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Abstract 
In this paper, we present a new form of “special relativity” (BSR), which is 
isomorphic to Einstein’s “special relativity” (ESR). This in turn proves the 
non-uniqueness of Einstein’s “special relativity” and implies the inconclu-
siveness of so-called “relativistic physics”. This work presents new results of 
principal significance for the foundations of physics and practical results for 
high energy physics, deep space astrophysics, and cosmology as well. The en-
tire exposition is done within the formalism of the Lorentz ( )2SL C  group 
acting via isometries on real 3-dimensional Lobachevskian (hyperbolic) 
spaces L3 regarded as quotients ( ) ( )2 2SL C SU . We show via direct calcu-
lations that both ESR and BSR are parametric maps from Lobachevskian into 
Euclidean space, namely a gnomonic (central) map in the case of ESR, and a 
stereographic map in the case of BSR. Such an identification allows us to link 
these maps to relevant models of Lobachevskian geometry. Thus, we identify 
ESR as the physical realization of the Beltrami-Klein (non-conformal) model, 
and BSR as the physical realization of the Poincare (conformal) model of Lo-
bachevskian geometry. Although we focus our discussion on ball models of 
Lobachevskian geometry, our method is quite general, and for instance, may 
be applied to the half-space model of Lobachevskian geometry with appro-
priate “Lorentz group” acting via isometries on (positive) half space, resulting 
yet in another “special relativity” isomorphic with ESR and BSR. By using the 
notion of a homotopy of maps, the identification of “special relativities” as 
maps from Lobachevskian into Euclidean space allows us to justify the exis-
tence of an uncountable infinity of hybrid “special relativities” and conse-
quently an uncountable infinity of “relativistic physics” built upon them. This 
is another new result in physics and it states that so called “relativistic phys-
ics” is unique only up to a homotopy. Finally, we show that “paradoxes” of 
“special relativities” in either ESR or BSR are simply common distortions of 
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maps between non-isometric spaces. The entire exposition is kept at elemen-
tary level accessible to majority of students in physics and/or engineering. 
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1. Introduction 

The work we present here deals with maps. The meaning of a map used in ma-
thematics and physics is slightly different; however, its essence is the same. 
There is an opinion that mathematics studies sets (with additional structures) 
and maps between those sets. This is true also in physics. However, while the 
maps studied in mathematics are usually between some abstract mathematical 
structures, in physics, due to its experimental nature, the range of a map is al-
ways some subset of the real numbers. 

The subsets of the real numbers the physicists are concerned with are called 
experimental data. A map from a physical space into real numbers is called a 
direct map which, in scientific practice, is realized as data acquisition and re-
duction. The process of data acquisition is itself quite complex. For instance, in 
High Energy Physics, there are situations where some event of interest has to be 
singled out from billions of similar events. 

Data acquired due to a direct map is an “easy” part of a scientist’s job. The 
more difficult part is to interpret this experimental data, and this involves an 
inverse map. An inverse map deals with our understanding of what actually 
happens in physical space(s) from which the direct map data come from. 
The relation between maps in Mathematics and Physics can be presented as fol-
lows: 

1) Direct map in Mathematics corresponds to data acquisition in Physics. 
2) Inverse map in Mathematics corresponds to data interpretation in Physics.  
In this paper, we are concerned with two issues: 
1) With the non-uniqueness of maps, i.e. when several, alternative, homo-

topy equivalent maps exist, resulting in alternative non-unique interpretations 
of physical phenomena. 

2) With distortions introduced in the mapping process, which result in ap-
parent deformations of physical entities, which in turn are seen as paradoxes. 
See for example, Figure 1 below. 

We will address the situation when experimental data come with distortions 
introduced by certain maps. These distortions are independent of informational 
noise, but they do depend on the particular map with which the experimental 
data are interpreted. This results in non-unique quantitative interpretations of 
physical phenomena. 
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(a)                                      (b) 

Figure 1. The figures above show two well known ([Source: Wikipedia Commons]) Mer-
cator maps 2 2S E→ , standard in (a) and transverse in (b), which are related by homo-
topy. (The notion of homotopy is discussed in detail in Sections 2.3 and 6). Distortions 
present in the standard projection are continuously changed into distortions in the 
transverse projection, as the angle between an axis of the projection cylinder and 
North-South axis of the sphere 2S  changes from 0 to 90 degrees. In this paper we dis-
cuss analogous mappings and their distortions, however between Lobachevskian and 
Euclidean spaces, and show how relative apparent sizes of objects due to mapping dis-
tortions, particularly in the case of Lobachevskian space mapping, are incorrectly viewed 
in physics literature as “paradoxes”. (a) Standard mercator projection; (b) Transverse 
mercator projection. 
 

More to the point, we are interested in maps between spaces of the same di-
mension but with different (constant) curvatures. The non-uniqueness of such 
interpretations is inherently present in High Energy (high relative velocities) 
Physics (HEP), and they arise naturally in maps of Lobachevskian negatively 
curved spaces into a Euclidean flat space. 

Lobachevskian (hyperbolic) geometry was developed by several mathemati-
cians, Gauss, Schweikart, Bolay father and son, Beltrami and Lobachevski, just to 
mention a few. After a two thousand year struggle to prove Euclid’s fifth post-
ulate, it appeared around 1835 in closed form due to N.I. Lobachevski, a Russian 
mathematician of Polish ancestry. A good introduction to Lobachevskian geo-
metry can be found in Anderson [1]. 

It is needless to say that High Energy Physics (HEP), otherwise known in the 
literature as “relativistic physics” and “relativistic astrophysics”, where relative 
velocities range from fractions of c to nearly c, is based on Einstein’s “special re-
lativity” (ESR). Since 1905, it has been generally accepted that phenomena oc-
curring at high relative velocities (with respect to c) are modeled in unique way 
(i.e. in the only way possible) by Einstein’s “special relativity”. Such beliefs re-
sulted in the confidence that the numerical information represented by data 
gained from ESR indeed reflects the truth about the Nature. This belief, as it will 
be shown, is misguided. 

Since we present a “special relativity” that is mathematically isomorphic but 
not isometric (or numerically different) from Einstein’s “special relativity”, in 
order to avoid confusion, we will label Einstein’s “special relativity” as ESR and 
the authors’ “special relativity” as BSR. Both ESR and BSR presented here are 
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based on the same group of symmetries—the Lorentz group ( )2SL C , acting 
on its own homogeneous space. 

In this paper, we present the following new scientific results, which beyond 
practical significance, are of utmost importance to the foundation of physics: 

1) An alternative to Einstein’s “special relativity” (ESR) namely the authors’ 
“special relativity” (BSR) (based on the same Lorentz group). 

a) It is shown that BSR corresponds to the Poincare model of Lobachevskian 
geometry, while Einstein’s ESR corresponds to the Beltrami-Klein model of 
Lobachevskian geometry. 

b) It is shown that BSR is equivalent to a stereographic projection from Lo-
bachevskian into Euclidean space, while Einstein’s ESR is equivalent to gno-
monic (central) projection from Lobachevskian space into Euclidean space. 

c) It is shown that both projections, the Poincare (stereographic) and the Bel-
trami-Klein (gnomonic), result from different actions of the Lorentz group 

( )2SL C  on its own homogeneous space ( ) ( )2 2SL C SU  isomorphic to a 
real 3-dimensional Lobachevskian space. 

2) Due to above results, we prove the non-uniqueness of Einstein’s “special 
relativity” and the non-uniqueness of any Lorentz group based “relativity” as 
well. 

3) On the basis the homotopy theory, an existence of an uncountable infinity 
(i.e. continuum) of alternative “special relativities” is proved. 

4) On the basis of (3) above, we prove the inconclusiveness of High Energy 
Physics, or more precisely, the conclusiveness of HEP up to a homotopy only. 

5) The so called Twin Paradox is mathematical solved in a symmetric setting 
showing the apparent distortions introduced by various maps called “special re-
lativities”. 

6) The problem of images of fast moving circular objects is shown to be 
a-priori undecidable, being non-unique and dependent on a particular map. 

How This Paper Is Organized  
Our work is functionally divided into the following sections: 

 Section 2: We discuss the properties of maps, specifically of maps between 
spaces of constant curvature and Euclidean space. This is important because 
expertise gained from spherical cartography, 0K > , will be applied to car-
tography from Lobachevskian space (hyperboloids) 0K < . 

 Section 3: We discuss Lorentz group actions on homogeneous spaces. From 
the single concept of Lorentz group action, we arrive at our equation of our 
“special relativity” BSR as well as equations of Einstein’s “special relativity” 
ESR. 

 Sections 4 and 5: We show that various “Special Relativities” are simply maps 
from Lobachevskian Space into Euclidean Space. In particular we study the 
gnomonic (central) and stereographic maps from spheres and hyperboloids, 
and establish their relation to Beltrami-Klein model and to Poincare model of 
Lobachevskian geometry respectively. The isomorphism of the Beltrami-Klein 
and Poincare models is shown, thus showing the isomorphism between 
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Einstein’s “Special Relativity” ESR and our “Special Relativity” BSR. 
 Section 6: We discuss the homotopy of maps, resulting in a continuously in-

finite set of possible “special relativities”. The existence of infinitely many 
uncountable “special relativities” is proved via the concept of homotopy. 

 Section 7: We discuss several “paradoxes” from relativistic and high energy 
physics. We show the apparent nature of so-called “relativistic effects” and/or 
“paradoxes” as distortions resulting from maps between non-isometric spac-
es of the same real dimension.  

A word on notation. We use quite standard notation, however, following Gel-
fand, Grayev, and Vilenkin, everywhere in this work, we call ( )2SL C  the Lo-
rentz group. In older literature, the Lorentz group is ( )1,3SO , for which 

( )2SL C  is its double cover. 

2. Maps from Spaces of Constant Curvature into Euclidean  
Space and Their Properties 

In this section we will give the reader an easy introduction to effects of distor-
tions which are present in maps between non isometric spaces. As we will later 
see, these distortions in the context of “special relativity” are misunderstood as 
real phenomena and are represented by variety of “paradoxes”. 

2.1. Distortions of Data Due to Maps between Non-Isometric  
Spaces 

The physics in this work takes place in Lobachevskian negatively curved spaces. 
Unfortunately we do not perceive negative curvature in the way we perceive the 
spectral content of a light (colors), or music, or motion around us. Thus there is 
a need to “translate”, to map, to project the results internal to Lobachevs-
kian spaces into the 3-dimensional piece of Euclidean (flat) space of our la-
boratory. This is a step of utmost importance, since during the mapping we in-
troduce (out of necessity) all kinds of distortions which even today are not 
properly understood. 

Exploration of the world around us, and exploration of the Earth in particular, 
would be hardly possible without maps. It is essential to understand the different 
ways or methods of making maps, and the distortions of the images produced 
by these maps or models. 

In ancient times, as long as people did not wander “too far” from their homes, 
maps drawn on a flat piece of paper were quite faithful. The Earth was believed 
to be flat just like the piece of a paper. Thus image of the Earth’s flat surface on a 
flat piece of paper was perfect with no distortions of any kind, neither angular 
nor in relative sizes. Mapping of a flat space onto flat space (of the same di-
mension) with no distortions is possible because: 

Remark 1 All Euclidean spaces of the same dimension are isometric. It fol-
lows that maps between Euclidean spaces (of the same dimension) are globally 
distortion-less on the entire space.  

