t Tφ
< ≤

= + ∆ ≤ ≤∑              (43) 

is locally integrable, then the Hellinger process ( ) ( ),qH N P  of order 0q ≠  is 
the dual predictable projection of ( )q

tV N  with respect to P.  
The function ( )q xφ  in Equation (43) is defined as follows  

( )
( )

( )
1 1

, if 1 and 0,1
1

otherwise

q

q

x qx
x q

x q qφ

 + − −
> − ∉

= −
+∞

            (44) 

The set of sigma martingale densities which we are interested in is:  

( ) ( ) ( ){
( ) ( ) }1

0 | : 0 log locally integrable,

,

e
loc loc

q loc

S Z N N P Z Z Z

ZS P N Lσ φ

= = ≥ ∈ >

∈ ∆ ∈

  


 

As we have seen in the entropy-Hellinger process of order one: The entro-
py-Hellinger process of N with respect to probability measure P ( ( ) ( ),qh N P ) is 
the same as of sigma density ( )e

locZ q∈  denoted by ( ( ) ( ),q
th Z P ) and also is 

the same as of equivalent probability measure ( aQ∈ ) denoted by ( ( ) ( ),q
th Q P ). 

Proposition 3 (The entropy Hellinger process of order q) 

The Hellinger process of order q for N when { }1

ˆ 11
1 a
fW f

a <

−
= − +

−
1  is equal 

to  

( ) ( ) ( ) ( )( )

( )

T
0

0

1, 1 d d
2

ˆ
1 |

1

Tq
q t

q P
q q

s t

h N P c A f F x A

f a ga f P M
a fµ

β β φ

φ φ ν
< ≤

= ⋅ + −

    −
+ − − + +     −    

∫ ∫

∑ �



 
  (45) 
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Proof 
We are going to apply the same method used in [4] to prove the above Propo-

sition (3). From Equation (9) we are going to have 

( ) ( ) { } { }0 0

ˆ
1

1q q qS S
f aN f g N

a
φ φ φ∆ ≠ ∆ =

 −′∆ = + − + ∆ −  − 
1 1        (46) 

Since 1 0tN+ ∆ > , we derive  
ˆ

0, 1 0
1
f af g N

a
−′+ > + ∆ − >
−

 

Taking the conditional expectation under P
µ  with respect to �  in the 

first inequality and a predictable projection in the second one we are going to 
have  

{ } { }ˆ0 1

ˆ
0, 1 0

1
0, 0f a f a

f af
a

g N= − = −

−
> − >

−
′= ∆ =1 1

 

As from [4] we first compute the compensator of ( ) { }01q Sf gφ ∆ ≠Ψ = + −∑ 1 . 
Therefore 

( ) ( )
1 11 1

1

q
q

q q q
g ff g f f g
f q

φ φ φ
−   −

+ − = − + +    −   
 

That means we have the following equation  

( ) { } ( ) { }

1

0 0
11 1

1

q
q

q q qS S
g ff g f f g
f q

φ φ φ
−

∆ ≠ ∆ ≠

    −
+ − = − + +    −    

∑ ∑1 1  

From the definition of random measure we have  

( ) ( )
1 11 1

1

q
q

q q q
g ff g f f g
f q

φ µ φ µ φ µ µ
−   −

+ − = − + +    −   
       (47) 

The compensator of the LHS of Equation (47) is equal to the sum of the com-
pensators of the RHS of Equation (47). 

The compensator of ( )1q fφ µ−   is equal to the  
( ) ( ) ( )

0
1 1 d d

T
q q tf f F x Aφ ν φ− = −∫ ∫  

The compensator of q
q

gf
f

φ µ
 
 
 

  is given by |q P
q

gf P
fµ φ ν

  
  

  
�   

The compensator of the last term: We are going to introduce the set  

( ) 1, , : q
nC w t x f n− = ≠  . Since ( )| 0P g Pµ =� , Then the compensator of  

1 11
1n

q

C
f g
q

µ
− −

 − 
  is equal to 0.  

