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Abstract 
In the previous paper by one of us (hereafter paper I), the author considered 
Rydberg states of the muonic-electronic helium atom or helium-like ion and 
used the fact that the muon motion occurs much more rapidly than the elec-
tron motion. Assuming that the muon and nucleus orbits are circular, he ap-
plied the analytical method based on separating rapid and slow subsystems. 
He showed that the electron moves in an effective potential that is mathe-
matically equivalent to the potential of a satellite orbiting an oblate planet like 
the Earth. He also showed that the “unperturbed” elliptical orbit of the elec-
tron engages in two precessions simultaneously: the precession of the electron 
orbit in the plane of the orbit and the precession of the orbital plane of the 
electron around the axis perpendicular to the plane of the muon and nuclear 
orbits. The problem remained whether or not the allowance for the ellipticity 
of the orbit could significantly change the results. In the present paper, we 
address this problem: we study how the allowance for a relatively low eccen-
tricity ε of the muon and nucleus orbits affects the motion of the electron. We 
derive an additional, ε-dependent term in the effective potential for the mo-
tion of the electron. We show analytically that in the particular case of the 
planar geometry (where the electron orbit is in the plane of the muon and 
nucleus orbits), it leads to an additional contribution to the frequency of the 
precession of the electron orbit. We demonstrate that this additional, ε-depen- 
dent contribution to the precession frequency of the electron orbit can reach 
the same order of magnitude as the primary, ε-independent contribution to 
the precession frequency. Therefore, the results of our paper seem to be im-
portant not only qualitatively, but also quantitatively. 
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1. Introduction 

Muonic atoms and molecules have numerous applications—see, e.g., papers [1] 
[2] [3] [4] [5] and references therein. These were the inspiration for studying Ryd-
berg quasimolecules μZe, consisting of a nucleus of charge Z, a muon, and an 
electron [6] [7] [8]. 

In particular, in paper [6] the author considered Rydberg states of the muo-
nic-electronic helium atom or helium-like ion and used the fact that the muon 
motion occurs much more rapidly than the electron motion. Therefore, he ap-
plied the analytical method centered on separating rapid and slow subsystems. 
He showed that the electron moves in an effective potential that is mathemati-
cally equivalent to the potential of a satellite orbiting an oblate planet (the Earth 
satellite being an example). 

Further, in paper [6] it was shown that the “unperturbed” elliptical orbit of the 
electron engages in the following two precessions simultaneously: the precession 
of the electron orbit in the plane of the orbit and the precession of the orbital 
plane of the electron around the axis of symmetry of the muonic orbit. Despite 
these two precessions, the elliptical orbit of the Rydberg electron does not change 
its shape. The fact that the area of the elliptical orbit is conserved manifests the con-
servation of the square of the electron angular momentum. Thus, the system has 
higher than geometrical symmetry: indeed, from the geometrical symmetry 
(which is axial) followed only the conservation of the projection of the angular 
momentum on the axis of symmetry. This was a counterintuitive result of gener-
al physical interest. 

In paper [6] the muon and nucleus orbits were considered circular. The prob-
lem remained whether or not the allowance for the ellipticity of the orbit could 
significantly change the results. In the present paper, we address this problem: 
we consider a more general situation where the muon and nucleus orbits are el-
liptical. We study how the allowance for a relatively low eccentricity ε of the 
muon and nucleus orbits affects the motion of the electron. We derive an addi-
tional, ε-dependent term in the effective potential for the motion of the electron. 
We show analytically that in the particular case of the planar geometry (where 
the electron orbit is in the plane of the muon and nucleus orbits), it leads to an 
additional contribution to the frequency of the precession of the electron orbit. 
We demonstrate that this additional, ε-dependent contribution to the precession 
frequency of the electron orbit can reach the same order of magnitude as the 
primary, ε-independent contribution to the precession frequency. 

2. New Results 

As in paper [6], in this study we analyze the system consisting of a muon, an 
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electron and a nucleus of charge Z. Both leptons are in Rydberg states such that 
their principal quantum numbers are 1nµ   (for the muon) and 1en   (for 
the electron). The electron is much further way from the nucleus than the muon— 
due to the large difference in the masses of the two leptons. 