Due to the above property of Euclidean spaces of the same dimension, we 
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have in fact only one Euclidean geometry. Therefore, maps between formally 
different representations of Euclidean geometry via different spaces (of the 
same dimension) are in fact done “in the same space”. 

This situation changed when people started to navigate open seas and realized 
that what they considered as flat was in fact positively curved. Thus for naviga-
tional purposes, new map making methods were developed. These methods ap-
plied mathematics to get images of the Earth’s curved surface on a piece of 
flat paper, i.e. onto a piece of the Euclidean plane E2. 

It is important to understand how the distorted image of the Earth’s surface 
we see on a flat map is related to the positively curved surface 2S , 0K > , of 
the Earth which is a model of the non-Euclidean - spherical geometry in two 
dimensions. It is important because using examples of positively curved spaces, 
which intuitively are better perceived than negatively curved ones, we will dem-
onstrate some general mathematical concepts like isometry, isomorphism and 
conformality. These concepts apply equally well to maps from positively curved 
spaces and maps from negatively curved spaces. The experience acquired from 
mapping spaces of constant positive curvature into Euclidean space will make 
it easy to comprehend mappings of spaces of constant negative curvature into 
Euclidean space. As we will show, at the base of Einstein’s “special relativity” 
(ESR), our “relativity” (BSR), and all possible other future “relativities” based on 
the Lorentz group ( )2SL C , lies the problem of mapping of non-Euclidean 
(negatively curved) spaces into Euclidean flat spaces. 

In general, when the curvature of the space in question is not constant, the 
problem of mapping is quite complicated. However, in the case of constant posi-
tive curvature, for instance, several ways of mapping have been developed. Many 
models (images) of the spherical geometry of the Earth’s surface in a Euclidean 
(flat space) exist. These maps, known also as projections, give images of a 
curved geometry via a flat (Euclidean) geometry. Widely known examples in-
clude orthographic, stereographic, gnomonic, and Mercator projections. Each 
particular map has its own advantages and disadvantages depending on its ap-
plications. 

Different maps (viewed as sets) from a curved . 0K const= ≠  space into a 
flat 0K =  space all are isomorphic. However they are not isometric, and 
some are non-conformal, which means that images resulting from those maps 
will show distortions in relative sizes and angular relations of mapped objects. 
As a rule, distortions are larger the larger the chunk of curved space that is 
mapped into a flat space, so the mapping is faithful only locally. The general rule 
is: 

Remark 2 Maps between spaces of constant nonzero curvature and Euclidean 
spaces cause distortions, and only locally are they approximately distortion-free. 
This is because spaces having different constant nonzero curvatures are not iso-
metric, assuming that dimensions of all spaces are equal. 

In the case of an 2 2S E→  mapping, distortions are determined by the ratio 
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l
R

 of the curved domain’s linear size l  to the radius R  of the ball 3B  

bounded by 2S . The smaller the ratio 1l
R
  is (recall the 1

c
υ
  regime in  

ESR), the more faithful the image of that curved surface will be on flat a surface. 
It is obvious that such maps are neither regarded as “laws of nature” nor as 
“theories” (as in the “theory of special relativity”), but merely as convenient 
ways of mapping curved spaces (surfaces) into flat spaces (surfaces). 

If we were to regard map making as the business of mathematics, and explo-
ratory journeys due to those maps as physical experiments, then it is obvious 
that not every map (from all available maps) will be useful for a particular expe-
riment, since some of those maps will produce highly distorted information that 
is far from reality. For instance, in the case of spherical geometry applied to 
mapping the Earth’s surface, it is quite relevant which map (flat model of the 
Earth surface) will be used as the tool to navigate the globe. The standard Mer-
cator map is entirely useless to navigate around the poles (e.g. around Green-
land or Antarctica) due to excessive distortions (non-linearities); see Figure 1. 
The Mercator map shows Greenland being as large as Africa, despite Africa ac-
tually being 15 times larger than Greenland. Nevertheless, the Mercator map is 
quite a good model of the Earth’s geometry if navigating around low latitudes 
(i.e. close to the equator). 

Methods of mapping the Earth’s surface have developed quite well over time. 
This is because geometric forms of positive curvature are abundant around us, 
and were known to man since ancient times. Maps of objects of constant positive 
curvature into Euclidean space were known to artists, map makers, mathemati-
cians for centuries. On the other hand, objects or forms of negative curvature 
went unknown or unnoticed up to the 19th century, and there were no relevant 
maps (at least in physics) from spaces of negative curvature into Euclidean spac-
es. In physics, the first such map was Einstein’s ESR, and in art, Escher’s paint-
ings. It is no surprise that when ESR appeared in 1905 and was interpreted (un-
fortunately) via Minkowski’s flat geometry—with all its paradoxes—it was quite 
a shock then and is still a major misunderstanding today. 

As in maps from positively curved spaces, we expect that when we map from 
negatively curved spaces into Euclidean space, we will also experience distor-
tions of images. But since the curvature K is negative this time, the character of 
distortions will be opposite to those seen in the positive curvature case. Dis-
tortions of maps from negatively curved spaces into flat spaces will appear 
as contractions, instead of expansions. 

It is well known in mathematics (see Figure 2) but overlooked by physicists 
and astronomers, that negatively curved spaces are more volumetric, and po-
sitively curved spaces are less volumetric than Euclidean spaces. Specifically:  

1) An inhabitant of a Lobachevskian space (a hyperboloid) with 0K < , who 
interprets other geometries in terms of his own, will see Euclidean space as con-
tracting and a spherical space as contracting even more. 
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(a) 

 
(b) 

 
(c) 

Figure 2. Figures (a)-(c) show the dependence of the volumetric content of spaces of 
constant Gaussian curvature K versus the sign of their curvatures. We see that spherical 
space, 0K > , is less volumetric than Euclidean space 0K = , while Lobachevskian space 

0K <  is more volumetric than Euclidean space 0K = . It is interesting to note that this 
property of Lobachevskian spaces already found an application in data packing tech-
niques and digital signal design (more space - more data) in the Internet domain. 
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2) On the other hand, an inhabitant of a spherical universe with 0K > , who 
interprets other spaces via the geometry of his own space, will conclude that 
Euclidean spaces expand and Lobachevskian spaces expand even more.  

3) An inhabitant of an Euclidean world with 0K = , who believes that any 
other geometry (and physics) has to be interpreted in Euclidean terms, will see a 
spherical space as Euclidean-contracting, and see the Lobachevskian (hyper-
bolic) space as Euclidean-expanding. 

We live in a world which locally, due to limited resolving power of our in-
struments, can be regarded as Euclidean. However, experiments clearly show 
that the physics and geometry of high relative velocities and large distances do 
not agree with the rules of Euclidean geometry [2] [3] [4]. Since we are dealing 
with velocities close to c and with distances on cosmological scales, in order to 
avoid confusion and common misinterpretations, we always need to remember 
the relation between the sign of the curvature of the spaces and the relative 
volumes. This is summarized in Table 1 with assumption that the dimension of 
all entries is the same. 
 
Table 1. The “contraction”/“expansion” effects of images of physical objects or even en-
tire spaces result from comparing incomparable metric relations in non-isometric 
spaces. The nine possible cases above (read as maps from rows →  columns) show the 
apparent “effects” from the lack of consideration of non-Euclidean geometries. For in-
stance, the third-row, second-column entry, “contraction”: this is what an observer from 
a negatively curved space 0K <  will conclude about a flat space 0K = . Also, the 
second-row, third-column entry, “expansion”: this is what observer from flat space 

0K =  will conclude about a negatively curved space 0K < , precisely illustrating the 
misconception of the so-called “expanding universe” which has been plaguing cosmology 
for over a hundred years. 

 1K = +  0K =  1K = −  

1K = +  isometry “expansion” “expansion” 

0K =  “contraction” isometry “expansion” 

1K = −  “contraction” “contraction” isometry 

2.2. Non-Uniqueness of Data Interpretation Due to Maps from  
Spaces of Constant Curvature into Euclidean Space 

The aim of this section is to show how a continuous and uncountable infinite 
family of parametric maps, dependent on a real parameter, arise from maps of 
spaces of constant curvature into Euclidean space. The real parameter a on 
which the map depends produces a gnomonic (central) map and a stereo-
graphic map at its two particular extreme values. All other values of the para-
meter in between the extremes correspond to an uncountable infinity of a 
mixed map. The uncountable infinity of possible maps is expressed in a natural 
way by the notion of homotopy [3] which, in an informal way, is introduced in 
Subsection 2.3. 
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2.2.1. Spherical Cartography 
To get more insight into cartography from a sphere via different projections, it 
will be natural to use the language of projective geometry. (Projective geometry 
was developed in the 19-th century for the needs of pure geometry; today it is 
the basic tool for computer graphics.) 

Regarding our discussion, projective geometry encompasses both cases of 
spherical and Lobachevskian (hyperbolic) geometry. It gives an elegant and uni-
form way to treat spherical and Lobachevskian cartography by appropriate (to 
each case) normalization of projective coordinates. We present the spherical 
cartography case below, whereas the Lobachevskian cartography case is dis-
cussed in 2.2.2. 

For the sake of simplicity only, we will consider the one dimensional case, 
namely the real projective line 1RP , and its mapping into an affine line 1E . 

On the projective line 1RP  we have to deal with projective coordinates. 
Since in a real projective space of dimension n there are 1n +  projective (ho-
mogeneous) coordinates, it follows that on a projective line which has dimen-
sion one, there will be two projective coordinates which we denote as 0ξ  and 

3ξ . Subscripts are irrelevant but later on we will see why they are chosen in this 
way. Of course in any space of dimension n, there can only be n linearly inde-
pendent coordinates. That redundancy, in the case of projective coordinates, is 
handled by imposing some kind of normalization condition which we choose as: 

2 2
0 3 1ξ ξ+ =                            (1) 

Normalization condition (1) results in only one independent coordinate and 
(in projective coordinates) is the equation of the unit circle centered at ( )0,0o . 

The single (local) coordinate on an affine line into which the projection is 
done is denoted by x. Affine x and projective coordinates ξ  are related as: 

3

0

x
a

ξ
ξ

=
−

                           (2) 

The parameter a in (2) has a simple meaning. From the point of view of 
geometry, it is equal to the Euclidean distance ( ),d o p  between the center of 
the unit sphere o and the center of projection p, so ( ),a d o p= . The parameter 
a determines the kind of projection or a type of a map. Since in the present 
work we are interested in gnomonic and stereographic projections (and hybrid 
projections as well) the parameter a will be limited to values listed below. From 
the point of view of topology, parameter a is a variable homotopy parameter 
which determines the continuous deformation of one map into another [5]. As 
a changes continuously through its range, the maps change (deform) accor-
dingly, something known in mathematics as the homotopy of maps, which we 
will discuss in more detail later on. 

In this paper we concern ourselves with the following cases of the parameter a: 
 0a =  ⇒  gnomonic (central) projection.  
 ( )0,1a∈  ⇒  continuum of hybrid (mixed) projections, mixed maps. 
 1a =  ⇒  stereographic projection, stereographic map. 
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a = 0: The case of gnomonic (central) projection, from a projective line into 
an affine line. 

We can express projective coordinates via coordinate(s) x by solving Equa-
tions (1) and (2) with 0a = . This gives: 

0 32 2

1 ,
1 1

x

x x
ξ ξ= =

+ +
                   (3) 

In general, in an n-dimensional case of a gnomonic projection from an 
n-dimensional projective space into an n-dimensional affine space: 

0 2 2

1 , , 1, ,
1 1

i
i

x
i n

x x
ξ ξ= = =

+ +
               (4) 

We call projective (homogeneous) coordinates is the form (4) Weierstrass 
coordinates since they are analogous to those used by Weierstrass in his work 
on Lobachevskian (hyperbolic) geometry [6] which we will explicitly derive in 
the next section. 

a = 1. The case of stereographic projection, from a projective line into an af-
fine line. 