Therefore the compensator of Ψ  is  

( ) ( )
0

1 d d |
T q P

q t q
gf F x A f P
fµφ φ ν

  
− +   

  
∫ ∫ �


         (48) 

Now we compute the compensator of  
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{ }0

ˆ

1q S
f aN

a
φ ∆ =

 −′= ∆ −  − 
∑ 1  

Then 

1

ˆ ˆ ˆ
1 ˆ1 1 1

1
1

ˆ
1 1

1
1

q q q

q

f a f a f a NN
a a a f a

a

f a
a

N
q

φ φ φ

−

 
       ′− − − ∆ ′∆ − = − + −          − − −  −      − − 

 −
− −  −  ′+ ∆

−

 

Therefore 

{ }

{ } { }

{ }

0

0 0

1

0

ˆ

1

ˆ ˆ
1 ˆ1 1

1
1

ˆ
1 1

1
1

q S

q qS S

q

S

f aN
a

f a f a N
a a f a

a

f a
a

N
q

φ

φ φ

∆ =

∆ = ∆ =

−

∆ =

 −′∆ −  − 
 
     ′− − ∆ = − + −      − −  −    − − 

 −
− −  −  ′+ ∆

−

1

1 1

1

        (49) 

The compensator of the LHS of Equation (49) is equal to the sum of the com-
pensators of the RHS of Equation (49). 

The compensator of 0

ˆ

1qs t

f a
a

φ
< ≤

 −
−  − 

∑  is equal to  

( )0

ˆ
1

1qs t

f aa
a

φ
< ≤

 −
− −  − 

∑  

Let the compensator of 
ˆ

1 ˆ1
1

1

q
f a N

a f a
a

φ

 
   ′− ∆ −  −  −  − − 

 be equal to M 

The compensator of the process 

1ˆ
1 1

1
1

q
f a

a
N

q

−
 −

− −  −  ′∆
−

 is equal to 0. 

Therefore the compensator of   is  

( )
0

ˆ
1 .

1q
s t

f aa M
a

φ
< ≤

 −
− − +  − 

∑                    (50) 

Therefore by combining Equation (48) and Equation (50) we get Equation 
(45).  

From Jacod decomposition Equation (4) if we set ( )1 cN S Wβ µ ν= ⋅ + −  
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and ( )1 1Z N=  . If ZS  is a σ-martingale. then 1Z S  is also a σ-martingale be-
cause N ′  preserves the martingales property for S, 

Then ( ) ( ),1
, ,

r
e eq qσ σ⊆   

where ( ) ( ) ( ) ( ){ },1
, ,|r

e eq Z N N qσ σ′= = ∈    . 

Therefore for the minimization problem  
( ) ( ) ( ) ( )

, ,1
,

min , min ,
e loc

q q

rZ Z e loc

h Z P h Z P
∈ ∈

=
 

 

we are going to have the following equation for the hellinger process.  

( ) ( ) ( ) ( )( )

( )

T
0

0

1, 1 d d
2

ˆ
1

1

Tq
q t

q
s t

h N P c A f F x A

f aa
a

β β φ

φ
< ≤

= ⋅ + −

 −
+ − −  − 

∫ ∫

∑

�

         (51) 

5. Solution of Minimization Problem Based on Entropy  
Hellinger Process of Sigma Martingale Density of Order q  

Theorem 4 According to [4] for a solution of Equation (51) to exist, we have 
an assumption of discounted price proces 

( ) ( ) ( )
1

T 11 dqx x h x F xλ −+ − < +∞∫                 (52) 

and a solution of Equation (51) exists and is given by  
( ) ( )( )
( ) ( ) ( ) ( )

q q

q q qc

Z N

N S Wβ µ ν

=

= ⋅ + −




                   (53) 

where 

( )

