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Abstract

Recently we proposed the linguistic Copenhagen interpretation of quantum
mechanics, which is called quantum language or measurement theory. This
theory is valid for both quantum and classical systems. Thus we think that
quantum language is one of the most powerful scientific theories, like statis-
tics. In this paper we justify Zadeh’s fuzzy sets theory in quantum language,
that is, fuzzy propositions are identified with binary measurements. This im-
plies that the definition of “proposition” is, for the first time, acquired in the
field of non-mathematics. Further, we assert that fuzzy logic is more natural
than crisp logic in science. And furthermore, we discuss and solve Saussure’s
linguistics, Moore’s paradox, Quine’s analytic-synthetic distinction and Lewis
Carroll’s logical paradox. Therefore, from the philosophical point of view, our
result gives a complete answer to Wittgenstein’s problem: “Why does logic
work in our world?” and “What is a scientific proposition?” in his picture
theory. That is, we simultaneously justify both Zadeh’s fuzzy sets and Witt-
genstein’s picture theory in the quantum mechanical worldview.

Keywords

Zadeh’s Fuzzy Sets, Quantum Language, Linguistic Copenhagen Interpretation

1. Introduction

In 1965, L.A. Zadeh proposed an engineering concept called “fuzzy sets” (cf. ref.
[1]), which was enthusiastically supported by some engineers. However, R.E.
Kalman did not recognize “fuzzy sets” as a scientific concept, and argued as fol-
lows (1972): “Let me say quite categorically that there is no such thing as a fuzzy
concept ... We do talk about fuzzy things but they are not scientific concepts.
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Some people in the past have discovered certain interesting things, formulated
their findings in a non-fuzzy way, and therefore we have progressed in science’
(cf ref. [2]).

Even now, more than 50 years later, I don’t think that Kalman’s claim can be
denied. In fact, the concept of “fuzzy sets” has not yet acquired the status of
more than a convenient engineering method. Kalman might have thought that the
basic philosophy of engineering is a mechanical worldview, and thus, “scientific
concepts” = “concepts in the (classical) mechanical worldview”. Note that dynam-
ical system theory (which is essentially the same as statistics) is considered as the
mathematical representation of the (classical) mechanical worldview. That is,

(classical mechanical worldview)

(A) ||Dynamical system theory || = [state equation | +|measurement equation|
(statistics) (causality) (probability)

On the other hand, quantum language is characterized as follows:

(B)

(quantum mechanical worldview )

[Quantum language]| =[Axiom 2| +[Axiom 1] + linguistic (Copenhagen) interpretation|

(measurement theory) (causality) (measurement) (how to use Axioms Land 2)

which is a mathematical representation of quantum mechanical worldview (cf
refs. [3] [4] [5]). And we assert that “scientific concepts” = “concepts within the
quantum mechanical worldview”. If so, and if “fuzzy sets” is a scientific concept,
“fuzzy sets” must be completely understood in quantum language. In this paper,
we do exactly that.

I assert that the location of QL (=quantum language) in the history of
world-description is as follows:

Figure 1 [The location of quantum language in the history of world-description
(cf refs. [5] [6])] (See next page).

In this paper, I devote myself to the logical aspect of QL (e, and @) in
the above figure). That is, I simultaneously justify both Zadeh’s fuzzy sets and
Wittgenstein’s picture theory in the quantum mechanical worldview.

My research on logic began with refs. [7] [8] [9]. However, my understanding
of quantum language at the time was inadequate, and in hindsight, there were
many aspects that I should have reconsidered. The recent improved version is
ref. [10]. However, this was preoccupied with the preconceived notion that crisp
logic is fundamental. This present paper is an improved version of ref. [10].

In Section 2, I explain probabilistic logic in elementary mathematics, That is, I
show that probabilistic logic works as a mathematical theory. However, it is clear
that mathematical justification alone would not convince Kalman. In Section 3, I
prepare the basics of quantum language (B), which is a theory of quantum me-
chanical worldview. In Section 4, I study fuzzy logic (ie., probabilistic logic in
quantum language). That is, I propose the definition of scientific proposition,
and show that fuzzy logic is more natural than crisp logic. In Section 5, I discuss

and solve Saussure’s linguistics, Moore’s paradox, Quine’s analytic-synthetic
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Figure 1. The history of the world-descriptions.

distinction and Lewis Carroll’s logical paradox in the relation of my proposal in
Sec. 4. And I conclude that my result gives a complete answer to Wittgenstein’s
question such that “Why does logic work in our world?” and, “What is a scien-
tific proposition?” in his picture theory of Tractatus Logico Philosophicus (cf
ref. [11]).

2. Probabilistic Logic (=Fuzzy Logic)
in Elementary Mathematics

This section is written in such a way that it can be read without knowledge of
quantum language. In this paper, we use the term “fuzzy logic” in quantum lan-
guage (explained in Sec. 3). Since this section is not related to quantum languag-

es, we will use the term “probabilistic logic” instead of “fuzzy logic”.

2.1. Easy Example

Let us start from the following easy example.
Example 1 For example, consider a proposition 2, such that

P, = “this tomato is red”, —P, = “this tomato is not red”,

And suppose that there are 100 respondents, and furthermore, the following
question is asked to them.
(C) Is this tomato red? (i.e., is the proposition P, true or not?)

Assume that the results of the responses are as follows.
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(D)
70 respondents say “Yes, this tomato is red” (i.e., the proposition P, is ture, i.e.,“T”)
30 respondents say “No, this tomato is not red” (i.e., the proposition P, is false, i.e.,“F”)

This can be probabilistically interpreted as follows.

(E) When any respondent is randomly selected out of 100, the probability that
this respondent will answer “yes” to question (C) is p,(=0.7). Or simply, the
probability that the proposition 27, is true is p;. In symbolic form,

Prob[P ;{T}] =p(=0.7)
Then we generally denote that
Prob[ P;{T}]=p,, Prob[R;{F}|=1-p, (where0O<p, <1)

Also, note that Prob[ —P,;{T}]=Prob| P;{F}|=1-p,.
Remark 2. (i): In the above, it should be noted that the definition of “proposi-

>«

tion” is not written. For example, is Descartes’” “I think, therefore I am” a scien-
tific proposition? This is one of the most important problems in philosophy of
science. The definition of scientific proposition is proposed in Sec. 4.