Solving Equations (1) and (2) with 1a = , we find the projective coordinates 
expressed via affine coordinate(s) due to stereographic map from a projective to 
an affine line. Those are: 

2

0 32 2

1 2,
1 1

x x
x x

ξ ξ−
= =

+ +
                    (5) 

In general, in an n-dimensional case of stereographic projection from an 
n-dimensional projective space into an n-dimensional affine space: 

2

0 2 2

1 2
, , 1, ,

1 1
i

i

x x
i n

x x
ξ ξ

−
= = =

+ +
               (6) 

In both cases, in angular coordinates: 

0 3cos , sinξ α ξ α= =                     (7) 

Projective coordinates in a form of (6) are called rational coordinates and are 
related to a stereographic projection. They are also referred to as the rational 
parametrization of a circle. It is obvious that in all three cases (3), (5), and (7), 

2 2
1 3 1ξ ξ+ = . 
In Figure 3 and Figure 4, the gnomonic and stereographic projections from 

the unit radius sphere into Euclidean space are shown. The aim of Figure 3 and 
Figure 4 is to show that the data exchange between a spherical space 0K >  
and a Euclidean space 0K =  cannot be interpreted in unique way. Moreover, 
we see that the data due to a gnomonic projection are tangD α= , while data 
due to stereographic projection are 2 tan

2sD α
= . Since: 

2

2 tan
2tan

1 tan
2

α

α
α

=
−

                      (8) 
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Figure 3. Spherical Space Mapping, ( ) ( )2 20 0S K E K> → = . The single data D  from 

spherical space are mapped onto two different data S
ED  and G

ED  in Euclidean space of 

a physicist’s laboratory. Data S
ED  are due to a stereographic map while data G

ED  are 

due to a gnomonic map. Between S
ED  and G

ED  (one the segment ( S
ED , G

ED )) there is a 
continuum of Euclidean data corresponding to hybrid maps when the projection point 
takes an arbitrary position on the segment ON. 
 

 

Figure 4. Spherical Space Mapping, ( ) ( )2 20 0E K S K= → > , the inverse map. The sin-

gle data D  in the Euclidean space of a physicist’s laboratory is mapped onto two differ-
ent data 1

GD−  and 1
SD−  in spherical space. Data 1

SD−  are due to a (inverse) stereo-

graphic map, while data 1
GD−  result from a (inverse) gnomonic map. Between 1

SD−  and 
1

GD−  on the segment [ 1
SD− , 1

GD− ] there is a continuum of spherical space data corres-
ponding to a single Euclidean datum due to (inverse) hybrid maps. This illustrates the 
state of the undecidable situation when physicists are unable to decide which data in 
spherical space correspond (in a unique way) to the data they acquired in Euclidean 
space. In the language of cause and effect, it is impossible to single out a particular cause 
which results in a detected effect. This indeterminate situation is typical of quantum me-
chanics. We return to this below when we discuss “relativities” as maps. 
 
or: 

2

1
2

s
g

s

D
D

D
=

 
−  
 

                         (9) 

The inverse map is given as: 

( )2

2

1 1 tantantan
2 tan1 1 tan

θθ θ
θθ

− −
= =

+ −
             (10) 
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Equations (8) and (10) give an isomorphism between a gnomonic map and a 
stereographic map of a unit sphere onto the Euclidean plane. 

tan tan
2

Gnomonic ISO Stereographicθθ⇔ ⇔


         (11) 

These facts will appear again when we discuss “special relativities” as gno-
monic and stereographic maps. 

Conclusion 3 From the formulas of two alternative parametrizations of the 
unit circle (3) and (5) and from Figure 3 and Figure 4, we note that the para-
metrization of a circle (a 1-dimensional spherical space) by a full parameter 
α  corresponds to a gnomonic (central) map, while a parametrization of a unit 
circle by a half parameter 2α  corresponds to a stereographic map. 

At the end of this section we would like the reader to remember the following: 
1) A central or gnomonic projection (map) from a sphere, 0K > , is related 

to the Weierstrass parametrization of a unit sphere. 
2) A stereographic projection from the a sphere, 0K > , is related to the ra-

tional parametrization of the unit sphere. 

2.2.2. Lobachevskian (Hyperbolic) Cartography 
We now repeat the derivation from Section 2.2.1 but this time for Lobachevskian 
space; see Figure 5. Again, consider the projective line 1RP  equipped with 
projective coordinates 0 3,u u  subject to normalization condition (12): 
 

 

Figure 5. Lobachevskian (hyperbolic) Space Mapping, ( ) ( )2 20 0L K E K< → = . The 

same single data LD  in Lobachevskian space are mapped onto two different data 1ED  
and 2ED  into Euclidean space of physicist laboratory. Data 1ED  are due to gnomonic 
map while data 2ED  are due to stereographic map. Between 1ED  and 2ED  there is a 
continuum of Euclidean data corresponding to hybrid maps when projection point takes 
arbitrary position on [ ]1,0−  segment. Data 1ED  and 2ED  are related by isomor-

phism as 2
1 2

2

2
1

E
E

E

DD
D

=
+

. 
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2 2
0 3 1u u− =                           (12) 

which in projective coordinates 0u  and 3u  is a two-branched unit hyperbola 
centered ( )0,0O . 

In order to be closer to what will follow, we take the Lobachevskian line as a 
1-dimensional Lobachevskian velocity space, in which points represent velocities 
and distances between points represent relative velocities. This time the affine 
coordinate (depending on the projection from a Lobachevskian line to an affine 
line) will be denoted as v for a gnomonic (central) projection and as υ  for a 
stereographic projection. The affine (local) coordinates v and υ  are the mea-
surable data which relativistic physics acquires from experiments. The parame-
ter a represents the distance between the center of the hyperbola and the center 
of projection, and takes values 0a = , 0 1a< < , 1a = − , yielding: 
 0a =  ⇒  a gnomonic projection. 
 ( )1,0a∈ −  ⇒  a continuum of hybrid projections (mixed maps). 
 1a = −  ⇒  a stereographic projection. 

Depending on the parameter a, the affine coordinates v and υ  are expressed, 
via projective coordinates, as: 

3

0

v or
u

u a
υ =

−
                       (13) 

v in the case of 0a = , and υ  in the case of 1a = − , respectively; see Figure 
5. 

The reader is encouraged to repeat the calculations from previous section to 
see that: 

a = 0. The case of gnomonic projection, from a Lobachevskian line into an 
affine line. Solutions of Equations (12) and (13) give: 

( )3
0 32 2

v1 , v 0,1
1 v 1 v

u u= = ∈
− −

              (14) 

and in the general n-dimensional case of a gnomonic (central) projection from 
an n-dimensional Lobachevskian space into an n-dimensional affine space: 

( )0 2 2

v1 , , 1, , , v 0,1
1 v 1 v

i
iu u i n= = = ∈

− −
        (15) 

Projective coordinates in the form (15) are known as Weierstrass coordinates 
as mentioned earlier, which Weierstrass developed and used at least 50 years be-
fore Einstein’s ESR. An alternative parametrization via hyperbolic functions 
yields: 

0 3cosh , sinhu uθ θ= =                      (16) 

It is easy to check that both (14) and (16) obey the normalization condition 
(12). From (13) we see that the affine coordinate v at 0a =  is equal to: 

3

0

v tanh
u
u

θ= =                         (17) 

where θ  is the (signed) distance in the Lobachevskian line, meaning Loba-
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chevskian relative velocity. Note that while 0 θ< < ∞ , 0 1v< < . Values 
θ = ∞  and 1v =  belong to the boundary at infinity of a Lobachevskian line 
and are interpreted as velocities of photons. 

a = −1. The case of stereographic projection, from a Lobachevskian line into 
an affine line. Similarly to the previous paragraph, we obtain: 

2

0 32 2

1 2cosh , sinh
1 1

u uυ υθ θ
υ υ

+
= = = =

− −
            (18) 

Coordinates (18) are rational projective coordinates, which give the rational 
parametrization of a unit hyperbola and are analogous to the rational parame-
trization of a unit circle (5). Rational projective coordinates in the Lobachevs-
kian case are related to stereographic projection from a hyperboloid as ration-
al coordinates in the spherical case are related to a stereographic projection from 
a sphere. 

The generalization of Formula (18) in an n-dimensional Lobachevskian space 
is: 

( )
2

0 2 2

1 2
, , 1, , , v 0,1

1 1
i

iu u i n
υ υ

υ υ

+
= = = ∈

− −
         (19) 

Next, from (17) and (18) we see that: 

3
2

0

2tanh v
1

u
u

υθ
υ

= = =
+

                    (20) 

The formula 

2

2v
1
υ
υ

=
+

                         (21) 

shows a well known relation of isomorphism between the Beltrami-Klein and 
Poincare models of Lobachevskian geometry, which is represented here by Lo-
bachevskian velocity space. 

Next, since:  
1 2cosh 1tanh

2 cosh 1
θ θ

θ
− =  + 

                   (22) 

from (22), we find the Euclidean velocity υ  versus Lobachevskian velocity θ , 
in the case of a stereographic map, is: 

tanh
2
θυ =                         (23) 

Thus the relations of isomorphism between a gnomonic and a stereographic 
projection are: 

1) In terms of Lobachevskian velocity space:  

2

2 tanh
2tanh

1 tanh
2

θ

θ
θ

=
+

                    (24) 
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2

2

tanh 1 1 tanhtanh
2 tanh1 1 tanh

θ θ θ
θθ

− −
= =

+ −
           (25) 

See the analogy with spherical cartography. 
2) In terms of Euclidean velocity space (that the physicist deals with): 

2

2v
1
υ
υ

=
+

                        (26) 

2

2

v 1 1 v
v1 1 v

υ − −
= =

+ −
                  (27) 

Beltrami-Klein tanh tanh Poincare
2

ISO θθ ∈


         (28) 

The arrow over ISO indicates both ways of mapping due to the isomorphism 
between gnomonic and stereographic images from the (unit) hyperboloid into 
the plane 2E .  

The above simple calculations have led to a very important and well known 
conclusion: 

1) The Beltrami-Klein model corresponds to a gnomonic (central) projection 
from Lobachevskian into Euclidean space. 

2) The Poincare model corresponds to a stereographic projection from Loba-
chevskian to Euclidean space. 

So far, performing the calculations in spherical and Lobachevskian cartogra-
phies, we have not mentioned anything at all about the Lorentz group or Lorentz 
transformations. In the following exposition (Section 3), we will obtain the same 
results via Lorentz group action (Lorentz transformations) on Lobachevs-
kian space, resulting in “Special Relativities” which will be identified as maps 
(gnomonic, stereographic, or mixed). 

At the end of this section we would like the reader to remember that: 
1) The central or gnomonic projection (map) from Lobachevskian spaces 

(hyperboloids), 0K < , into Euclidean space is related to the Weierstrass para-
metrization of the unit hyperboloid. 

2) The stereographic projection (map) from Lobachevskian spaces (hyperbo-
loids), 0K < , into Euclidean space is related to the rational parametrization of 
a unit hyperboloid. 

A nice discussion of hyperbolic cartography can be found in Reynolds [7]. 