In this study we consider the case of low-eccentricity orbits of the muon and 
the nucleus. For a Coulomb potential: 

U
r
α

= −                             (1) 

(where α = Ze2, e being the electron charge), the equation of the motion in the 
orbital plane is: 

1 cosp
r

ε ϕ= +                          (2) 

Here: 
2 2

2

2, 1
r r

L ELp
m m

ε
α α

= = +                      (3) 

where ε is the eccentricity, (r, φ) are the polar coordinates, E is the energy, L in 
the angular momentum, and mr is the reduced mass of the subsystem “par-
ticle—Coulomb center”. 

For low-eccentricity orbits ( 1ε  ), we have: 

( ) ( )01 cos 1 cos
1 cos

pr p rε ϕ ε ϕ
ε ϕ

= ≈ − = −
+

            (4) 

where r0 is the radius of the circular orbit for ε = 0. As the case ε = 0 was ana-
lyzed in paper [6], the Rydberg electron perceives the rapid subsystem (the nuc-
leus and the muon) as two uniformly charged rings of radii Rnucl0 and Rμ0, where 

0 0 1nucl nuclR R m mµ µ=   (mnucl is the mass of the nucleus). The effective po-
tential for the Rydberg electron in that case was: 

( ) ( ) ( ) ( )
2 2 22

0 00 2
3

1
3cos 1

4
nucl

eff

e R ZRZ e
U

r r
µ θ
−−

= − − −          (5) 

In our case of 1ε  , the quantities Rμ and Rnucl are the following functions of 
time: 

( ) ( )0 01 cos , 1 cosnucl nuclR R t R R tµ µ ε ε= − Ω = − Ω               (6) 

where 

( )
2 2

3 3
00 0 rr nucl

Ze Ze
m Rm R R µ µµ µ

Ω = ≈
+

               (7) 

is the frequency of revolution of the muon and of the nucleus about their center 
of mass, and 

nucl
r

nucl

m m
m

m m
µ

µ
µ

=
+

                        (8) 

is the reduced mass of the pair “nucleus-muon”. Substituting Equation (6) into 
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Equation (5), we obtain the following time-dependent “potential”: 

( ) ( ) ( ) ( )
( ) ( )

2 2 2
0 00 2

3

0

3cos 1 cos
2

,cos cos

nucl
eff

eff

e R ZR
U t U t

r
U W r t

µ θ ε

θ

−
= + − Ω

≡ + Ω

         (9) 

The term ( ), cos cosW r tθ Ω  can now be processed by the method of effec-
tive potentials [9] [10] [11] [12] [13] with respect to the totally unperturbed 
Hamiltonian: 

( ) 22

0

1
2 er

Z epH
m r

−
= −                     (10) 

where 

( )e nucl
er

e nucl

m m m
m

m m m
µ

µ

+
=

+ +
                    (11) 

is the reduced mass of the electron orbiting the nucleus-muon pair. For helium 
(Z = 2), mer = 0.9999, so that for any Z, mer is very close to unity. Also, because 

0 0 1nuclR Rµ  , Rnucl0 can be ignored in the potential. 

We remind that the method of effective potentials [9] [10] [11] [12] [13] al-
lows reducing a time-dependent Hamiltonian of a physical system to an effective 
time-independent Hamiltonian. This is the great advantage of this method. 

The zeroth-order effective potential, 

[ ]
( )2 4 4 2 4

0
0 02 2 8

9 1 2cos 5cos1 , ,
4 16 er

e R
U W W H

m r
µε θ θ− +

 = = Ω Ω
      (12) 

where W is defined in Equation (9) and [P, Q] are the Poisson brackets, is the 
time-independent term for the effective potential. On substituting Ω from Equa-
tion (7) in Equation (12), we get: 

( )2 2 4 2 4
0

0 8

9 1 2cos 5cos

16
r

er

m e R
U

m Zr
µ µε θ θ− +

=               (13) 