(ii): Zadeh often emphasized that fuzziness and probability are different con-
cepts. However, I believe that fuzziness without a probability interpretation
cannot be a scientific concept. In this sense, the above (E) is essential. Thus, the
difference between fuzziness and probability are mood. As mentioned before, in

this paper “probabilistic logic” in quantum language is called “fuzzy logic.

2.2. Quasi-Product Probability

In addition, assume another proposition P, such that Prob[ P;{T}]=p,,
Prob [ Pi{F }} =1-p,. Thus, we have two probability spaces
({T,F},Z{T'F},,ui), (i =1,2), such that

m({T)=r m(F)=1-p. w({T})=p. w({F})=1-p,

And consider the quasi-product probability space
({T, F }2 , P({T, F }Z ) 4y xP /12) , which satisfies the following marginal condi-

tions:

(1 1) (AT ) =4 (7)), (1ax® ) (F1x(TF) = ({F)),
and

(6P 1 J(T P {TY) =1 ({T)), - (1™ 12, J({T Fx{F}) = s ({F}),

Putting the above together, we get the following table (Ze., Table 1).

Table 1. Quasi-product probability measure 4 x® 4, .

\ m({T}) m({F})
w(T) (o m)({(TT))(=a) (1 ) ({(F.T)}) (= ((F)) - <)
w({F}) (o ) (TP (= ({FY) =) (mx® a0 )({(F.F))) (=1 ({F}) = ({F}) + )
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where

max {1 ({T})+ 1, ({T})-1,0} <@ <min{z ({T}), 1, ({T})}

Thus, the quasi-product probability is not unique in general.

Remark 3. The followings (i) and (ii) are typical. Assume that P, =P,. Thus,
M= Hy -

(i): [Product probability space]

Assume that each respondent randomly chooses “7” [resp. “F’] with probability
0.7 [resp. 0.3] in the same way for the two questions P, and P,. Then, the
1 x% 11, is considered as the ordinary product probability g4 x g, such that

(% {0 ) = (5 sn(b]) (G016

If we write the above in a table, we get the following table (i.e., Table 2).
(ii) [Standard situation when B, =P,] It is natural to think that the respon-

dent selected in (C) will give the same answer to the same question (ie, P and

P,). In this case we see g4 x® g such that (,Ltl xP M)({(T,T)}) =p, and

(1x® )({(F.F)})=1-p,. Thus,

w Py it (x.%)=(T.T)
(2 a)ioum) = {i-p, i (x.%)=(F.F)
- 0 if (x.%)=(T,F).(F.T)

If we write the above in a table, we get the following table (i.e., Table 3).

In this paper, unless otherwise stated, this quasi-product probability measure
1 x® 1 will be used. However, if so, it is not necessary to ask the same ques-
tion twice; we only need to ask it once. For further discussion, see Example 5
later. Also, this x(*,,4 (=) is easily extended to the case that x{*,, . x
(where g =p, i1=12,---,n). such that

Table 2. Product probability measure 1 x® 1, (= 14, % 41, ) .

\ w({T}) w({F})
w({T}) w (T} ({T}) (=) w({FY)x s ({T})(= 1 ({F)) - )
w((F) w(Thxw((FH(=m(FY)-a)  w({F)xm(F)(=1-w({F})-u({F})+a)

Table 3. Quasi-product probability measure 4 x® g, .

\ m({T}) w({F)
w((T) (4 w)({(TT)}) =, (mx* w)({(F.T)})=0
47 (s® w)({(T.F)})=0 (1 w)({(F.F)})=1-n,
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Py if (Xi )in:l = (T )?:1

I {CON] =

0 others

2.3. Logic Symbols and Logical Operations

For the sake of convenience, we will define as follows (also, see (G) for the for-
mal definition):

(F) P AP, ="RandP,” , PvP="PorP”, PR—->P="-RorP’” ,
—-P=notP

If we write the above (ie, P AP,, =B AP,, BLA=PR,, =B A—P,) in a ta-
ble, we get the following table (i.e., Table 4).

Where max{p, +p,—1,0} <a <min{p,, p,}. Note that Tables 1-3 are re-
lated to only quasi-product probability g4 x® 1,, but Table 4 is related to
1 x% 1, and logical symbol (ie, A,—).

Now we can explain the following example:

Example 4. [Simple probabilistic truth table] The following table (i.e., Table
5: Simple probabilistic truth table) is the same as a well-known truth table, ex-
cept for the “probability column”.

Thus, it will be enough to explain hoe to use the “probability column” as fol-

lows. For example, consider the above proposition —P,, which can be regarded
as the map from {T, F }2 to {T, F} such that

Table 4. Quasi-product probability measure z; x® u, concerning
Pll\ PZ’ —|F>1 AN PZ’ P1/\—|P2, —|P1 /\—||':)2 .

P; Prob[ Pi(T}] —p; Prob[-i(T}]
p=u({T}) p: = ({F})
P Proo[pi(T}] AR ProbR A Pi{T}] P AP Prob[—R AP{T]
p.=u({T}) P (= (1 ) ({(T.T)}) =) o (= (> ) ({(FT)}) = p,-a)
P POO[Ri{T)] AP Prob[RApiT)] P A= Prob[ P A—Pi(T]]

p, = 1 ({F}) P (=(o® w)({(TF)=pima)  py(=(mx® )({(F.F)})=1-p, - p +a)

Table 5. Simple Probabilistic Truth Table (Elementary propositions A, 7).