2.3. Homotopy and an Infinity of Maps 

A homotopy is a topological notion. It is quite important and useful for our ex-
position. It is analogous to the notion of homeomorphism, but it is coarser than 
homeomorphism. A formal definition will be given in Section 6. While a ho-
meomorphism relates topological spaces, a homotopy relates continuous maps, 
which can be regarded as “points” in a space of continuous mappings. In terms 
of equivalence, a homotopy is an equivalence relation on a space of continuous 
mappings, similarly like homeomorphism is an equivalence relation on topolog-
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ical spaces. 
Mappings, or projections in general, depend on the position of the projection 

point, also known as the center of projection. Since we can continuously change 
the projection point, it follows that all such maps, viewed as a points in a 
so-called mapping space are uncountably infinite and can be changed one into 
another one continuously. In other words, they are all homotopic. The reader 
should note that these topological properties of maps apply to maps from 
spheres as well as from hyperboloids (Lobachevskian spaces). 

We believe it is worth looking at the general picture via a homotopy of maps, 
which we will later apply to maps from Lobachevskian space 0K <  into Eucli-
dean space 0K = . A homotopy of maps, simply put, is the continuous defor-
mation of one continuous map into another continuous map. Spaces due to 
homotopic maps are of the same homotopy type [3], which roughly means that 
one space can be continuously deformed onto another. 

Consider the gnomonic and stereographic projections in case of the sphere 
2S  into the Euclidean plane 2E . The point from which the projection is done 

in a gnomonic map is the center of a sphere 2S , while in a stereographic map 
the projection is done from “the North Pole” point N, Figure 3. If we start with a 
gnomonic map and move the point of projection continuously up from the cen-
ter of the sphere along the radius toward the North Pole N we will have a con-
tinuous family of hybrid maps. When the point of projection reaches to the 
North Pole N we will have a stereographic projection. You may imagine the 
whole process as a continuous deformation of the gnomonic map into ste-
reographic map. We see that points p along the unit segment continuously pa-
rametrize maps of 2S  into 2E . Since on the unit segment there is an conti-
nuum of points (uncountable infinity), there is therefore a continuum of maps 
of a spherical space, 0K > , into the Euclidean space 2E . In regards to our ex-
position, we can say that images of the Earth’s surface 2S  due to gnomonic and 
stereographic maps are of the same homotopy type, i.e. images of 2S  in 2E  
are homotopy equivalent. 

Regarding the distortions of maps from curved into flat spaces, we recall that: 
1) Maps from curved spaces into Euclidean space are not unique and not 

isometric. They will show distortions depending on the curvature of the initial 
space, on the method of mapping, and on the linear size of the mapped domain.  

2) Maps (images) from positively curved spaces, 0K > , e.g. from the Earth’s 
surface, into the Euclidean plane 0K =  will show images of distortions of 
enlargement, or images of expansion of objects, since a space of zero curvature 
(flat) is more volumetric than a positively curved space.  

3) Conversely, maps from a Euclidean space into spherical space will show 
distortions as compression, and an contraction of images.  

4) Maps (images) from Lobachevskian negatively curved spaces (hyperbolo-
ids), 0K < , into an Euclidean space, 0K = , will show distortions of com-
pression, or an contraction of images of objects (“Fitzgerald contraction”, “time 
dilation”). This is because Euclidean space is less volumetric than a hyperbolic 
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negatively curved (Lobachevskian) space.  
5) Conversely, maps from an Euclidean space into a Lobachevskian space will 

show distortions of enlargement, or distortions of expansion.  

3. Lobachevskian Homogeneous Spaces Related to the  
Lorentz Group and Lorentz Group Action 

This section contains some already known material [8] [9] [10]. It is included as 
a convenience for the reader only. 

Definition 4 A space X with a given group acting on X is called a homoge-
neous space if any two points ,x y X∈  can be joined by some g G∈ , meaning 
y gx=  for any ,x y X∈  and some g G∈ . The group G is called the group of 

motions of the space X. 
Homogeneous spaces are very useful in mathematics and physics. Due to 

ideas going back to the German geometer Feliks Klein [11], homogeneous space 
X can be described solely in terms of the symmetry group G acting on it. Due to 
this construction, a homogeneous space inherits many useful properties which 
belong to a group associated with it. 

The procedure itself is as follows. Take some arbitrary point o X∈  (call it 
the origin) and find a subgroup H G⊂  which leaves point o unchanged, 
Ho o= . That subgroup H is called a stabilizer of the point o. The choice of a 
point o is irrelevant. If one thinks, for instance, about a homogeneous space as of 
a sphere 2S  then any point on the sphere may be regarded as the “origin”. 

After the stabilizer has been found, the quotient space G/H is constructed in 
which “points” are identified with copies of H shifted by elements of G, namely 

0x eH= , 1 1x g H= , 2 2 ,x g H=   This one to one correspondence between 
points ix  and cosets ig H  establishes an isomorphism between the spaces X 
and G/H. 

We are interested in a real Lobachevskian 3-dimensional space(s) and a group 
of motions associated with it which is the Lorentz group ( )2SL C . First, a few 
definitions: 

Definition 5 The Lorentz group ( )2SL C  is the group of 2 2×  complex 

matrices g
α β
γ δ
 

=  
 

, , , , Cα β γ δ ∈ , with unit determinant det 1g = . Since  

det 1g = , as a topological space, ( )2SL C  may be viewed as a hyperboloid 
which is a generic representation of Lobachevskian space. ( )2SL C  is a double 
cover of ( )1,3SO  which is used in orthodox “special relativity” in Minkowski 
pseudo-Euclidean real 4-dimensional flat geometry.  

Definition 6 Lobachevskian (real) space is a simply connected, non-compact, 
locally compact, metric space of constant Gaussian curvature 0K < . The ge-
neric value of K is usually set to −1, 1K = − .  

Note that compact negatively curved spaces are not Lobachevskian spaces in 
the sense of Definition 6 and are not discussed here. 

We will use two parallel representations of Lobachevskian space: 
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1) As an upper sheet of a 3d-hyperboloid equipped with projective (homoge-
neous) coordinates 

2 2 2 2
0 1 2 3 0, 0,1, 2,3, 1, 1.i iξ ξ ξ ξ ξ ξ= − − − = ≥  

2) As a set H +  of positive definite Hermitian matrices in ( )2SL C ,  
( )2H SL C+ ⊂ . Positive definite matrices are those which have all eigenvalues 

positive.  
In the second representation above, points in the real 3-dimensional Loba-

chevskian space are identified with complex 2 2×  positive definite Hermitian  

matrices (with unit determinant),  0 3 2 1

2 1 0 3

i
i

ξ ξ ξ ξ
ξ

ξ ξ ξ ξ
− − 

=  + + 
, where ξ   

( )0 1 2 3, , ,ξ ξ ξ ξ  are projective (homogeneous) coordinates in Lobachevskian real 

3d-space normalized as 

2 2 2 2
0 1 2 3det 1ξ ξ ξ ξ ξ= = − − − . 

A one-to-one (bijective) correspondence between projective coordinates ξ  
and matrices in H +  is given as: 



0 3 1 2

1 2 0 3

i
i

α
α

ξ ξ ξ ξ
ξ ξ σ

ξ ξ ξ ξ
− − 

= = + + 
                 (29) 

and 

( )1
2

Tr α
αξ ξσ=                         (30) 

where 0 eσ =  is the identity 2 2×  matrix and kσ , 1,2,3k =  are Pauli ma-
trices, and summation is over the same indexes. 

Remark 7 The advantage of working with 2 2×  positive definite Hermitian 
matrices ξ , uξ =  or xξ =  of unit determinant is that: first, matrices u  
and x  represent points u and x in real 3-dim Lobachevskian space 3

UL  and 
3
XL  respectively. Projective (homogeneous) coordinates of points u or x are 

given explicitly via Formula (30). Matrices u  and x  are also viewed as Her-
mitian operators acting via isometries (Lorentz group, ( )2SL C  actions) on a 
real 3-dim Lobachevskian space. We do not introduce any special notation to 
distinguish between the above two cases since the meaning of u  and x  is 
clear from the context.  

Before we show how to find a stabilizer for the Lobachevskian space  
( )2H SL C+ ⊂  we need to define the group actions, called transformations in 

the physics literature. We describe two types of actions we use in this work. 
1) The left action, also called a left translation of the Lorentz group on Lo-

bachevskian space 3
XL  [10] [12]. 

( )3, , , 2Xh gh h h L g SL C′ ′= ∈ ∈                 (31) 

2) The double sided action, or two sided translation, (sometimes called a 
similarity transformation) on Lobachevskian space 3

XL  [10]. 

( )3, , , 2Xh g h g h h L g SL C∗ ′ ′= ∈ ∈                 (32) 

The star superscript denotes Hermitian conjugation Tg g g→ ∗ = . 
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Remark 8 In the case of double sided action (32), we see that matrices g  and 
g−  result in the same motion and have to be identified. This is done by taking 

the quotient ( ) ( ) ( )2 , 2SL C Z e e PSL C− = , resulting in the projective Lorentz 
group ( )2PSL C . The center (of the ( )2SL C ) Z is also called the kernel of 
non-effectiveness. Since Z is discrete, ( ) ( )2 2SL C PSL C→  is a covering map. 
Note that ( )2PSL C  is isomorphic with the (proper) Lorentz group ( )1,3SO  
acting on a flat pseudo-Euclidean space. Keeping in mind that two matrices in 

( )2SL C  which differ only by a sign induce the same Lorentz transformation, 
we still will use ( )2SL C  notation instead of ( )2PSL C  for this case.  

Definition 9 Motion due to action ( )2g SL C∈  on a real 3-dim Lobachevs-
kian space Lξ  given either by Formula (31) or Formula (32), sends a point 

3Lξξ ′∈  having homogeneous coordinates 0 1 2 3, , ,ξ ξ ξ ξ′ ′ ′ ′  represented by matrix 
ξ ′  onto a point 3Lξξ ∈  having homogeneous (projective) coordinates 

0 1 2 3, , ,ξ ξ ξ ξ  represented by matrix ξ .  
Now it is easy to find a stabilizer. Take a unit matrix e H +∈  as the “center” 

of Lobachevskian space, 
1 0
0 1

e  
=  
 

 and apply the Lorentz group motion (Lo-

rentz transformation) to it. From the definition of a stabilizer, we have: 

e g eg g g∗ ∗= =                        (33) 

which says that matrix g is unitary. Thus we have the following conclusion: 
Conclusion 10 The stabilizer of the “origin” e in Lobachevskian 3-dim real 

space is a group of unitary 2 2×  matrices ( )2SU , or any conjugates to it in 
( )2SL C  if another “origin” than e has been selected.  

Thus we arrive at another definition of Lobachevskian space: 
Definition 11 Real 3-dim Lobachevskian space H +  is isomorphic with the 

coset space of the Lorentz group ( )2SL C  with respect to ( )2SU . The group 
( )2SL C  is the group of rigid motions (isometries) of H + . 

( ) ( ) ( )2 2 2SL C H SL C SU+⊃                (34) 

where   denotes isomorphism which we will later, with some abuse of nota-
tion, denote with an equal sign. 

In this representation, Lobachevskian space can be viewed as covered by (col-
lapsed to a point) copies of ( )2SU  and translated over the entire Lobachevs-
kian space H +  by the action of a group ( )2SL C . Note that ( )2SU  is locally 
homeomorphic to the rotation group ( )3SO . 