Therefore, the complete effective potential in this case is: 
( )

( ) ( ) ( )

0
0

2 2 4 2 42 22
00 2

3 8

9 1 2cos 5cos1
3cos 1

4 16

eff eff

r

er

U U U

m e Re RZ e
r r m Zr

µ µµ ε θ θ
θ

= +

− +−
= − − − +

 (14) 

Next, we consider the orbits of the electron in the plane of the orbits of the 
muon and the nucleus, i.e., θ = π/2. It is easy to check, by looking at the first and 
second derivatives of the effective potential from Equation (14) with respect to θ, 
that this position corresponds to the stable equilibrium. In this case, the effective 
potential will be a Coulomb potential with two terms of the 1/rn-perturbation (from 
now on we will use the atomic units 1ee m= = = , as in the overwhelming ma-
jority of theoretical papers in atomic physics): 

2 2 4
0 0
3 8

91
4 16

r
eff

er

R m RZU
r r m Zr

µ µ µε−
= − + +                   (15) 
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The calculation of the 1/rn-perturbation for the Kepler problem can be found, 
e.g., in [14] (the treatment for the cases n = 2 and n = 3 can be found also in the 
textbook [15]). For the Coulomb potential –α/r perturbed by the potential –β/rn+1, 
the orbit undergoes a precession with the perihelion advance: 

( ) 11

0

12 1 cos dnn
em p

L L
δ β ε ϕ ϕ

π
−− ∂

Φ = + ∂  
∫              (16) 

where m is the reduced mass of the pair “particle-coulomb center”, L is the an-
gular momentum of the particle, εe is the eccentricity of its orbit, and p = L2/(mα), 
in our case the particle being the electron. The ratio of the precession frequency 
to the Kepler frequency is the perihelion advance scaled by 2π, so for the second 
term in Equation (15) we obtain the following ratio of the precession frequency 
in the plane of the orbit to the Kepler frequency: 

( )

( )
1

2 23 1
4

pip
er

K

m Z S
ω
ω

= − −                      (17) 

where 

0
2

R
S

L
µ=                             (18) 

The same result could be obtained by using Equation (1.7.10) from book [16], 
where the potential corresponds to the gravitational potential of the oblate Earth 
and is mathematically equivalent to Equation (13) (without the last term) with 
the following correspondence of the quantities: 

( ) ( )

2 2
02 2

2 2

2 11 , , ,
2 4 1

e RZGMm Z e I R p
E Ze

µγ γ−
⇔ − ⇔ ⇔ =

−
        (19) 

(the same treatment was used in paper [6]). Substituting the corresponding quan-
tities into Equation (1.7.10) from book [16] and considering the case of θ = π/2, 
we obtain the same result as in Equation (17) (with e = 1 in the atomic units). 

As an example, Figure 1 shows the plot of the ratio ( )1
pip Kω ω  versus Rμ0 for 

L = 3 and Z = 2. It is seen that in these ranges of Rμ0, the precession frequency 
( )1
pipω  remains sufficiently smaller than the Kepler frequency of the electron ωK, 

which is the condition of the validity of the analytical result for ( )1
pip Kω ω  from 

Equation (17). 
Applying Equation (16) for the second perturbing term (the last term in Equ-

ation (15)), which corresponds to the effective potential due to the low eccen-
tricity of the muon-nucleus orbits, we obtain the following additional contribu-
tion to the precession frequency (scaled by the Kepler frequency ωK of the elec-
tron): 

( ) ( ) ( )

( )

62 2 6 7

2 3

63 1
,

256

429 495 135 5

pip r er s

K

s s s s

m m Z S f E
Z

f E E E E

µω ε
ω

−
= −

= − + −

                (20) 
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Figure 1. Plot of the ratio ( )1
pip Kω ω  from Equation (17) versus Rμ0 for L = 3 and Z = 2. 

 
where 

( )

2

2

2

1
s

er

E L
E

m Z
=

−
                         (21) 

is the absolute value of the scaled dimensionless energy of the electron. For the 
bounded motion of the electron, the eccentricity of its orbit is εe = (1 − Es)1/2 and 
0 < Es ≤ 1 (Es is the squared ratio of the semi-minor axis to the semi-major axis 
of the unperturbed elliptical orbit). 