AP probability p=x®_4 P PP PRAP  BVP
ToT P, =x%. a4 ({(T.T)}) F T T T
T F Py =", ({(T.F)}) F F F T
F T p, =x%, 1 ({(F.T)}) T T F T
F F pa =x, a4 ({(F.F)}) T T F F
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T i (x.%)=(F.T),or (F.F)
[ﬁa](xl’XZ)z{F if(xxi,xz):(T,T),or(T,F)

(or —P, '{T F} {T F} such that [—P]( ) , [—P]( )—T)
Thus, we see that Prob[—P ] (ie, the probability that —P, is true) is

equal to
(ul x ,Uzj([_‘P] ({T1))= pry + s

Next consider [P, — P,] (: [P Vv Pz]) , which is regarded as the map from
{T,F}2 to {T,F} such that
T X, X or(F.T)or(F,F
el -fL 1) =D ED )
Foif (4. )=(T.F)
Thus, we see that Prob[ P, — P,;{T}| (ie, the probability that [B, —P,] is

true) is equal to
ap o
[Mxﬂzj([aﬁpz] ({T}>):p1z+p12+pﬁ

Similarly we see

Prob[ B AR {T}]=py. Prob[ R v Pi{T}]=p,+ pg, + Py

Furthermore, we must note that
(G) =R, [P AR], [RvP,] and [P, —P,] can be respectively regarded
as maps from {T,F}* to {T,F} as shown in the above Table 5. Rather than
(F), this map is the formal definition of logic symbols (Ze., —, A, v, —).
Example 5. [Probabilistic truth table ((i): B, # P, (ii): B =PR,)]
i) (Simplest case: P, # P,): The following table (ie, Table 6) is the
preparation of the next (ii) (ie., Tables 7-9). Consider the truth table
of [P, > P,]AP, as follows.

Table 6. Probabilistic Truth Table (Elementary propositions 2, P, Ps).

P P B probability: p=x,.4 [P —>P]AP,
T T T Py =X ({(T.T.T)}) T
T T F Pz =Pt ({(T.T.F)}) F
T F T P, =xPs it ({(T.F.T)}) F
T F F P =%t ({(T.F.F)}) F
F T T Pe =Xt ({(F.T.T)}) T
F T F P, =X my( {(F.T.F)} ) F
F F T Po =4 ({(F.F.T)Y) T
F F F P =Xt ({(F.FF)}) F
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This says that the proposition [P, > P,]A P, is the map from
{T,F}3—>{T,F} such that
[[Pl—>P2]/\P3](X1,X2,x3)
T if (%,%,%)=(T,T,T),(F,T.T),(F,F,T
|F if (%.,%,%)=(T,T,F),(T.F.T),(T.F,F),(F.T,F),(F,F,F)

~—

Thus,
Prob[[[P1 —>PB]A Pg];{T}]

={ :Z M]([[Pl - PR]A Ps]il({T}))z Pios + Pz + Pig

i=1,2,3

(ii) (Case; P, =P, in the above (i)): Furthermore, assume that B, =P, in the
above. Then, recalling Remark 3 (ii), we usually assume that
X0 s by ({(x1 Xy, x3)}) =0 (if x, # X;). Thus, putting
Xt o 1 ({(X1 X, )}) =X 3l ({()(1: Xz)}x {T, F}) , we see the following: (Note
that Table 6, Table 7 except the probability column).

Since the case of the probability 0 (ie, Przs = Prs = Przs = Pz = ) can be
omitted, we have the following table:

Therefore, we see that Prob[[P > PR |AR (=P, } (ie, the probability

Table 7. Probabilistic Truth Table (Overlapping elementary propositions P, P, P (=P1)).

A P P (=P) probability: p=x7, [R—>PR]AP,
roo7 T Pus (= P) =X ({(T.T)}) r
T T F Pus (=0) F
T F T P (= Pg) = ({(T. F)}) F
T F F Pus(=0) F
F T T Pz, (=0) T
F T F Pos (= o) =22 ({(F.T))) F
F F T P(=0) T
FF F Pas (= Pe) =% ({(F.F)) F

Table 8. Probabilistic Truth Table (Overlapping elementary propositions 2, 2, P (=£)).

P P P (=P) probability: p=x®,u [R—>PR]APR,
T T T Py (= P) =xT, 24 ({(T.T)}) T
T F T D (= Py ) = <% ({(T.F)}) F
F T F Pos (= Py ) =50 4 ( ) F
F F F P (= s ({(FF))) F
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that [P, — F,]A R, istrue) is equal to
(ke ({17 > RIAR (R (D) -

Note that this is essentially the same as the following table.

Hence, we conclude that Tables 7-9 are essentially the same. And therefore,
we see;

(H) the calculation will be more concise if we start with non-overlapping
propositions (such as Table 9).

Example 6 [Modus ponens in probabilistic truth table] The following table
(i.e, Table 10: Probabilistic truth table) is the same as a well-known truth table,
except for the “probability column”.

For example, consider the proposition [P — P,]A PR, which is regarded as
the map from {T, F}2 to {T, F} such that

T (5~ (1,T)
Rl ={E R e e

Thus, we see that Pr0b[[[|31—> P]A Pl], T ] (ie, the probability that
[[P. > P,]AR] istrue) is equal to

(% (1R RIART (7)) - b

By the same way, we can calculate as follows.

(1% uz)([((F’1 —>P,)AR)> PZT({T}))= P + Py + Py, + Pz =1

Table 9. Probabilistic Truth Table (Non-overlapping elementary propositions 2, /)

A P probability: p=x®, 4, [P >P]AP
T T P, =37, ({(T.T)}) T
T F P, =37, ({(T.F)}) F
F T P, =x, 4 ({(F.T)}) F
F F Pz =T ({(F.F)}) F

Table 10. Probabilistic Truth Table (Elementary propositions P, 7).

P P probability: p=x7,x, [R>PR]AR [P>PR]AR P,
T T Py =", ({(T.T)}) T T
T F P, =37, ({(T.F)}) F T
F T Py =x", a4 ({(F.T)}) F T
F F Py =x. a4 ({(F.F)}) F T
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That is,
Prob[[((R = P,) A R) > Py [T = P+ b+ g+ pp =1

Thus, modus ponens is always true even in probabilistic logic.

The statement (H) in Examples 5 says that it suffices to consider the case of
non-overlapping propositions. Thus we have the following theorem.

Theorem 7. [Logical sample space] Let B,P,,---,P,---,P, be non-overlapping
propositions (ie, B # P; (Vi, ] such that i# j, cf (H) above), and consider
the probability space ({T,F},2™", 1) such that s ({T})=Prob[R:{T}],
w({F})= Prob[Pi {F }] . Consider a quasi-product probability space
(T B (T FY )] such that

(i—lg--,nﬂi )({T, F }k-l % {x} x {T’ F}n—k )

=Prob[P ;{X}} (Xe{T,F},k =1,2,...,n)

Then, the pair [{Pl, Py, Pn};({T, F}n ,P({T, F}n),xf‘flvzmnyi )} is called
the Jogical sample space. Let P be a proposition which is constructed by
P,--,P, . Note that Pis regarded as the map from {T, F}n — {T,F} . Then, we
see that

Prob[ P;{T}] =( X uij(P’l({T}))

i=1,2,---,n

Also, it is clear that the above Example 6 implies the following corollary.