Further in this paper we use two physical representations of Lobachevskian 
real 3-dim space, either expressed in projective coordinates or matrix coordi-
nates. We call one the coordinate or position Lobachevskian space, which we 
denote as 3

XL , and the other one the Lobachevskian velocity/momentum 
space, which we denotes as 3

UL . The geometry of both is identical, and with re-
spect to EM fields, both representations will cause the same effects. For in-
stance, the redshift in EM spectra may result either from 3

XL  (in which case it is 
called cosmological redshift), and/or from 3

UL  (in which case it is called the 
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Doppler shift), or from both at the same time; see also Section 4.2.4. Therefore, 
we discuss these two representations of Lobachevskian space in more detail 3.1 
and 3.2 below. 

At the end of this section, the reader is encouraged to remember that: 
1) The Lorentz group is the group ( )2SL C . 
2) Lobachevskian (hyperbolic) real 3-dim space is a coset space of Lorentz 
( )2SL C  group with respect to ( )2SU . ( ) ( )3 2 2L SL C SU= . 

3) The Lorentz group acts on its own homogeneous space ( ) ( )2 2SL C SU  
via isometries (31) and (32), also called rigid motions. 

4) In physics, the action of a Lorentz group is called a Lorentz transformation. 

3.1. Representation of Lobachevskian Geometry as a 3-Dim  
Position Space ( ) ( )XL SL C SU3 2 2  

In the case of Lobachevskian position space 3
XL , xξ = , we will represent 

points in 3-dim Lobachevskian position space either via projective (homogene-
ous) coordinates x, 2 2 2 2

0 1 2 3 1x x x x− − − = , 0 1x ≥ , or via 2 2×  positive definite 
Hermitian matrices x , with a unit determinant, assembled from homogeneous 
coordinates. 

0 3 1 2
0

1 2 0 3

, det 1, 1
x x x ix

x x x
x ix x x
− − 

= = ≥ + + 
              (35) 

There are several equivalent definitions of positive definite Hermitian matric-
es. We adopt the one in which a positive definite (Hermitian) matrix is a one 
with all positive eigenvalues. Thus, we have the following isomorphism between 
real Lobachevskian 3-dim space 3L , the set of positive definite Hermitian ma-
trices ( )2H Sl C⊂ , and the quotient space ( ) ( )2 2SL C SU  [10]: 

( ) ( )3 2 2XL SL C SU=                     (36) 

Equation 2det 1x x= = , 0 1x ≥  is the equation of the upper sheet of a two 
sheet hyperboloid, which in turn is the generic model of a real 3-dim Loba-
chevskian space. It follows that transformations executed by the Lorentz 
group, due to conditions 2x invariant= , are restricted to the Lobachevskian 
space 2 0x constant= >  (constant is usually set to unity—a common choice in 
curvature normalization). 

In a projective representation (Beltrami - Klein ball model), Lobachevskian 
space is realized on the hyperplane 0 1x = ; see Figure 5. The hyperplane 0 1x =  
intersects the cone 2 0x = , along the Euclidean sphere ( )2 0,S r  which 
represents the boundary at infinity ( )3

XL∂ ∞ , for 3
XL  having Euclidean radius 

( )tanh 1Xr = ∞ = . In this realization, Lobachevskian space is viewed as the inte-
rior of a 3-dim ball ( )3 0,1XB  with its boundary at infinity represented by the 
2-dimensional sphere ( )2 0,1XS . 

The reader should note that the real (un-normalized) value of X1  (per as-
trophysical evidence) when compared with our geometric experience is incredi-
bly high. It follows that on local distances, in all means, we experience Loba-
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chevskian 3-dim space as Euclidean 3-dim space. “All means” above should be 
understood as: our experimental techniques are unable to detect any departures 
from theorems of Euclidean geometry (e.g. the Pythagorean theorem) at dis-
tances up to about 106 light years - ten times the diameter of Milky Way (~105 
light years). Moving from a local to a global point of view, the entire Lobachevs-
kian space 3

XL  is assembled from 3-dimensional Euclidean “patches” glued to-
gether with a mathematical object called a connection; however, we will not 
need to use this construction in the text. 

In homogeneous spaces, loosely speaking, the neighborhood of any point 
3
Xx L∈  “looks the same” as the neighborhood of any other point. In the other 

words all points of 3L  are equivalent, and are related by the equivalence rela-
tion Rξ ξ ′ , executed by Lorentz ( )2SL C  group of motion gξ ξ ′=  or 

g gξ ξ∗ ′= . 
We say that the homogeneous space 3L  consists only of one orbit of any 

arbitrary point. It follows that physical processes in homogeneous spaces do 
not depend on a particular location since all points and their neighborhoods 
are “the same”, or more precisely, equivalent. This is interpreted in physics as a 
postulate of no preferred frame. Homogeneous space(s) are very convenient 
since any process (properties) can be studied in the neighborhood of its neutral 
element (the “center” of homogeneous space) and then translated to any loca-
tion by the group action. 

In our discussion, in order to connect to experimental data, distances in Lo-
bachevskian space 3

XL  need to be mapped onto distances in the relevant model 
of 3

XL  in Euclidean space. There are infinitely many such maps. We will use 
two maps which map internal Lobachevskian distances l  (and functions of 
those distances, e.g. kinetic energy) from Lobachevskian position space 3

XL  
onto distances d  or δ  in the Euclidean space E . Note that Lobachevskian 
distance l  is the only two-point invariant in Lobachevskian space with re-
spect to Lorentz group ( )2SL C  action. 

In the Beltrami - Klein model, distances d  and l  are related as: 

tanhd l=                         (37) 

In the Poincare model, distances δ  and l  are related as: 

tanh
2
lδ =                         (38) 

A prompt calculation of the relation between Euclidean distances (Euclidean 
images) d  and δ  (of Lobachevskian (hyperbolic) distance l ) from Formulas 
(37) and (38) gives the following equation: 

2

2
1

d δ
δ

=
+

                        (39) 

Formula (39) above represents a well known, explicit isomorphism between 
the Poincare and Beltrami-Klein models of Lobachevskian geometry [12]. All 
of the above also applies to the representation of Lobachevskian geometry via 
position space 3

XL , or to the representation of Lobachevskian space via velocity 
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space 3
UL , which we discuss next. 

3.2. Representation of Lobachevskian Geometry as a 3-Dim  
Velocity/Momentum Space ( ) ( )UL SL C SU3 2 2=  

The geometric properties of Lobachevskian real, 3-dim velocity/momentum 
space are precisely the same as the geometric properties of Lobachevskian 3-dim 
position space discussed above. However we elaborate on it a bit more. 

Velocity space is regarded as a 3-dim real Lobachevskian (hyperbolic) space 
3
UL . The Gaussian (negative) curvature has a value of 2K c−= − , where the con-

stant 0c > , c R∈ , is regarded as the velocity of light in a vacuum. The generic 
value of K is set to −1, which translates to a choice of physical units in which 

1c = . The signed Lobachevskian distance θ  between two points 3
1 2, Up p L∈ , 

( )1 2,p pθ±  is interpreted as relative Lobachevskian velocity θ . Note that θ  
is in fact dimensionless. This is because the actual distance is Kθ − , but since 
we set 1K = − , the curvature K is not present numerically. Curvature is of di-
mension inverse-squared-length, which makes the product Kθ −  a pure real 
number with no physical label. Note also that the distance θ , the relative ve-
locity, is the only invariant between two points (two frames in relative uniform 
motion), with the respect to ( )2SL C  isometries in Lobachevskian space. 

In a typical experimental High Energy Physics (HEP) experimental situation 
Lobachevskian velocities have to be mapped onto Euclidean velocities in the 
Euclidean space we live in. Depending on the choice of the map, the relation 
between Euclidean (relative) velocities v, the velocities we measure experimen-
tally υ , and the internal Lobachevskian (hyperbolic) relative velocity θ , are 
given by Formulas (40) and (41) below: 

v tanhθ=                        (40) 

due to the Beltrami-Klein model (shown in Section 4 to correspond to ESR), and 

tanh
2
θυ =                        (41) 

due to the Poincare model (shown in Section 5 to correspond to BSR). The iso-
morphism between the two maps (40) and (41) (the Beltrami-Klein and Poin-
care models) is given by: 

2

2v
1
υ
υ

=
+

                        (42) 

It is straightforward to see that in the case of Lobachevskian veloci-
ty/momentum space, 3

UL , the isomorphism between the Beltrami-Klein and the 
Poincare models of Lobachevskian geometry is related to the homotopy between 
a gnomonic and a stereographic map discussed in Section 2. 

The internal Lobachevskian relative velocity θ  can take any real values 
[ )0,θ ∈ ∞ . In physics, maps (40) and (41), vθ → , or θ υ→  map the 

non-compact half line [ )0,∞  onto segment [ )0,1 . In applications to physics, 
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in order to incorporate velocities of photons at the boundary at infinity, 
( )3

UL∂ ∞  is added to Lobachevskian 3
UL  space, resulting in the so called ex-

tended Lobachevskian space 3 3
U UL L∂ . This way, 0 0→ , and 1c∞→ = . Re-

lations θ +∞ = ∞  and ∞+∞ = ∞ , under maps (40) and/or (41) become 
v c c+ = , c cυ + = , and c c c+ = , or symbolically “1 1 1+ = ”, which says that 
the velocity of light does not depend on the state of motion of a source (Mi-
chelson-Morley experiment), and that speed of light is the maximum speed 
possible. 

Points u in Lobachevskian 3-dim velocity space are represented by 2 2×  

complex Hermitian positive definite matrices, 0 3 1 2

1 2 0 3

u u u iu
u

u iu u u
− − 

=  + + 
 . The set  

of complex 2 2×  positive definite Hermitian matrices is not a group since the 
product of two such a matrices not need to be a positive definite matrix. 

Note that the determinant of matrix u  is equal to 1, det 1u = , which means 
that as a topological space, the Lobachevskian velocity space, in homogeneous 
coordinates ( )1 2 3 4, , ,u u u u u , is modeled in a unit ( 1c = ) hyperboloid 
[ ] 2 2 2 2

0 1 2 3, 1u u u u u u= − − − = , 0 1u ≥ . 
Remark 12 Since [ ], 1u u =  is equivalent to det 1u = , only three compo-

nents of velocity u are independent and consequently there is no such thing 
in nature as 4-velocity. Representation of u via four homogeneous (projec-
tive) coordinates uα , 0,1,2,3α =  is merely a mathematical tool of conven-
ience.  

The representation of velocity space as a Lobachevskian space has the follow-
ing properties: 

1) Points at a finite Lobachevskian distance, θ < ∞ , from any internal point 
3
Uu L∈  represent velocities of massive 0 0m >  particles. 

2) Points at an infinite Lobachevskian distance, θ = ∞ , from any internal 
point 3

Uu L∈  belong to the boundary at infinity ( )3
UL∂ ∞ . They are interpreted 

as velocities of massless 0 0m =  particles - photons (and perhaps neutrinos). 
3) Space beyond the boundary at infinity is called imaginary Lobachevskian 

space. Its model is the one-sheet hyperboloid. Points beyond the boundary at in-
finity ( )3

UL∂ ∞  are thought as velocities of (so far) hypothetical particles - ta-
chions. Distances in imaginary Lobachevskian space need not be real numbers.  

At the end of this section, the reader is encouraged to remember that: 
1) Lorentz group is the group ( )2SL C  
2) Lobachevskian (hyperbolic) real 3 dim space is a coset space of Lorentz 
( )2SL C  group with respect to ( )2SU . ( ) ( )3 2 2L SL C SU= . 