Figure 2 shows the plot of the function f(Es) from Equation (20). As Es in-
creases from 0 to 1, f(Es) monotonically decreases from 429 to 64. 

As an example, Figure 3 shows the plot of the ratio ( )2
pip Kω ω  versus Rμ0 and 

ε for 1sE   (corresponding to the relatively large eccentricity of the electron 
orbit ( )1 1eε−  ), L = 3, and Z = 2 (so that mμr = 200.4). It is seen that in these 
ranges of Rμ0 and ε, the additional precession frequency ( )2

pipω  remains suffi-
ciently smaller than the Kepler frequency of the electron ωK, which is the condi-
tion of the validity of the analytical result for ( )2

pip Kω ω  from Equation (20). 
The ratio ( ) ( )2 1

pip pipω ω  (denoted below as K21) of the additional contribution to 
the precession frequency from Equation (20) to the primary contribution to the 
precession frequency from Equation (17) is: 

( ) ( )52 4 5

21

21 1
64

r er sm m Z S f E
K

Z
µε −

=
                (22) 

Figure 4 shows the plot of K21 versus S = Rμ0/L2 and Es (defined in Equation 
(21)) for Z = 2 and ε = 0.02.  

Figure 5 presents the plot of the ratio K21 versus S and Z for ε = 0.02 and 
1sE  . 

Figure 6 shows the plot of the ratio K21 versus Rμ0 and ε for Z = 2, L = 3, and 
1sE  . 

From Figures 4-6 it is seen that within the ranges of the parameters, where 
the analytical results for ( )1

pip Kω ω  from Equation (17) and for ( )2
pip Kω ω  from  
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Figure 2. Plot of the function f(Es) from Equation (20), where Es is the absolute value of 
the scaled dimensionless energy of the electron defined in Equation (21). 
 

 

Figure 3. Plot of the ratio ( )2
pip Kω ω  from Equation (20) versus Rμ0 and ε for 1sE   

(corresponding to the relatively large eccentricity of the electron orbit ( )1 1eε−  ), L = 

3, and Z = 2 (so that mμr = 200.4). 
 

 
Figure 4. Plot of the ratio K21 of the additional contribution to the precession frequency 
from Equation (19) to the primary contribution to the precession frequency from Equa-
tion (17) versus S = Rμ0/L2 and Es (defined in Equation (21)) for Z = 2 and ε = 0.02. 
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Figure 5. Plot of the ratio K21 versus S and Z for ε = 0.02 and 1sE   ( 1sE   corres-
ponds to a relatively large eccentricity of the unperturbed electron orbit). 
 

 
Figure 6. Plot of the ratio K21 versus Rμ0 and ε for Z = 2, L = 3, and 1sE  . 

 
Equation (20) remain valid, the additional contribution ( )2

pipω  precession fre-
quency, caused by a relatively small eccentricity of the muon orbit (and of the 
nucleus orbit), can reach the same order of magnitude as the primary contribu-
tion ( )1

pipω . This was the sole purpose of the above illustrations. 

3. Conclusion 

We considered a situation where the muon and nucleus orbits in the “nucleus- 
muon-electron” system are elliptical—the situation is more general compared to 
paper [6], where the muon and nucleus orbits were set to be circular. For the 
case where the eccentricity ε of the muon and nucleus orbits is relatively small, 
we obtained an additional, ε-dependent term in the effective potential for the 
motion of the electron. By analytical calculations, we demonstrated that in the 
particular case of the planar geometry (where the electron orbit is in the plane of 
the muon and nucleus orbits), it leads to an additional contribution to the fre-
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quency of the precession of the electron orbit. We showed that this additional, 
ε-dependent contribution to the precession frequency of the electron orbit can 
reach the same order of magnitude as the primary, ε-independent contribution 
to the precession frequency. Thus, the results of our paper seem to be important 
not only qualitatively, but also quantitatively. 
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