( ) ( )
( )
( ) ( )

1
T 1

1
T 1

1
1

1 1
,

1 1 d

q
t t

q
tq

q
t t t

q

x
W t x

a x x

β λ

λ

λ ν

−

−

=
−

+ −
=

− + +∫

�

�

�

               (54) 

Since we know that ( ) ( )( ) ( ) ( ) ( )( )q q q qcZ N S Wβ µ ν= = ⋅ + −   , we are going 

to minimize the following equation  

( ){ }
( ) ( )( ) ( )T

0, 0

ˆ1min 1 d d 1
2 1t

T
q t qf x s t

f ac A f F x A a
aβ

β β φ φ
< ≤

  −
⋅ + − + − −    −  

∑∫ ∫  (55) 

By distinguishing the cases where 0A∆ =  and the case where 0A∆ ≠ , this 
problem can be split into the following two minimization problems. 

The first problem 0A∆ =  is defined by  

( ) ( )T
0

1 1
2

T
q tc f F dxβ β φ+ −∫ ∫                   (56) 

where the minimization is over all couples ( )( ), tf xβ  satisfying  
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( ) ( )( ) ( )1 dtb c x h x x f F xβ+ + − + −∫                (57) 

The second problem 0A∆ ≠  is defined as follows  

( ) ( )( ) ( )
0

0

ˆ
1 d d 1

1
T

q t q
s t

f af F x A a
a

φ φ
< ≤

 −
− + − −  − 

∑∫ ∫           (58) 

where the minimization is over the function ( )tf x  such that 

( ) ( )d 0t tf x x xν =∫                         (59) 

5.1. Solving Euler-Lagrange Equation of the First Problem  

Euler-Lagrange equation of the first problem on 0A∆ =  which is a combina-
tion of (56) and Equation (57)  

( )( ) ( )
( )
( ) ( )( ) ( )( )

T
0

1 11, ,
2 1

1 d

q
T

t

f q f
L f x c

q q

b c x h x x f F x

β λ β β

λ β

− − −
= +

−

− + + − + −

∫ ∫

∫

  

( )
1

1

d :

d : 1 q

c c

f f x

β β λ

λ β λ−

=

= + =
                  (60) 

( ) ( )( ) ( )( )d : 1 d 0tb c x h x x f F xλ β+ + − + − =∫           (61) 

Therefore we are going to have the following 

( ) ( )
1

11 qtf x x

β λ

λ −

=

= +

�

�
                       (62) 

When we substitute Equation (60) into Equation (61).  

( ) ( ) ( )
1

11 d 0q tb c x h x F xλ λ −
 + + + − = 
 ∫               (63) 

5.2. Solving Euler-Lagrange Equation of the Second Problem  

The Second equation on 0A∆ ≠  is as follows  

( )( ) ( )
( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )( )

0

1 1
, , d

1

1 1
1 11

1

d d

q
T

t

q

t t t t

f q f
L f x F x

q q

a q
a aa

q q

xf x F x f x x a

λ ρ

κ κ

λ ρ ν κ

− − −
=

−

− − −   − −   − −   + −
−

− − − −

∫ ∫

∫ ∫



 

We are going to have the following equations  

( )( )
( ) ( ) ( )

( ) ( )
( ) ( )

1

1 1

d : 1 1

d : 1 1 1 1

d : d 0

d : d 0

q

q q

t t

t t

f f q x

a a q

xf x F x

f x x a

λ ρ

κ κ ρ

λ

ρ ν κ

−

− −

− = − +

− − − = + −

=

− − =

∫
∫

               (64) 
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From the first Equation in (64) we are going to have  

( )( ) ( )
( )

( )
( )

( )( )( )

1

1
1

1
1 1 1

1 1

1
Let

1 1

1 1 1

q

q

q x
f q

q

q
q

f q x

λ
ρ

ρ

λ
ρ

ρ

−

−

 −
= − − +  + − 

−
Γ =

+ −

 = − − + Γ 

                (65) 

From second Equation in (64) make κ  the subject  

( )
( )

1
1

1

1 1
1

1

q

q

q
a

a

ρ
κ

−

−

 + −
 = − −
 − 

                    (66) 

Substitute (65) and (66) into the fourth Equation in (64) and make ρ  the 
subject.  