Corollary 8. [Tautology in probabilistic logic] Let P be a proposition con-
structed from non-overlapping propositions P,,P,,---,P,. Then, the followings
are equivalent:

(i) Pis a tautology in the sense of usual logic.

(i) Prob[ P;{T}]=1.

That is, tautology always holds even in probabilistic logic. For example,

o syllogism (ie, [[R > P,]A[P, > PR]]—>[R — P,] always holds.

3. Review: Quantum Language (=QL = Measurement Theory)

In the previous section, we discussed fuzzy symbolic logic (= probabilistic sym-
bolic logic) in elementary mathematics. I'm sure many readers thought this was
promising. However, this is not so powerful since it has no definition of “propo-
sition”. For example, it has no power to answer the question such that “Is Des-
cartes’ cogito proposition (Ze., 7 think, therefore I am’) a scientific proposition?”
which is generally considered to be the most important question in philosophy.
Therefore, the discussion in the previous section is not sufficient as the scientific
justification of Zadeh’s fuzzy logic. That is, we have to answer the next most
important question.

o Why does logic work in our world? or What is the definition of a “proposition”?
which is due to Wittgenstein’s question in Tractatus Logico Philosophicus (cf
ref. [11]).
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For this, in this section, we shall review quantum language (7.e, the linguistic
Copenhagen interpretation of quantum mechanics, or measurement theory),
which has the following form:

(quantum mechanical worldview )

(B) ||Quantum language|| = Axiom 2| +|Axiom 1] +|Iinguistic (Copenhagen) interpretation|

(causality) (measurement) (how to use Axioms 1and 2)

(measurement theory)
I think that this is the ultimate form of the usual dynamical system theory (A)
(cf refs. [3] [4] [12]).

3.1. Mathematical Preparations

Consider an operator algebra B(H) (ie, an operator algebra composed of all
bounded linear operators on a Hilbert space A with the norm

||G||B(H) =Supy ||Gu||H . Let .A(g B(H )) is a C-algebra, (ie, norm-closed
subalgebra of B ( H )) (cf refs. [13] [14] [15]). Our purpose of this section is not
to explain QL in general situation but to explain QL in an understandable set-

ting. Thus, from here, we devote ourselves to the following simple cases:
(1,):quantum QL (When A= B((C"), where H = (C”)
i.e., the C"-algebra composed of all (n X n) complex matrixes

(1,):classical QL (when A =C(Q)),
i.e., the space of all continuous functions on a compact space Q

I QL=

Let AcB(H) be a C-algebra, and let A" be the dual Banach space of

A. That is, A" ={p|pisacontinuous linear functional on A}, and the norm

||p o+ is defined by

sup{|(G)(= . (0.6),)|1& A such that 6], (=[G, ) <1 - Define the

mixed state p(e A*) such that ||p =1 and p(L)>0 forall Le A such

that L>0. And define the mixed state space G" (A*) such that
S" (A) = {p e A" | pisa mixed state}.
A mixed state p(eG" (A* )) is called a pure state if it satisfies that
p=6p,+(1-0)p, forsome p,p, " (A*) and 0<6@<1 implies
p=p =p, Put
&° (A*): {p ce@" (A*)|p is a pure state},
which is called a state space. It is well known (cZ ref. [14]) that

[Case(J,)]; &° (B((C“ )) ={p =|u)(ul(i.e. the Dirac notation) ||u

C”z}

0 [Case (J,)]; 6"(C(Q)*)={p=5w0 |8, isa point measure at o, eQ} ~Q.

Under the identification : &° (C (Q)) €8, o>weQ,

o and Qs also called a state and state space respectively.

Definition 9. [Observable, Image observable] According to the noted idea (cf.
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refs. [16] [17]), an observable O = (X P (X ),G) in A is defined as follows:

(i) Xis a finite set, P(X ) (=2%, the power set of X).

(i) [Additivity] Gis a mapping from P(X) to A satisfying: (a): for every
EeP(X), G(E) is a non-negative element in A such that 0<G(E)<I,
(b): G(D)=0 and G(X)=1,where0and 7is the 0-element and the identity
in A respectively. (c): [additivity]

G(El)+G(Ez): G(E,Ug,)
forall 2,5, e P(X) suchthat E,NE, =9 .

If G(E) :G(E)2 ( = e’P(X)), then O :(X,P(X),G) in A is a pro-
jective observable (or, crisp observable). Also, O = (X ,P(X ),G) in A is
also called an X-valued observable. I will devote myself to binary (e, {T, F}
-valued) observables in most of the cases in this paper. Let ¥ be a finite set, and
let ®:X —>Y be a map. Then, ©(0)= (Y P(Y).G (@’1(~))) in A is also
an observable in A (which is called an image observable).

3.2. Axiom 1 [Measurement] and Axiom 2 [Causality]

With any system S, a C-algebra A(< B(H)) can be associated in which the
measurement theory (2) of that system can be formulated. A state of the system
Sis represented by an element p(e Ch (A* )) and an observable is represented
by an observable O = (X , P(X ),G) in A. Also, the measurement of the ob-
servable O for the system S with the state p is denoted by M , (O, S p]) (or
more precisely, M, (O = (X P (X ),G),S[p]) ). An observer can obtain a meas-
ured value x(€ X) by the measurement M (O, S p]) .

The Axiom 1 presented below is a kind of mathematical generalization of
Born’s probabilistic interpretation of quantum mechanics. And thus, it is a
statement without reality.

Now we can present Axiom 1 as follows.

Axiom 1. [Measurement]. The probability that a measured value x(e X)
obtained by the measurement M , (O =(X,P(X),G).S,, ) is given by
p(e(())(= . (p6(1)), )

Next, we explain Axiom 2 (which is not used in this paper). Let A, (g B( Hl))
and A, (g B(H, )) be A continuous linear operator @, : A, — A is called a
Markov operator, if ® ,(L)>0 (VLeA, suchthat L>0 and
#,(1,)=1,,where 1, and 1, isidentitymapsin .4, and A, respectively.