3) Lobachevskian space ( ) ( )2 2SL C SU , in our particular discussion, has 
two isomorphic representations: one, as a coordinate position space  

( ) ( )3 2 2XL SL C SU= , and two, as a velocity/momentum space  
( ) ( )3

( ) 2 2V PL SL C SU= . 
4) Lorentz group ( )2SL C  acts via isometries given by Formula (31) or (32) 

on either representation of 3L . 
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4. “Special Relativities” as Maps from Lobachevskian Space  
into Euclidean Space 

We have arrived at the point when we are ready to present “special relativities” 
and their true meaning as parametric maps. However, before we present our 
version of “special relativity”, BSR, it will be beneficial for the reader to first see 
how the above mathematical exposition produces Einstein’s “special relativity”, 
ESR. Since the methodology applied to obtain either ESR or BSR is identical in 
both cases, the reader should gain confidence that the ( )2SL C  group action 
approach works and produces viable physics. So this section on ESR may be re-
garded as mini “warm up” before the next section on BSR. 

4.1. Einstein’s “Special Relativity” (ESR) as a Gnomonic Map 

In this section, we present how we understand Einstein’s “special relativity” 
(ESR) as a kind of a map, namely a gnonomic map. The reader will have the op-
portunity to compare our exposition of Einstein’s ESR with an orthodox treat-
ment via Minkowski flat 4-geometry as is commonly seen in the literature and to 
make his/her own conclusions. 

Einstein’s “special relativity” results from the left-action of the Lorentz Group 
( )2SL C  on the Lobachevskian coordinate space ( ) ( )3 2 2XL SL C SU= :  

( )3, , , 2Xh gh h h L g SL C′ ′= ∈ ∈                  (43) 

Remark 13 The action (43) has simple meaning for experimental high energy 
physics and astrophysics. It describes a single sided motion typical for experi-
ments on accelerators with fixed target, e.g. Stanford’s Linear Accelerator.  

To extract some physics of interest from (43), we proceed as follows. The pos-
itive definite 2 2×  Hermitian matrices ,x x′   represent points in Lobachevs-
kian space ( ) ( )3 2 2XL SL C SU= , and the ( )2SL C  matrix  

0 3 2 1

2 1 0 3

u u u iu
g u

u iu u u
− − 

= =  + + 
 , viewed as a Hermitian operator, represents the mo-

tion operator, which sends the point x′  onto point x . Therefore we come to 
the following matrix equation: 

( ) ( ) ( )3, , 2 2 , 2 ,Xx ux x x L SL C SU u SL C′ ′= ∈ = ∈             (44) 

The simple matrix equation x ux′=   (44) contains the entirety of Einstein’s 
“special relativity” in the sense that all of ESR can be reproduced from it. Ma-
thematically it is a left translation (isometry) on the coordinate Lobachevskian 
space executed by the motion operator u . From the point of view of physics, it 
relates two points x′  and x  in Lobachevskian position space (hyperboloid) 
which are in relative uniform motion represented by the operator u  acting on 
Lobachevskian space - position hyperboloid 2det 1x x= = . The coordinates of 
both points x  and x′  are projective (homogeneous) coordinates in Loba-
chevskian position space. That is the essence of ESR. 

For reasons of simplicity alone, we represent 2 2×  matrices u  in diagonal 
form, which from the point of view of physics, means that the velocity u is con-
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fined to the 0 3,x x  plane and consequently has only two 0 3,u u  homogeneous 
components. In non-homogeneous affine coordinates 3

3
0

v
u
u

= , relative velocity 
has only one component 3v . 

Remark 14 Note that in the one-dimensional model we are analyzing, the 
complex Lorentz group ( )2SL C  reduces to a group of real diagonal matrices, 
meaning the subgroup of ( )2SL R —the Lorentz group of real 2 2×  matrices 
with unit determinant. Note also that in the diagonal representation the matrix 
operator is in fact expressed by its eigenvalues, which we will calculate explicitly 
in Section 4.1.3. 

Equation (44) now yields: 

0 3 0 3 0 3

0 3 0 3 0 3

0 0 0
0 0 0

x x u u x x
x x u u x x

′ ′− − −    
=    ′ ′+ + +    

       (45) 

We can obtain the transformed 0x  coordinate from the trace property, ob-
serving that for diagonal matrices , ,a b c , if ( )a bc Tra Tr bc= ⇒ = . We obtain 
the transformed coordinate 3x  by comparing the appropriate matrix elements 
in both sides of (45) and then subtracting them. This gives: 

0 0 0 3 3x u x u x′ ′= +                        (46) 

3 3 0 0 3x u x u x′ ′= +                        (47) 

Or in the matrix form: 

0 0 3 0

3 3 0 3

x u u x
x u u x

′    
=    ′    

                     (48) 

Remark 15 For 0 3

3 0

u u
U

u u
 

=  
 

, 0 31

3 0

u u
U

u u
− − 
=  − 

. Thus if x Ux′= , then  

1U x x− ′= . From the point of view of physics, the velocity sign is reversed in the 
inverse matrix 1U − . This obviously means that if the system A’ is in motion 
with velocity v, with respect to the system A, then A is moving with velocity -v, 
with respect to A’.  

We recall that in Lobachevskian velocity space 
2

2 2 2 3
0 3 0 2

0

1 1
u

u u u
u

 
− = = − 

 
 ⇒  

0 2
3

1

1 v
u =

−
. The non-homogeneous (local) coordinates are related to projec-

tive (homogeneous) coordinates as: 3
3

0

v
u
u

= . Velocity is aligned along 3u , and 

in non-homogeneous coordinates relative velocity v has only one component. 
If we regard the projective coordinate 0x  as “time” (measured in meters of 

a light-path), then Equations (46) and (47) can be rewritten in terms of a tem-
poral 0x  and a spatial coordinate x. 

Now we abandon subscripts, and keeping in mind that the normalization 
1c =  affects only physical units and that 0x ct= , we end up with the well know 

formulas from Einstein’s “special relativity” for temporal and spatial coordinate 
transformation in systems being in uniform relative motion: 
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2

v

1 v

t xt
′ ′+

=
−

                        (49) 

2

v

1 v

t xx
′ ′+

=
−

                        (50) 

Equations (49) and (50) were introduced by Albert Einstein in 1905 in his 
work [13], however due an entirely different form of reason from our own. 

In the Euclidean limit, Equations (49) and (50) are: 

t t′=                            (51) 

vx t x′= +                          (52) 

Equations (51) and (52) are known as Galilean transformations due to single 
sided motion. In physics they correspond to fixed target scattering, like in the 
Stanford Linear Accelerator. 

Transformations (49) and (50) in compact form are: 

2 2

2 2

1 v

1 v 1 v
v 1

1 v 1 v

t t
x xx

 
  ′   − − =     ′     − − 

                (53) 

Here relative velocity v is in fractions of the velocity of light c. If c has to be 
present explicitly, then we need to re-scale: vv

c
→  and substitute ct  for 0x . 

Since the matrix in (53) is uni-modular, there is a unique parametrization of 
the matrix elements as: 

2 2

1 vcosh , sinh
1 v 1 v

θ θ= =
− −

               (54) 

0 2 2

v1 , , 1, 2,3, v 1
1 v 1 v

i
iu u i= = = <

− −
           (55) 

The coordinates (55) are called Weierstrass coordinates due to the German 
mathematician Weierstrass [8]. Weierstrass coordinates were already discussed 
in Section 2 and the reader is encouraged to review. It is easy to see that Weier-
strass homogeneous coordinates (55) are normalized to unity  

2 2 2 2 2
0 1 2 0 1u u u u u= − − − = . Weierstrass used coordinates (55) in his work on Lo-

bachevskian (hyperbolic) geometry more than 50 years before ESR, however, 
Einstein never mentioned or referred to them. 

From Formula (54) we conclude that the internal Lobachevskian velocity θ  
and local Euclidean velocity v measured in experiments are related by: 

tanh vθ =                          (56) 

which is the equation by which distances in Lobachevskian space are 
mapped onto Euclidean distances due to the Beltrami-Klein model, here 
representing Lobachevskian space by the space of velocities 3

UL . It should be 
noted that θ , the internal Lobachevskian velocity is incorrectly (in our opinion) 
called the “hyperbolic angle” or “rapidity” in the literature on high energy par-
ticle physics. 
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Conclusion 16 Comparing Formulas (55) and (56) resulting from Lorentz 
transformations (in Einstein’s “special relativity”) with Formulas (14) and (17) 
which we derived from the gnomonic (central) projection from hyperboloids, 
we see that they are identical. This means Einstein’s “special relativity” is 
nothing more than a gnomonic map from Lobachevskian space into Eucli-
dean space. This is the true meaning of ESR.  

4.1.1. Addition of Velocities along the Same Direction 
From the map (56) between Lobachevskian and Euclidean velocities we easily 
see that: 

( ) 1 2 1 2
1 2

1 2 1 2

tanh tanh v v
tanh

1 tan tanh 1 v v
θ θ

θ θ
θ θ
+ +

+ = =
+ +

            (57) 

Recall that θ  in (57) is not an angle. It is a real non-negative number 
( )0,θ ∈ ∞  representing the unit-less length of a Lobachevskian linear segment 

in 1-dim Lobachevskian space, i.e. a Lobachevskian line. A Lobachevskian line is 
a one dimensional, real, metric, non-compact space of constant negative curva-
ture. An image of θ  in Euclidean space is what is measured by physicists due 
to various maps; in this case due to the Beltrami-Klein map, v tanhθ= . It 
seems that at the time he introduced ESR, Einstein was not familiar with the 
work of Lobachevski on non-Euclidean geometry; nevertheless he deduced the 
correct formula for addition of velocities. 

4.1.2. Distortions 
From Equations (49) and (50) we can obtain the distortions resulting from Eins-
tein’s ESR map. These distortions, due to historical reasons, are called “time di-
lation” and “length contraction”, or “Fitzerald contraction”. 

2

1 cosh
1 v

t t t θ′ ′∆ = ∆ = ∆
−

                 (58) 

2

1 cosh
1 v

x x x θ′ ′∆ = ∆ = ∆
−

                (59) 

From (58) and (59), we see that when the curvature approaches zero, 
2 0K c−− = →  equivalent to v c<<  (Euclidean maps), the apparent distortions 

vanish and ,t t x x′ ′∆ = ∆ ∆ = ∆ . 

4.1.3. Physical Meaning of Diagonal Entries (Eigenvalues) of Motion  
Operator u  

To see the physical meaning of the diagonal entries 1 0 3u uΛ = −  and 
1

2 1 0 3u u−Λ = Λ = +  of the motion operator u  we need to express them in local 
coordinates 

o

u
u

. Using Weierstrass coordinates for u yields: 

1
1 2 1

1 v 1 v,
1 v 1 v

−+ −
Λ = Λ = Λ =

− +
               (60) 

Thus the diagonal entries of the motion operator are easily recognized as Lo-
bachevski - Doppler blue 1Λ  and red 2Λ  frequency shifts for a single sided 
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motion expressed in local coordinates v. Elements of ( )2SL R  with reciprocal 
values like in (60) in the geometry of the Mobius group are called hyperbolic 
transformations. 