( ) ( )

1

1
1

1 1 1
1 11 1 d

q

q t
q qa x x

ρ
ν

−

−

 
 = − − − − + + Γ ∫

            (67) 

Substitute the Equation (67) into Equation (66)  

( ) ( )

( ) ( )

1
1

1
1

1

1 1 d

q

t
q t

x
f x

a x xν

−

−

+ Γ
=

− + + Γ∫
                 (68) 

From Equation (65), ( )
( )

1
1 1

q
q

λ
ρ

−
Γ =

+ −
. That means λΓ ∝ , Therefore  

kλΓ =  and ( )
( )

1
1 1

q
k

q ρ
−

=
+ −

. If we assume ( )
( )

1
1

1 1
q

k
q

λ
ρ

−
= =

+ −
. Then λΓ =  

Then we are going to have  

( ) ( )

( ) ( )

1
1

1
1

1

1 1 d

q

t
q t

x
f x

a x x

λ

λ ν

−

−

+
=

− + +∫
                (69) 

So if you multiply the above Equation (69) by ( )dt xν  and integrate both 
sides with respect to it we get:  

( ) ( )
( ) ( )

( ) ( )

1
1

1
1

1 d
d

1 1 d

q t
t t

q t

x x
f x x

a x x

λ ν
ν

λ ν

−

−

+
=

− + +

∫∫
∫

             (70) 

If you add Equation (69) and and Equation (70) we get  

( ) ( ) ( )dt t tW f x f x xν= + ∫  which is equal to ( ) ( )t tW f x f x= + �  and this equa-

tion is not equal to given 
ˆ

1
1
f aW f

a
−

= − +
−

. 

This function ( ) ( ) ( )dt t tW f x f x xν= + ∫  gives us  

( ) ( ) ( )

( ) ( )

1 1
1 1

1
1

1 1 d

1 1 d

q q t

q t

x x x
W

a x x

λ λ ν

λ ν

− −

−

+ + +
=

− + +

∫

∫
� . 
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Since 
ˆ

1
1
f aW f

a
−

= − +
−

, in order to get the required minimal entropy-Hel- 

linger sigma martingale density we need to introduce the new function  

1tm f= − ∈ �  where 
( )

( ) ( )

1
1

1
1

1

1 1 d

q

q t

x
f

a x x

λ

λ ν

−

−

+
=

− +∫
. 

Therefore 

( )

( ) ( )

1
1

1
1

1
1 1

1 1 d

q

t
q t

x
m f

a x x

λ

λ ν

−

−

+
= − = −

− + +∫
               (71) 

Multiply both sides by ( )dt xν  and integrate both sides. Then we are going to 
get:  

( ) ( ) ( ) ( )

( ) ( )

1
1

1
1

d 1 d
1 1 1 d

qt t t

q t

f x x a x x a
a a x x

ν λ ν

λ ν

−

−

− + −
=

− − + +

∫ ∫

∫
            (72) 

By adding Equation (71) and Equation (72) we get the required minimal en-
tropy-Hellinger sigma martingale density Equation (54). 

As we have seen on entropy-Hellinger process of order one, a measurable 
function W in Jacod decomposition depends U P∈ � . We proved that, when we 
have another version of U it will change a measurable function W, an expression 
of entropy-Hellinger process as well as W� . In order to get a measurable func-
tion W�  for an equation of minimal entropy-Hellinger sigma martingale densi-
ty even in this entropy process of order q we introduce the new function  

1tm f= − ∈ �  and get a required ( ) ( )
( )
( ) ( )

1
T 1

1
T 1

1 1
,

1 1 d

q
tq

q
t t t

x
W t x

a x x

λ

λ ν

−

−

+ −
=

− + +∫

�

�
. Also 

in our case we find out β λ=  which is different compare to [4] where  
1

1q
β λ=

−
. 