Now we can propose Axiom 2 (Ze., causality). (For details, see ref. [4].)

Axiom 2. [Causality]; The causality is represented by a Markov operator

D, A > A.

3.3. The Linguistic Copenhagen Interpretation
(=The Manual to Use Axioms 1 and 2)

It is well known (cf ref. [18]) that the Copenhagen interpretation of quantum
mechanics has not been established yet. For example, about the right or wrong

of the wave function collapse, opinions are divided in the Copenhagen interpre-
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tation. Also, the meaning of the errors in Heisenberg’s uncertainty relation has
yet to be clarified (¢ ref. [19]). Thus, the Copenhagen interpretation is often
called so-call Copenhagen interpretation”. However, we believe that the linguis-
tic Copenhagen interpretation of quantum language (B) (i.e., both quantum (I,)
and classical (I,)) is uniquely determined. For example, for the quantum linguis-
tic opinion about the wave function collapse, see ref. [20].

Now we explain the linguistic Copenhagen interpretation in what follows. In
the above, Axioms 1 and 2 are kinds of spells, (ie., incantation, magic words,
metaphysical statements), and thus, it is nonsense to verify them experimentally.
Therefore, what we should do is not to understand” but to use”. After learning
Axioms 1 and 2 by rote, we have to improve how to use them through trial and
error. We may do well even if we do not know the linguistic Copenhagen inter-
pretation (= the manual to use Axioms 1 and 2). However, it is better to know
the linguistic Copenhagen interpretation, if we would like to master quantum
language early. In spite of Wittgenstein’s paradox; “no course of action could be
determined by a rule’, we believe that the linguistic Copenhagen interpretation
is the true Copenhagen interpretation, which does not belong to physics.

Let us start from the following figure:

In Figure 2, we remark:
(K1) (: it suffices to understand that interfere” is, for example, apply light”.

(¥): perceive the reaction.
That is, measurement” is characterized as the interaction between observer”
and measuring object (=matter)”. However,
(K;) in measurement theory (=quantum language), interaction” must not be
emphasized.
Therefore, in order to avoid confusion, it might better to omit the interaction

“(® and (y)” in Figure 2.

After all, we think that:

(K3) it is clear that there is no measured value without observer (ie., I”,
mind”). Thus, we consider that measurement theory is composed of three

key-words: measured value”, observable”, state” (cf. [4]).

measured value|, |observab|e(: measuring instrument) , |state|,

(1, observer, mind) (body(=sensory organ), thermometer, eye, ear, compass) (matter)
observer [observable] system
(I(=mind)) [(=measuring instrument)] (matter, measuring object)

i (body) —_ .
|_ [measurg value] |_ —l

| Xinterfere Al[state]
| - v. |
| | @)perceive reaction | I

Figure 2. [Descartes Figure]: Image of “measurement (=& -+@))” in mind-matter dualism.
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Hence, quantum language is based on dualism, Ze., a kind of mind-matter
dualism.

The linguistic Copenhagen interpretation says that

(L;) Only one measurement is permitted. Thus, the state must be constant
and only one. And therefore, the state after a measurement is meaningless since
it cannot be measured any longer. Thus, the collapse of the wavefunction is pro-
hibited (c£ ref. [20]; projection postulate). We are not concerned with anything
after measurement. Strictly speaking, the phrase after the measurement should
not be used. Also, the causality should be assumed only in the side of system,
however, a state never moves. Thus, the Heisenberg picture should be adopted,
and thus, the Schrddinger picture should be prohibited.

(L,) Observer” and system” are completely separated. Hence, the mea-
surement M, (O = (X,2)< ,G),S[p]) does not depend on the choice of observ-
ers. That is, any proposition in quantum language is independent of observer”
(=1”), therefore, there is no observer’s space and time” in quantum language.
And thus, it does not have tense (Ze., past, present, future). Simply put, it is safe
not to use “I, now, here”.

(Ls) there is no probability without measurements (cf refs. [21] [22] [23] [24],
These are related to (2 in Figure 1).

(Ls) Leibniz’s relationalism concerning space-time (e.g., time should be re-
garded as a parameter), (c£ ref. [25]).
and so on.

We need the following definition for the rule (L;) such that Only one mea-
surement is permitted.

Definition 10 [(i): Quasi-product observable, quasi-product measurement]:
Let O, :(Xi,P(Xi),Gi) (i :1,2,---,N) be commutative observables in A.
Define a quasi-product observable x*;, . O, :(xi”:lXi,P(xP:lXi),xﬁfl’zym’nGi)
such that

I: 2? Gi:|(xl>< XZ Xoee X Xj—lXE‘j X Xj+l>(...>< Xn)
=G, (g;) (vaj eP(X;). ] =1,2,---,n)
Also, M, (X?fl,z,u,_noi = (xillxi ,P(xi”:lxi ),><iqfl’2,%nGi ),S[p] is called a qua-
si-product measurement of M, (Oi =(X,.P(X,).G ),S[p]) (i=12-,n).
[(ii): Tensor C'-algebra, tensor quasi-product observable, tensor quasi-product
measurement]: Let O, =(X;,P(X;),G;) be observablesin 4, (i=12,,n).
Define a tensor quasi-product observable

®F 5.1 0 :(xi”:lXi,P(xi”:lXi),®?flyzymani) in the tensor C-algebra ®,.A
such that
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i "ol

Also, M@nﬂAi (®iqfl,2,-~,noi = (><i":1Xi,73(><i”:1Xi ),®?f1,2'm,n(3i) S ) is called

a tensor quasi-product measurement of M, (Oi = (Xi P(X).G ), Sm]>
(i=1,2,--,n).

We get the following result from the rule (L,) such that Observer” and sys-
tem” are completely separated.

Remark 11. [Cogito proposition is not a proposition in QL; cf refs. [3] [26]]:
Examine the cogito proposition “I think, therefore I am”, in which it is natural to

consider that

“observer” = “I” = “measurement object (= system)”

This is against the linguistic Copenhagen interpretation (L,). Therefore, the
cogito proposition is not a proposition in QL. The fact that the first proposition

of philosophy is not a proposition is interesting.