4.2. Lobachevski - Poincare - Von Brzeski “Special Relativity”  
(BSR) as a Stereographic Map 

In this section, we show that our version of special relativity, i.e. BSR, is a ste-
reographic projection from Lobachevskian space (a hyperboloid) discussed 
in Section 2.2.2. A stereographic projection from a hyperboloid results in the 
Poincare representation of Lobachevskian geometry in the unit ball, or in our 
case, in the unit disc. 

As we discussed in Section 3, the Lorentz group may act on Lobachevskian 
space 3

XL  in several ways. Our choice is the action (33) via the automorphism 
h g h g∗ ′=  of 3

XL  executed by a double sided motion (double sided transla-
tion), which we now compute in detail. 

Remark 17 The action (32) is of direct and fundamental significance for expe-
rimental high energy physics. It represents a typical case of center of momen-
tum scattering of identical particles in accelerators with counter rotating beams; 
see Figure 6. 
 

 
Figure 6. Two protons with opposite velocities v and -v collide in the LHC ring. 

 
The point x  in Lobachevskian space 3

XL  is represented by a uni-modular 
positive definite Hermitian matrix  

0 3 2 1

2 1 0 3

x x x ix
x

x ix x x
− − 

=  + + 
                     (61) 

3x L H +∈ =  and for matrix g
α β
γ δ
 

=  
 

 in (32) we take, as in Section 3, the 
Hermitian motion operator matrix:  

0 3 2 1

2 1 0 3

u u u iu
u

u iu u u
− − 

=  + + 
                     (62) 

We see that 2 2 2 2 2
0 1 2 3det 1u u u u u u= = − − − = , which tells us that if 0 1u ≥ , the 

point u belongs to the upper sheet the of hyperboloid 2 1u = . 
Substituting in h x=  , h x′ ′=  , and g u′=   into Equation (32) yields: 

x u x u∗ ′=                             (63) 

As we have already said, matrices u  and u−   correspond to the same 
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transformation and are liable for identification. 
The action (63) leaves the quadratic form  
( ) ( ) 2 2, , det det 1Q x x Q x x x x x x′ ′ ′ ′= = = = = =   invariant, which is due to the 

invariance of the matrix determinant det x  under transformations (63). 
Geometrically, this means that the hyperboloid 2 1x′ =  is invariant (is mapped 
onto itself) under all motions (63). This simple matrix Equation (63), x u x u∗ ′=    , 
contains the entirety of the authors’ “special relativity” BSR, in the sense that 
BSR can be derived from it. 

For the purposes of the present work, just for simplicity, we will limit our-
selves to one dimension. One dimensional Lobachevskian space or the Loba-
chevskian line has two homogeneous (projective) coordinates 0x  and 3x . 
The Lobachevskian line is aligned along 3x . Equation (63) in the one dimen-
sional case is as follows. We write the coordinates ( )x x x′= , due to motion (63) 
in 1

XL  executed by ( )2g SL C∈  i.e. the Lorentz transformations. In one di-
mensional space, the matrices (61) and (62) become diagonal which greatly sim-
plifies the calculations. 

Since in the one dimensional case, velocity u and displacement x are aligned 
along the same line, the matrices (61) and (62) now are real diagonal and hence 
commutative. 

The one dimensional motion operator is now: 

( )0 3

0 3

0
, 2

0
u u

u u SL C
u u

− 
= ∈ + 
                 (64) 

acting on one dimensional Lobachevskian space 1
XL : 

( ) ( )0 3

0 3

0
, 2 2

0
x x

x x SL C SU
x x

− 
= ∈ + 
            (65) 

according to the double sided action as: 

0 3 0 3 0 3

0 3 0 3 0 3

0 0 0
=

0 0 0
u u x x u u

x
u u x x u u

′ ′− − −   
   ′ ′+ + +   

      (66) 

We can compute the double sided action (66) instantly by observing that for 
2 2×  diagonal matrices , , ,a b c d , if a bcd=  then ( ) ( )Tr a Tr bcd= , and 
from (66) we find that:  

( )2 2
0 0 3 0 0 3 32x u u x u u x′ ′= + +                    (67) 

( )2 2
3 0 3 0 0 3 32x u u x u u x′ ′= + +                    (68) 

We write transformations (67) and (68) in a slightly different form by con-
verting homogeneous u velocity into affine υ  velocity which we measure in expe-
riments. Recall that in homogeneous coordinates in Lobachevskian space  

2 1u = , and 
2

2 3
0 2

0

1 1
u

u
u

υ
 

= − 
 

. In homogeneous coordinates 3υ  is: 3
3

0

u
u

υ = . It 

follows that, 
2

2 2 3
0 3 2

3

1
1

u u
υ
υ

+
+ =

−
                     (69) 
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3
0 3 2

31
u u

υ
υ

=
−

                        (70) 

Therefore, the transformations of homogeneous coordinates on a Loba-
chevskian line due to two sided translations are: 

( )2
0 3

0 2

1 2

1

x x
x

υ υ

υ

′ ′+ +
=

−
                    (71) 

( )2
0 3

3 2

2 1

1

x x
x

υ υ

υ

′ ′+ +
=

−
                    (72) 

Therefore, if we assume that the projective zero coordinate 0x  in (71) and 
(72) is understood as “time” ct  (measured in meters of a light-path) then 
taking 1c =  we can relabel 0x t=  and 0x t′ ′= , we arrive at the following equ-
ations: 

( )2

2

1 2

1

t x
t

υ υ

υ

′ ′+ +
=

−
                     (73) 

( )2

2

2 1

1

t x
x

υ υ

υ

′ ′+ +
=

−
                     (74) 

Equations (73) and (74) are authors’ transformations for temporal t and 
spatial coordinates x in systems being in relative uniform motion. The Equa-
tions (73) and (74) of the authors’ “special relativity” (BSR) are an alternative to 
Einstein’s transformations (49) and (50) in his ESR. 

The reader should note that from the point of view of physics, our transfor-
mations correspond to the center of momentum frame, which is the bread and 
butter of particle scattering experiments for identical particles in circular accele-
rators with counter-rotating beams. The reader should also be aware that in (73) 
and (74), the velocity [ )0,1υ ∈  is dimensionless, and that the speed of light 
factor 1c =  is not present explicitly and it only affects physical units. To get (73) 
and (74) in common physical units, substitute 

c
υυ →  and 0x ct→ . 

In the Euclidean limit, transformations (73) and (74) yield: 

t t′=                            (75) 

2x t xυ ′= +                         (76) 

Remark 18 We’d like to explain the term “Euclidean limit” used above to li-
nearize (74) and (75). In common MKS units, for example, the term 2 xυ  in 
the numerator of (74) is 2 x

c c
υ  and it is on the order of 2c− . We note that the 

Gaussian curvature of Lobachevskian velocity space is 2K c−= − . Therefore, we 
are neglecting the curvature of Lobachevskian space. Neglecting the curvature 
of Lobachevskian geometry implies that locally (in local coordinates υ ), the 
geometry can be approximated by Euclidean geometry to an arbitrary degree of 
precision [13]. In other words, we use the fact that around any of its points, ve-
locity space is approximately flat (Euclidean). The procedure itself is called li-
nearization or Euclideanization of physics modeled on curved, non-Euclidean, 
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geometries.  
Transformations (73) and (74) can be written in a compact form: 

2

2 2

2

2 2

1 2
1 1

2 1
1 1

t t
x x

υ υ
υ υ
υ υ
υ υ

 +
  ′   − − =   ′ +   
 
− − 

                  (77) 

A quick look at entries of a matrix (77) tells us that in Lobachevskian velocity 
space 3

UL , we use projective (homogeneous) coordinates ( )0 1 2 3, , ,u u u u u  of the 
form already introduced in Section 2 for stereographic projection from Lo-
bachevskian space. 

2

0 2 2

1 2, , 1, 2,3, 1
1 1iu u iυ υ υ

υ υ
+

= = = <
− −

             (78) 

normalized such that 2 2 2 2 2
0 1 2 3 1u u u u u= − − − = . Note that our projective (ho-

mogeneous) coordinates are different from Weierstrass projective (homogene-
ous) coordinates we encountered in Einstein’s ESR, which should be no surprise 
since ours and Einstein’s “relativity” refer to different models of Lobachevskian 
velocity space, namely Poincare and Beltrami-Klein, respectively. 

Since the matrix in (77) is unimodular, ( )det . 1= , there is a unique real pa-
rameter θ  such that: 

2

02

1 cosh
1

uυ θ
υ

+
= =

−
                    (79) 

and 

2

2 sinh
1

uυ θ
υ

= =
−

                    (80) 

From (79) and (80) we find that: 

2

2tanh
1
υθ
υ

=
+

                      (81) 

which is the isomorphism between the Poincare and the Beltrami-Klein 
models of Lobachevskian geometry, in (27) and (28), we mentioned in Section 
2.2.2. 

Since 

1
2cosh 1tanh

2 cosh 1
θ θ

θ
− =  + 

, using (79) and (80) we can find υ  versus θ : 

tanh
2
θυ =                        (82) 

Formula (82) is the map of Lobachevskian velocity θ  onto local Euclidean 
velocity υ  due to the Poincare model of Lobachevskian geometry. The para-
meter θ  in (82) is the intrinsic Lobachevskian, dimensionless, relative ve-
locity [ )0,θ ∈ +∞ . In particle physics it is often (in our view) incorrectly called 
the “velocity parameter” or “rapidity”. Velocity [ )0,1υ ∈  is the image of Lo-
bachevskian velocity θ , as it appears to us, in Euclidean space. Note that θ  is 
dimensionless because the Gaussian curvature of Lobachevskian velocity space is 
set to 1K = − . The function ( )tanh .  relates Lobachevskian and Euclidean dis-
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tances. The value θ = ∞  and 1υ =  is restricted to photons (and perhaps to 
neutrinos) which are points at the boundary at infinity for Lobachevskian veloc-
ity space. 

Comparing BSR Formulas (79) and (80) resulting from the ( )2SL C  Lorentz 
group action (Lorentz transformations) to Formulas (19) and (20) resulting 
from Lobachevskian cartography in the case of a stereographic projection from 
hyperboloids, we see that seemingly unrelated areas of science, cartography and 
“special relativity” are in fact two sides of the same coin. Both are just certain 
maps of infinitely many possible maps (as we will see below). 

Conclusion 19 The image of the double sided action (63) of the Lorentz 
group ( )2SL C , or the image of the double sided motion, on a real 3-dim Lo-
bachevskian space ( ) ( )2 2SL C SU  (viewed as a hyperboloid 2 1x = ), is iso-
morphic with the Poincare ball model representation of Lobachevskian space 
resulting from a stereographic projection of Lobachevskian space (hyperboloid) 
into Euclidean space; see Figure 5.  

4.2.1. Addition of Velocities along the Same Direction 
In accordance with (82) we have the following equation: 

1 2 1 2

1 2

tanh tanh
2 2tanh

2 2 11 tanh tanh
2 2

θ θ
θ θ υ υ

θ θ υ υ

+ + + = =  +  +
             (83) 

which is the same as in Einstein’s ESR. This is a model independent result. Re-
call that θ  in (83) is not an angle. It is a real non-negative number ( )0,θ ∈ ∞  
representing a unit-less length of a Lobachevskian linear segment in one dimen-
sional Lobachevskian space, i.e. a Lobachevskian line. As we mentioned above, a 
Lobachevskian line is one dimensional, real, metric, non-compact space of con-
stant negative curvature. An image of θ  in Euclidean space is measured by 
physicists due to various maps. In this case due to the Poincare map: tanh

2
θυ = . 