6. An Expression of Entropy Hellinger Process for a Positive  
Sigma Martingale of Order Zero  

If ( )0,locN P∈  be such that ( )1 0N+ ∆ >  and 1q ≠  such that the nonde-
creasing adapted process  

( ) ( )0
0

0

1 , 0
2

c
t st s t

V N N N t Tφ
< ≤

= + ∆ ≤ ≤∑             (73) 

is locally integrable, then the Hellinger process ( ) ( )0 ,H N P  of order 0q =  is 
the dual predictable projection of ( )0

tV N  with respect to P. 
The function ( )0 xφ  on the above Equation (73) is given as  

( ) ( )
0

log 1 , if 1 and 0
otherwise

x x x q
xφ

− + > − =
= 

+∞
 

The set of sigma martingale densities which we are interested in:  
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( ) ( ) ( ){
( ) ( ) }1

0

0 | : 0 log locally integrable,

,

e
loc loc

loc

S Z N N P Z Z Z

ZS P N Lσ φ

= = ≥ ∈ >

∈ ∆ ∈

  


 

As we have seen in the entropy-Hellinger process of order one: The entro-
py-Hellinger process of N with respect to probability measure P ( ( ) ( )0 ,h N P ) is 
the same as of sigma density ( )0e

locZ q∈ =  denoted by ( ( ) ( )0 ,th Z P ) and also 
is the same as of equivalent probability measure ( aQ∈ ) denoted by  
( ( ) ( )0 ,th Q P ).  

Proposition 5 (The entropy-Hellinger process of order zero) 

The Hellinger process of order 0 for N when { }1

ˆ 11
1 a
fW f

a <

−
= − +

−
1  is equal to  

( ) ( ) ( ) ( )( )

( ) ( )

0 T
0

0

1, 1 ln d d
2

ˆˆ 1 ln 1
1

ln 1 | .

T
t

s t

P

h N P c A f f F x A

f af a a
a

g gf P L
f fµ

β β

ν

< ≤

= ⋅ + − −  

  −
+ − − − − −    −  

  
+ − + +  

  

∫ ∫

∑

�



 

     (74) 

Proof 
From Jacod decomposition { }0t t SN N ∆ =′ ′∆ = ∆ 1 , 
We have the following assertions  

ˆ0
0

1

0 andf f a
a

g N= −
=

−

′= ∆1 1  

From Equation (9) 

( ) 0 0

ˆ
1

1S S
f aN f g N

a∆ ≠ ∆ =

 −′∆ = + − + ∆ −  − 
1 1  

Also from (12) we have 

( ) 0 0

ˆ
1 1

1S S
f aN f g N

a∆ ≠ ∆ =

 −′+ ∆ = + + + ∆ −  − 
1 1  

( )
ˆ

0, 1 0
1
f af g N

a
−′+ ≥ + ∆ − ≥
−

                (75) 

By taking the conditional expectation in the first equation in Equation (75) 
with respect to P�  and predictable projection in the second Equation in (75) we 
are going to have  

ˆ
0, 1 0

1
f af

a
−

≥ − ≥
−

                     (76) 

From Equation (73) on the RHS we have  

( ) ( )( )

( ) ( )( )
0

0<

0

ln 1

1 ln

ˆ ˆ
ln 1

1 1

s
s t

S

N N N

f g f g

f a f aN N
a a

φ

µ
≤

∆ =

∆ = ∆ − + ∆

= + − − +

    − −′ ′+ ∆ − − + ∆ −        − −    

∑



1
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By using the assertion above  