4. Practical Fuzzy Logic in QL (Quantum
and Classical Systems)

In the previous section we introduced QL, which is the theory of the quantum me-
chanical worldview. In this section, we introduce the practical fuzzy logic, or in

short, fuzzy logic (ie, the probabilistic logic in the quantum mechanical worldview).

4.1. Easy Example; Classical System

Although our theory is valid for quantum systems as well as classical systems, in
this Sec. 4.1 we explain our idea in classical systems (Ze, the case that A=C (Q) ).
Again let us start from the following example (=Example 1).

Example 12. [=Example 1]: For example, consider a proposition 7, such that

P, = “this tomato is red”, —PF, = “this tomato is not red”,

And suppose that there are 100 respondents, and furthermore, the following
question is asked to them.
(C) Is this tomato red? (i.e., is the proposition P, true or not?)

Assume that the results of the responses are as follows.

70 respondents say “Yes, this tomato is red” (i.e., the proposition P, is ture,i.e.,“T")
30 respondents say “No, this tomato is not red” (i.e., the proposition P, is false,i.e.,“F")

This can be probabilistically interpreted as follows.

(E) When any respondent is randomly selected out of 100, the probability that
this respondent will answer “yes” to question (C) is p,(=0.7). Or simply, the
probability that the proposition 2, is true is p;. In symbolic form,

Prob[ B;{T}]=p,(=0.7)
Then we generally denote that
Prob[ P;{T}]=p,, Prob[R;{F}]=1-p, (whereO<p, <1)

Also, note that Prob[ —R;{T}]=Prob[ P;{F}]=1-p,.
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The above will be formulated in terms of QL as follows. Let € a state space,
which is a compact space Q cR" (=MN-dimensional real space), where N is
sufficiently large natural number. Consider many tomatoes, that is, roughly
speaking, consider 7 as the set of all tomatoes. Assume that any tomato t(eT)
is represented by a state @ , which is an element of the state space Q. Thus, we
have the map @:T — Q. That is, the quantitative property of a tomato ¢ is

represented by @(t). For example, it suffices to consider Q such that
o= (a)(l) (= weight), »® (= diameter), ® (= color value),

o (= calorie), 0™ (=sugar content),---, ™ (=---)) e Qc R"

Consider a binary observable (or, {T,F} -valued observable)

0, = ({T, Fi, Z{T'F},Gl) in C(Q). The measurement Mcq, (Ol,S[%]) is
called a (7F)-measurement, which is also called a fuzzy proposition. Axiom 1
says that

(M) the probability that measured value 7'is obtained by the (7F)-measurement
Mc o (01,3[5 ]) is given by
5. (G (T))[= 4 oy (0B (ITD). oy =[G (TD] (@)

This is the quantum linguistic representation of the above (E). That is, we
identify a proposition P, with a (TF)-measurement MC(Q)(Ol,S[(;w]).

Remark 13. (i): Someone might say that the term “the set of all tomatoes” is
as ambiguous as “the set of all dinosaurs”. However, for the sake of convenience,
here we use the term “the set of all tomatoes”. This problem is the same as that
of the Hempel’ raven paradox (Ze., “the set of all ravens” leads to contradiction).
For further discussion about this, see refs. [5] [27].

(ii): If we want to consider another proposition P, ( =Mc (g (Ol, Sts, 1 )) such as

P, = “that tomato is red”, —P, =“that tomato is not red”,

we must define Mg, (01,8[5{»])/\ Mc (Ol,S[(sw,]) (0 +# @"). This will be ex-
plained in Sec.4.3.

(iii): If we want to consider both tomato’s world €, and apple’s world Q,,
it suffices to start from the tensor space C(,)®C(Q,) (=C(Q,xQ,)). This
will be also explained in Sec. 4.3.

4.2. Fuzzy Logic in QL

Let’s start with the following definition.

Definition 14. [(TF)-measurement (=Fuzzy proposition), Fuzzy set (= Mem-
bership function)] Let O= ({T, F} , 2{T'F},G) be a binary observable (or,
(TF)-observable, {T, F} -valued observable) in a C-algebra A . A measurement
M, (O, S, p]) is called a (TF)-measurement, which is also called a fuzzy proposi-
tion. Since Axiom 1 says that the probability that a measured value 7'is obtained
by (TF)-measurement M, (O, S[p]) is given by p (G ({T })) , we say that
e a(TF)-measurement M, (O, S p]) is true with probability p(G ({T}))

Or,

. Prob[MA(O,S[p])i{T}]:P(G({T}))(: a <p'G({T})>A)
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Also, G({T})(eA) is called the membership function of O (cf Figure 3
and Definition 24 later).

In general, we must consider many propositions
{PI = MAi (Oi,S[pi]):izl,Z,---,n}. In this section, we devote ourselves to the
following simple case:

(Ny) A isfixed, ie, A =A,=-=A,

(N;) 0,,0,,:--,0, commute,

(N;) astate © s onlyone, e, p, =p,=-=p,

For the general case, we discuss in next section (Ze., Sec. 4.3). That is, in this
section, we devote ourselves to
{P. =M, (Oi :({T,F},Z{T’F},Gi),Slp]):i :1,2,---,n} . However, it should be
noted that the above simple case (N) is essential, that is, the general case is an
easy consequence of the simple case as seen in the next section.