( ) ( )( )T

0
0

0

1, 1 ln
2

ˆ ˆ
ln 1

1 1

1ln 1
2

ˆ
1 1ˆ ˆ1

1 1
1 1

S
s t

c

S
s t

V N P c A f f

f a f a
a a

g gf N
f f

f a N N
a f a f a

a a

β β µ

µ

∆ =
< ≤

′

∆
< ≤

= ⋅ + − −

    − −
+ − − −        − −    

  
+ − + +  

  

    
      ′ ′− ∆ ∆    + − − +  −     − −  − −    − −    

∑

∑





1

1 0

0

ˆ
ln ln 1

1s t

f ag f N
a

µ

=

< ≤

 − ′+ + − ∆  − 
∑

  (77) 

The dual predictable projection of the last two terms in the RHS of the Equa-
tion (77) will vanish due to the duality predictable projection properties of local 
martingal N and g. 

Let L be dual predictable projection of the following equation  

00

ˆ1 1 1ˆ ˆ2 1
1 1

1 1

c
Ss t

f a N NK N
a f a f a

a a

′
∆ =< ≤

    
      ′ ′− ∆ ∆    = + − − +  −     − −  − −    − −    

∑ 1  

Taking the dual predictable projection of the remaining terms we are going to 
have.  

( ) ( )( )

( )

0 T

0

1, 1 ln
2

ˆ ˆ
ln 1 1

1 1

ln 1 |

s t

P

h N P c A f f

f a f a a
a a

g gf P L
f fµ

β β ν

ν

< ≤

= ⋅ + − −

    − −
+ − − − −        − −    

  
+ − + +  

  

∑

�



 

         (78) 

Which is the same as (74) 
The minimization problem of ( )

,
min ,

e loc

E
Z h Z P∈  is equivalent to minimize 

the Hellinger process over the set of densities that have the following predictable 
representation ( 0g =  and 0N ′ = ). 

Therefore we are going to have the following minimization entropy-Hellinger 
process.  

( )

( )( )

( ) ( )

0

T

0

,

1 1 ln
2

ˆˆ 1 ln 1
1s t

h N P

c A f f

f af a a
a

β β ν

< ≤

= ⋅ + − −

  −
+ − − − − −    −  
∑

            (79) 
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7. Solution of Minimization Problem Based on Entropy  
Hellinger Process of Sigma Martingale Density of Order  
Zero 

By distinguishing the cases where 0A∆ =  and the case where 0A∆ ≠ , this 
problem can be split into the following two minimization problems. The first 
problem ( 0A∆ = ) is defined by  

( )( )T1 d 1 ln d
2 tc A f f F Aβ β + − −∫ ∫                 (80) 

where the minimization is over all couples ( ), fβ  satisfying  

( ) ( )( ) ( )1 d 0tb c x f h x F xβ+ + + − =∫                (81) 

The second problem ( 0A∆ ≠ ) is defined as follows  

( )( ) ( ) ( )
0

ˆˆ1 ln 1 ln 1
1s t

f af f f a a
a

ν
< ≤

  −
− − + − − − − −    −  

∑      (82) 

where the minimization is over the functional f such that  

( )d 0txf xν =∫                         (83) 

The conditions (81) and (83) correspond to the conditions given in above 
theorem and conditions given for a local martingale to be a sigma martingale 
[5]. 

7.1. Solving Euler-Lagrange Equation of the First Problem  

Euler-Lagrange equation of the first problem due to Equation (80) and Equation 
(81)  

( ) ( )( ) ( )

( ) ( )( ) ( )( )

T1, d 1 ln d d
2

d d 1 d d

0

t

t

L f c A f f F x A

b A c A x f h x F x A

β β β

λ β

= + − −

− + + + −

=

∫ ∫

∫ ∫ ∫  

( ) ( )( ) ( )

( ) ( )( ) ( )( )

T1, 1 ln d
2

1 d

0

t

t

L f c f f F x

b c x f h x F x

β β β

λ β

= + − −

− + + + −

=

∫

∫  

d :
1d :

1
f f

x

β β λ

λ

=

=
−

                       (84) 

Therefore the description of β�  and f�  due to Equation (84) is equal to  

{ } { } { }0 0 0
1,

1A A Af
x

β λ
λ∆ = ∆ = ∆ =

 = =  − 
�� �1 1 1              (85) 

7.2. Solving Euler-Lagrange Equation of the Second Problem 

The Lagrangian for this minimization problem due to Equations (82) and (83) is 
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given by  

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
0

, , , 1 ln d 1 ln 1
1

d d

0

t
s t

t t t t

L f f f x a
a

xf x x f x x a

φφ λ α ν φ

λ ν α ν φ

< ≤

  = − − + − − − −  −  

− − − −

=

∑∫

∫ ∫  

( )

( )

( ) ( )

1d :
1

1d : 1
1

d : 0

d : d 0

t

x dx

t t

f f x
x

a
a

xf

f x x a

λ α

φ α
φ

λ ν

α ν φ

=
− −

−
= −

− −

=

− − =

∫
∫

                  (86) 

Substitute the first Equation of (86) into the third Equation of (86)  

( )d 0
1 t

x x
x

ν
λ α

=
− −∫                     (87) 

From the second Equation (86) make φ  the subject  

( )( )1
1
a α

φ
α

− −
=

−
                       (88) 

Substitute Equation (88) into the fourth Equation (86) and make α  the sub-
ject  

( ) ( ) ( )( )

( ) ( )
( ) ( )

1
d 0

1

d

d 1

t t

t t

t t

a
f x x a

f x x a

f x x

α
ν

α

ν
α

ν

− − 
− − = 

− 
−

=
−

∫

∫
∫

              (89) 

Substitute Equation (89) into the first Equation (86)  

( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
d 1

1 d 1 d
t t

t
t t t t

f x x
f x

x f x x f x x a

ν

λ ν ν

−
=

− − − −
∫

∫ ∫
     (90) 

Multiply both sides of Equation (90) by ( )dt xν  and integrate the equation  

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

d
d

1
d 1

d d 1

1 d 1 d

t t
t t

t t

t t t t

t t t t

af x x
f x x a

x
f x x

f x x f x x
a x f x x f x x a

ν
ν

λ
ν

ν ν

λ ν ν

=
 −

− −  
−  

−
=

− − − −

∫
∫
∫

∫ ∫
∫ ∫

   (91) 

If we add Equations (90) and Equation (91) on LHS we are going to have 

( )
( ) ( )dt t

t

f x x
W f x

a
ν

= + ∫  which is equal to  

( ) ( )t̂
t

f x
W f x

a
= +  and this equation gives us  
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( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

d 1ˆ
1 d 1 d

d 1

1 d 1 d

t t

t t t t

t t

t t t t

f x x
W

x f x x f x x a

f x x

x f x x f x x a

ν

λ ν ν

ν

λ ν ν

−
=

− − − −

−
+

− − − −

∫
∫ ∫

∫
∫ ∫

 on the RHS. 

This is equal to 

( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

d 1ˆ 2
1 d 1 d

t t

t t t t

f x x
W

x f x x f x x a

ν

λ ν ν

−
=

− − − −
∫

∫ ∫
 

But we know 
ˆ

1
1
f aW f

a
−

= − +
−

 

Therefore let  

( ) ( )
( ) ( )
( ) ( )

11 where
d

1
d 1

t t
t t

t t

m f x f x
f x x a

x
f x x

ν
λ

ν

= − ∈ =
 −

− −  
−  

∫
∫

�  

( )
( ) ( )
( ) ( )

11 1
d

1
d 1

t
t t

t t

m f x
f x x a

x
f x x

ν
λ

ν

= − = −
 −

− −  
−  

∫
∫

           (92) 

From Equation (92)  