Definition 15. [Fuzzy logic symbols (7, ~, VvV, —))] Let
0, = ({T, Fi, 2T Gi) be binary observables (or, {T,F} -valued observable) in
a C-algebra A. (i=1,2). Assume that O, (i =1,2) commute. Fix the qua-
si-product observable O,x% O, = ({T, F}2 ,’P({T, F}Z),G1 x %P Gz) . Consider
(TF)-measurement M (Oi = ({T, F},Z{T'F},Gi ),S[p]) (which is abbreviated as
P)ina C-algebra A.Put 14 (Z)=p(G (E)) (Ee{T,F},i=012),and

(P2t ) (2% E, ) = (p(Gix® G, ))(BixE,) (2,5, €{T.F}).
(i): Put i=1,2. Define —M ( Si,;) such that
( ) (”ﬁoi’sm)
where themap 7~ {T,F} —>{T,F} isdefinedby 7 (T)=F,z"(F)=T.
Clearly it holds that Prob[ —M,, (0;,8,,):{T}]=p(G ({F})) = ({F})
(ii): Define M, (O,,S;,)AM,(0O,,S,) such that

M. (Ol’S[p])/\ M. (OZ’S[p]) =M, (”A (01 x® Oz)'S[p])

where ﬁA:{T,F}Z—){T,F} is defined by ﬂA(T,T):T,
2 (TF)=x"(F.T)=2"(T.F)=F.
It holds that

[I]

Prob[MA (01,81, )AM, (Oz's[p]);{T}J
- (6 &) (=) (7)) = (s® ) (7T

(iii): Define M (0,,S;,)vM,(0,,S,) such that

m
1 D

Figure 3. [Membership function m,:Q—[0,1].
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M, (01,8, )v M, (0;.8,,)) =M, (7" (0,x* 0,).5,,)

where 77 :{T, F}2 — {T,F} is defined by
7' (T,T)=="(T,F)=2"(F,T)=T, z"(F,F)=F.
It holds that

Prob[MA(Ol,S[p])vMA(OZ,S[p]);{T}]
= o605 6,)((= ) (IT}) = (s ) ({(T.T). (T F)L(ET)
(iv): Define M , (Ol,S[p]) M, (OZ,S[p]) such that
M, (01,8,) > M. (0,,8,y) =M. (77 (0,x* 0,),5,]
where 77 :{T,F}2 —{T,F} isdefined by
(T, T)=="(F.T)=2"(F,F)=T, z~(T,F)=F.
It holds that
Prob[MA (0,.5,,) > M., (oz,s[p]);{T}]

= o602 6,)((7) (7)) = (1 ® 1 )(TT)(F )L (FLT)))
Theorem 16. [Fundamental theorem in Fuzzy logic] Let

0, = ({T, Fi, Z{T'F},Gi) be binary observables (or, {T,F} -valued observable) in
a C-algebra A . (i=1,2,---,n). Assume that O; # O; (Vi,j suchthat i#j)
(ie, non-overlapping condition in Theorem 7) and O, (i =1,2,---,n) com-
mute. Fix the quasi-product x*, O, = ({T, F}n ,P({T, F}n),xﬁflmnGi) (cf
Definition 10 before). Consider (TF)-measurement

M, (Oi _ ({T, |:} ’ o{T-F} .G, ), S[p]) (which is abbreviated as P ) in a C-algebra
A). And consider the quasi-product measurement

Mo~ 6) 5

i=l,---,n

=M, (Xﬁfl,m,noi =({T, F’ ’P({T’ F}n)'X?EI'“”"Gi)’S[p]).
Put

* ﬂi({xi}):p(Gi«Xi})) (x e{T.F}.i=12:n)
(O | (s e

i=1,--,n

= (X?£1,-~~,nﬂi )({(X1' Xt Xy )}) (v(xl' Xp,e X, ) €{T, F}n)
Here, the pair [{Pl, Py, Pn};({T, F}n ,P({T, F}n ),x?flyz’__”nyi ):‘ is a logical
sample space.
Then, by Theorem 7, we see the following:
e Let Pbe a proposition which is constructed by P,,---,P,. Note that P is re-
garded as the map from {T, F}n — {T,F} . Then, we see that

Prob[ P;{T}] =( x M)(Pfl({T}))

i=1,2,---,n

Remark 17. Since the linguistic Copenhagen interpretation says that “only
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one measurement is permitted”, we only take the measurement:

Gi),S[p]).

Therefore, the measurements (Ze, M, ( " ( 0, x* 0, ) 'S p])

<P

— ap
- MA (Xizl,m,n

i1, MA(Oi :({T,F},Z{T'F},Gi),slp])

0, =({T,F}”,7>({T,F} B

(: M, (Ol, St ) AM (O2 v St )) etc. in Definition 15) are not actually done. To

be precise, these measurements are included in the quasi-product measurement

qu

ML (0= (T F127.6).5y,) -

Example 18. [The QL version of Table 10]. Replacing P, and P, with
M, (Ol, S[p]) and M, (02, S[p]), we get Table 11, Ze, the QL version of Table

10.

Thus, we see that

Prob[[P, - P,JAR;{T}]=p,

Similarly, we see the modus pones:

Prolo[[[Pl —PJAR]>P ;{T}]:l

The following is the same as Corollary 8.

Corollary 19. [Tautology in fuzzy logic] Let P(z M, (O,S[p])) be a propo-

sition constructed from elementary propositions
R (=M, (0484)) P (=M. (0,,8;,)) -+, B (=M. (O,,8,,,)) . Then, the fol-

lowings are equivalent:

(i) Pis a tautology in the sense of crisp logic.
(i) Prob[ P;{T}]=1.

That is, tautology always holds even in practical fuzzy logic. For example,
(O) syllogism (ze., [[F’1 - P,|A[P, > I33]] — [P, > P,] always holds.
Remark 20. We have two results such that
(i) in ref. [10], I showed that syllogism does not always hold in quantum system.

(ii) in Corollary 19, I showed that syllogism always holds in classical and

quantum systems.

Thus, readers may think that (i) and (ii) are contradictory. However, these are

not contradictory since Corollary 19 requires that O,,0,,0, commute. On the

other hand, in ref. [10], the commutativity of O, and O, is not required. The

Table 11. Probabilistic Truth Table (Elementary propositions M (Ol, S )(

(OZ,SM)( P))-

M, (0,.s

1 1p]

T

T

J=R) M

4(0,,8
T

F

27 ¥p]

)(=R) probability: p=x®,
Py =7 ({(T.T)}) T
) F
) F
)

F

[R>PR]rR

[R>R]AR-P,
T
T

T

T
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most important one, of course, is Corollary 19.