( )
( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )( ) ( ) ( )( )
d 1 1 d 1 d

1
1 d 1 d

t t t t t t

t
t t t t

f x x x f x x f x x a
f x

x f x x f x x a

ν λ ν ν

λ ν ν

− − − − − −
− =

− − − −

∫ ∫ ∫
∫ ∫

 (93) 

Multiply both sides of Equation (92) by ( )dt xν  and integrate both sides  

( ) ( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
d 1

d
1 d 1 d

t t
t t

t t t t

a f x x
f x x a a

x f x x f x x a

ν
ν

λ ν ν

 − − = −
− − − −

∫
∫

∫ ∫
  (94) 

If we put the common denominator in the above equation we are going to 
have  

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 11
d 1

d
1

d 1

1 11
1 d 1d

1 1
d 1

t t

t t

t t

t tt t

t t

aa x
a f x x

f x x a
ax

f x x

a ax
a a f x xf x x a

a ax
f x x

λ
ν

ν

λ
ν

λ
νν

λ
ν

  −  − +
  −  − =

 − − −
 − 
  −  − +

  − −−   =
−  − − −

 − 

∫
∫

∫

∫∫

∫

      (95) 

If you add LHS Equations (93) and (95) we are going to have  

( )
( ) ( )d

1
1

t t
t

f x x a
W f x

a
ν −

= − +
−

∫                 (96) 

And if you add the RHS of Equations (93) and (95) we are going to have  
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( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

( ) ( )

d 1 1 d 1 d
ˆ

1 d 1 d

1 11
1 d 1

1
d 1

t t t t t t

t t t t

t t

t t

f x x x f x x f x x a
W

x f x x f x x a

a ax
a a f x x

ax
f x x

ν λ ν ν

λ ν ν

λ
ν

λ
ν

− − − − − −
=

− − − −

  −  − +
  − −  +

 − − −
 − 

∫ ∫ ∫
∫ ∫

∫

∫

(97) 

The result is difference compared with the order one and order is not equal to 
one. This is because even after we introduce a function 1tm f= − ∈ �  in order 
to get Ŵ  for minimal entropy Hellinger sigma martingale density, we fail to 
get a required results. 

Therefore: For order zero it is possible to get the equation of W but it is not 
possible to get a required Ŵ  for the minimal entropy-Hellinger sigma martin-
gale density. 

8. Conclusions and Recommendations  
In the process of forming expressions of Entropy-Hellinger processes of order 
one, order q and order zero the researchers used a local martingale jump equa-
tion of Jacod decomposition. As we know Jacod decomposition has known pa-

rameters ( ), , ,W g Nβ ′ . A measurable function 
ˆ

1
UW U

a
= +

−
 where U ∈ � . 

If we have a new version of U with the conditions that 1N∆ > −  then also  

1U > − . If we set 1U f= − , then we are going to have { }1

ˆ
1

1 a
f aW f

a <

−
= − +

−
1 .  

In this research work, we provide and prove other expressions of entropy-Hel- 
linger processes for a positive sigma martingale of order one, order q and order 
zero. Furthermore, we show how measurable functions W and W�  change dur-
ing our minimizations solutions and we introduce a function 1tm f= − ∈ �  in 
order to get a required equation of minimal entropy-Hellinger sigma martingale 
density. However, the results is different to the minimization of entropy-Hel- 
linger process of order zero because it is possible to get an equation of measura-
ble function W after an introduction of function 1tm f= − ∈ �  but it is not 
possible to get an equation of measurable function W� . 

This study is based on a proposed dynamic method of finding an equivalent 
sigma martingale measure and/or density by using entropy-Hellinger process. 
Since we show it is possible to have other expressions of entropy-Hellinger 
processes of all orders. For future studies we recommend other forms of expres-
sions of entropy-Hellinger processes to be considered. This will be possible if 
new versions of parameters of Jacod decomposition are set under needed condi-
tions. 
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