4.3. General Case

In previous section, we devote ourselves to
{MA (Oi :({T,F},Z{T’F},Gi) S ):i:1,2,-~,n} under the conditions (N;)~

L V|
(N3), which are not so wide as mentioned in Remark 13 (ii) and (iii), In this sec-

tion, we consider the general case:
{Pi =M, (0, =({T.F}.2"7,6,).5,,,):i :1,2,---,n}.Put

' Slail
5 A TF G
P= M@?:Mi (Oi _({T' F},2 ’Gi)'sl®?zwi])

[G](E)=(®131)®G (2)®(®).al) (vE eP({T,F})i=12n)

0, =({T.F}.277.6,),s

Here, note that P=M "
1 ®j:1Aj 1

sl
[®j-10j]

satisfies that
() A= ®', A is fixed,
() 0,,0,,,0
(P;) astate ®[, p, isonly one.
Therefore, the general case:

{F’izMAi (Oiz({T,F},Z{T‘F},Gi) S ]):i=1,2,---,n} can be understood in the

"

, commute,

theory of Sec. 4.2.

Remark 21. (i): From the theoretical point of view, some may want to extend
the above result to infinite tensor product. For this, we must prepare the
W -algebraic formulation of QL. I think challenging this problem is a good exer-
cise for the reader.

(ii): In this paper, we devote ourselves to binary logic (ie, {T,F}-valued
logic). If we want to consider many valued logic (ie, X-valued logic), we can
start from X-value observable. In this case, it is clear that “fuzzy many valued
proposition” = “Axiom 1”.

Example 22. [Hempel’s raven problem (cf [27]); Any sweet tomato is red]
Recall the arguments in Sec. 4.1. Consider ( 7F)-valued observables
Ogy =({T.F},277,Gyy ) and O =({T,F},277,Gep) in C(Q), where
Oy, and Og, is respectively called the sweet observable and the red observa-
ble. It is natural to consider that “Any sweet tomato is red” is defined by

(Q SWc<RD
where SW ={weQ|Gy, (0)=1} and RD={we Q|G (w)=1}. In order to
examine (Q) (Ze, to answer the problem: “Is the (Q) a proposition?”), it suffices

to check the following:
Prob| Mg (Oro: S5,y )i {T}|=1 (Yo esw)

For simplicity’s sake, we assume SW = {a)l,a)z,---,a)n}. Recall the linguistic

Copenhagen interpretation (L;) such that only one measurement is permitted.
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Thus, consider the tensor space ®[,C(Q) :C(Q”), and the tensor product
measurement

n n n N
MC(Qn) (i_lORD = ({T‘ F} ’P{T’ F} ’%GRD)'S[fy(wvruzr-wwn)]j

(S%GRD)({(Xl’XZ""VXH)}):i(;)lGRD ({XI}) (V(xl,)(z’...,xn)e {T, F}”)

Assume that the measured value X =(X,X,,-=,X,) belongs to {T}n . Then,
we can conclude that (Q) is true. Also, as an analogy of (ii) in Definition 15, we

may consider as follows. Let 7" :{T, F}n — {T,F} beamap such that

R T ifx=x=-=x=T
Xy Xy teey Xy ) = .
LT ) {F otherwise

Then, (Q) is equivalent to
PrOb[MC(Q“) (”A (®in=1ORD ) S[b,({w ..... o] ) , {T}} =1

Thus, (Q) is a fuzzy proposition. If SWis an infinite set, we must prepare the
infinite tensor algebra (ie., the W-algebraic formulation of QL (cf refs. [4]

[10])). We omit it in this paper, since this is simply a matter of mathematics.

5. Discussion about Wittgenstein, Moore,
Saussure, Quine, Lewis Carroll, etc.

Wittgenstein, Moore, Saussure, Quine, Lewis Carroll were related to the prob-

lem: “What is a scientific proposition?”. In this section, let us argue it.

5.1. Wittgenstein and Zadeh

>«

In ref. [11] (ie., Wittgenstein’s “Tractatus Logico Philosophicus” (abbreviated as
TLP)), which is one of the most famous philosophy books of the 20th century,
Wittgenstein studied “logic” in philosophy. However, in hindsight, he may have
written literature on the subject of “logic” (c£ refs. [28] [29]). It is a fact, howev-
er, that TLP was accepted by much of the general public. I think the general pub-
lic felt that Boole and Frege’s “symbolic logic” was just mathematics, and that
this was not sufficient as philosophy. In other words, they expected TLP to an-
swer the question, such that “Why does logic work in our world?” or “What is
the definition of non-mathematical proposition?.” Wittgenstein’s motivation of
TPL would have been to answer these questions, but he was too poet and drea-
mer.

In 1965, L.A. Zadeh proposed an engineering concept called “fuzzy sets” (cf.
ref. [1]), which was not recognized as a scientific concept by some excellent
scientists. And furthermore, Zadeh couldn’t convince them of his idea. However,
ref. [1] was one of the most cited papers in the 20th century. This implies that
many engineers felt that “mathematical set” is not enough, expected more from

his “fuzzy set”.
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I think the situation of Wittgenstein and Zadeh is very similar in the sense
that they were ardently supported by a large number of the general public even
though they were not supported by the best experts. I would rather trust the
senses of the many general public than the senses of a few experts. And what
Wittgenstein and Zadeh lacked, I believe, was a worldview.

Therefore, their claims are vague and incomprehensible, but if I understand
them under the quantum mechanical worldview, I think they are claiming al-
most the same thing. In other words, I think Theorem 16 and related matters

(Z.e, “What is a non-mathematical proposition?”) were their interest.

5.2. Moore’s Paradox

George Edward Moore was, with Bertrand Russell, Ludwig Wittgenstein, and
(before them) Gottlob Frege, one of the founders of analytic philosophy. Moore
is also remembered for drawing attention to the peculiar inconsistency involved
in uttering a sentence such as

(Ry) “Tt is raining, but I do not believe it is raining”,

a puzzle now commonly called “Moore’s paradox”. Recall that the claim of the
linguistic Copenhagen interpretation (L) is

(R2) Don’t carelessly use “I” in propositions
Therefore, this paradox is easily solved. In short, it is the same as the fact that “I
think, therefore I am” is unintelligible in quantum language. For example a cor-
rect proposition should be written as follows.

(Rs) It is raining. But the audience inside the theater doesn’t know it’s raining
outside.”
though it is different from (R,).

However, the purpose here is not to examine this paradox in detail. What I
have focused on is the following

(S) when Wittgenstein first heard this paradox one evening (which Moore had
earlier stated in a lecture), he rushed round to Moore’s lodgings, got him out of
bed and insisted that Moore repeat the entire lecture to him.