4.2.2. Distortions of Maps in BSR and Their Geometric Meaning 
From the transformations laws or maps (73) and (74) it is easy to see that the 
apparent distortions for spatial and temporal intervals (for a two sided uniform 
motion, i.e. at fixed distance in Lobachevskian velocity space) in BSR, given by 
the diagonal terms of matrix (77), will be: 

2

2

1 , cosh
1

tt t or
t

υ θ
υ

+ ∆′∆ = ∆ =
′∆−

                  (84) 

2

2

1 , cosh
1

xx x or
x

υ θ
υ

+ ∆′∆ = ∆ =
′∆−

                 (85) 

Equations (84) and (85) are obviously distortions of a stereographic projec-
tion from a hyperboloid into in the Euclidean plane seen as the Poincare disc 
model. 

The reader should note that the dimensionless velocity υ  in (84) and (85) in 
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the MKS system of units will be 
2

2 2 2
2 c K

c
υ υ υ−= =  where 2K c−− =  is the  

Gaussian curvature of Lobachevskian velocity space. Evidently, as 0K → , and 
velocity space becomes Euclideanized, the distortions (84) and (85) of images 
under map (73) and (74) vanish and ,t t x x′ ′′∆ = ∆ ∆ = ∆ , meaning this is a case of 
a mapping between two flat spaces. Maps in such cases will be distortion-less. 
No apparent “time dilation” and no apparent “length contraction” will exist. In 
the literature, such maps are referred to as Galilean. 

4.2.3. Physical Meaning of Diagonal Entries (Eigenvalues) of Motion  
Operator u  

It is easy to see that the diagonal entries of the double sided motion operator are: 

1
1
1

υ
υ

+
Λ =

−
                         (86) 

2
1
1

υ
υ

−
Λ =

+
                         (87) 

These are Lobachevski-Doppler blue (86) and red (87) shifts for two sided 
motion. Examples are: 

1) A frequency shift from the reflection from a moving mirror recorded by a 
transceiver when both, transceiver and mirror (target) are in motion (e.g. when 
radar and target are both in flight).  

2) Frequency shifts recorded in reflective telescopes.  
3) Experiments in circular accelerators with counter rotating beams, see Fig-

ure 6.  

4.2.4. Practical Applications to Astrophysics of Formulas for Frequency  
Shifts in Beltrami-Klein (ESR) and in Poincare (BSR) Models 

Frequency shifts resulting from Lobachevskian geometry are given either by 
Formulas (60) in Beltrami-Klein representation of Lobachevskian geometry 
(ESR), or by Formulas (86) and (87) in the Poincare representation of Loba-
chevskian geometry (BSR). These formulas apply either to a Lobachevskian large 
scale vacuum resulting in cosmological redshift, or to a Lobachevskian velocity 
space resulting in known Doppler shift. Recall that both position and velocity 
Lobachevskian spaces are metric spaces. The signed distance in Lobachevskian 
velocity space is called relative velocity. 

Since the formulas for frequency shifts are widely used in astrophysics, radar 
techniques, warfare, medicine, and in nuclear physics (e.g. Mossbauer effect), 
and since the numbers representing spectral shifts derived from those models 
differ, it is very relevant which “special relativity” Formulas (ESR or BSR) will 
be used to draw conclusions about the physics represented by the measured fre-
quency shifts z. Figure 7 shows the uncertainties in conclusions due to ESR and 
BSR in a typical astrophysics scenario. We illustrate it via simplified three exam-
ples below. 

Suppose, for instance, that the measured redshift is 2z =  and let us analyze 
what this real number 2 tells us about physics. 
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Figure 7. In the figure above, the dashed line shows the spectral shift z due to BSR, and 
the solid line shows the spectral shift due to ESR. The horizontal axis is calibrated in units 
of distance in position space, 1 15R = =  billion light-years, in which case x∆ = ∆  refers 
to the difference in position due to BSR and ESR, or in units of distance in velocity space, 

81 3 10c = = ×  m/s, in which case u∆ = ∆  refers to the difference in velocity due to BSR 
and ESR. 
 
 Example 1. Let us assume that the measured redshift 2z =  from some 

source is a result of the distance in position space, meaning a negatively 
curved Lobachevskian Universe and there is no relative motion of the source 
with respect to observer. In this case, assuming arbitrarily that the radius of 
the Lobachevskian Universe regarded as an interior of Euclidean ball is say 
15 billion light years (bly), normalized to 1R = , we see in Figure 7, that ap-
plying ESR we obtain the distance to the source of 7.5 bly = 0.5R, while ap-
plying BSR we obtain a distance to the source 12 bly = 0.8R. We see that the 
uncertainty X∆  in location of a luminous object is 4.5X∆ =  bly. 

 Example 2. Let’s assume now that a luminous object is “close”, so we neglect 
the spectral shift due to the distance in position space, and all of the redshift 

2z =  is due to distance in velocity space, i.e. relative ( receding ) velocity. 
We view Lobachevskian velocities space as an interior of unit radius 

1R c= =  equipped with hyperbolic metric. The signed distance here is 
simply relative velocity. In this case, the uncertainty in velocity determination 

U∆  due to the different maps ESR and BSR is 0.8 0.5 90000U c c∆ = − =  
km/sec. 

 Example 3. Taking into consideration both velocity and position, we come to 
the notion of a phase space. In the phase space picture the uncertainty of po-
sition and velocity is simply X U∆ ×∆  and the only thing we can say is that 
an object is somewhere in an uncertainty cell of phase space having size 

X U∆ ×∆  = 4.5 bly × 90,000 km/sec. The uncertainty relation X U∆ ×∆  is 
quite close analogous to Heisenberg’s uncertainty relation x p∆ ×∆  in 
quantum mechanics. 

If we recall that Lobachevskian geometry affects not only color of light (spec-
trum) but also its intensity, which makes Euclidean photometry non-applicable 
and misleading [4], we find ourselves in situation where the entire deep space 
astrophysics and cosmology cannot be trusted as providing viable picture of the 
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Universe. 

4.3. Advantages and Generality of Our Approach 

The formalism presented here is intuitively simple and does not require more 
than three real dimensions. Recall that since ( )2g SL C∈ , det 1x = , hyperbo-
loid 2 . 0x const= > , 0 1x ≥ , is mapped onto itself under motions (31) or (32). It 
follows that the physical phenomena as described in Einstein’s original ESR are 
due to isometries (rigid motions) within a Lobachevskian 3-dim real space. ESR 
does not extend to the entire 4R  but is restricted to only a Lobachevskian 
real 3-dim space (hyperboloid) 2 2 2 2 2

0 1 2 3 1x x x x x= − − − = , 0 0x ≥ , invariant 
under the action of the Lorentz group ( )2SL C . Hence, there is no point in 
paying attention to what is going on “outside” of Lobachevskian space 

2 1x = . 
The main point which is totally missed in orthodox treatments of “special re-

lativity” based on ( )1,3SO  is the importance of the Lorentz group ( )2SL C  
in physics, which is the group of isometries of real 3-dim Lobachevskian 
space, and it is the foundation of Lobachevskian geometry and Lobachevs-
kian physics. Note that non-integer spinor fields (e.g. electron fields) are asso-
ciated with the representations of ( )2SL C  instead of the (proper) Lorentz 
group ( )1,3SO . 

It is worth noting that our method is quite general. Take for example, a Loba-
chevskian plane regarded as the upper-half plane ( ) 0Im z >  in complex va-
riables. Then the “Lorentz group” acting via isometries on the upper-half plane  

is the group of fractional linear transformations az bz
cz d

+
→

+
, which is the Mo-

bius group, and we can obtain the transformation of “time” and position coor-
dinates in yet another “special relativity” in this case. 

Regarding ESR, the Minkowski treatment focuses on a pseudo-Euclidean 
(flat) embedding space instead on negatively curved Lobachevskian embed-
ded space where physics happens. The Minkowski 4-dim pseudo-Euclidean in-
terpretation of “special relativity” allows us to compute various entities via ESR 
in Minkowski’s picture, but the reasons for physical mechanisms are entirely 
absent, paradoxes are present, and generalizations are impossible. 

Obviously physics in a manifold does not depend on the ambient embedding 
space in which a manifold is embedded. An observer looking at a globe from the 
ambient three dimensional Euclidean space in his room will see a model airplane 
flying from San Francisco to Frankfurt along a path having three coordinates 

, ,x y z  in flat three dimensional space. However, the autopilot which actually 
guides the plane from San Francisco to Frankfurt uses only two coordinates on 
the surface of Earth, longitude and latitude. The autopilot “thinks” exclusively in 
terms of a two dimensional (albeit curved) space, and knows nothing about the 
fact that the Earth’s surface 2S , is embedded into some higher dimensional 
space 3E  because this information is entirely irrelevant. Studies of geometry 
and physics from the point of view of higher dimensional embedding spaces 
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were typical for the 18th and 19th centuries. The modern approach is via inter-
nal geometry and internal physics in the embedded spaces. 

The more relevant view on ESR, as a physical 3-dim Lobachevskian geometry, 
as pointed out by Barrett [14], was promoted by Vladimir Varicak, a Croatian 
mathematician and physicist in as early as 1908 [15]. Unfortunately, it appears 
that his papers were not understood by the scientific community and went 
mostly unnoticed. Physicists fascinated with 4-dim Minkowski flat ambient 
geometry were seemingly unable or unwilling to pay attention to Varicak’s work. 
It is interesting to note that while developing and publishing his “special relativ-
ity” (ESR) [9] in 1905, Albert Einstein, influenced perhaps by his teacher Min-
kowski, focused his attention on the linear (pseudo-Euclidean) 4-dim space in-
stead of directly mapping 3-dim Lobachevskian geometry (known since 1835) 
into a 3-dim Euclidean space. It is remarkable that a whole generation of physic-
ists during the past 100+ years has focused on Minkowski’s embedding space, 
and has missed the very essence that “special relativity” (ESR) is just a gnomon-
ic map and as such cannot be unique. 

At this point it is worth reviewing what we have covered so far: 
1) Lorentz transformations, induced by elements of the Lorentz group 
( )2SL C , are isometries of a real 3-dim Lobachevskian (hyperbolic) space and as 

such are distortion-less. 
2) Various parametric maps from real 3-dim Lobachevskian space into Eucli-

dean 3-dim space are are “special relativities”, and there are as many “special re-
lativities” as there are parametric maps; in fact, an uncountable infinity of them. 

3) Distortions introduced by “special relativities” are common distortions of 
maps between not isometric spaces, in our case between Lobachevskian nega-
tively curved space 0K <  and Euclidean space 0K = . 

4) Since “special relativities” are not unique, it implies that any relativistic 
physics (High Energy Physics) based on a particular “special relativity” is 
not unique as well. 

Now, we will discuss consequences for science and for physics in particular. 

5. Isomorphism between ESR and BSR “Special Relativities” 

To review, the coordinates in Lobachevskian velocity space that are used in this 
work are: 

1) Projective (homogeneous) Weierstrass coordinates ( )2 2 2 2
0 1 2 3, , ,u u u u u , in 

the form 0 2

1

1 v
u =

−
, 

2

v

1 v
i

iu =
−

, v 1< , 1,2,3i = , normalized  

2 2 2 2 2
0 1 2 3 1u u u u u= − − − = , as per Formula (55). 

2) Projective (homogeneous) rational coordinates used by authors to pa-
rametrize unit hyperboloid 2 2 2 2 2

0 1 2 3 1u u u u u= − − − = , 
2

0 2

1
1

u υ
υ

+
=

−
, 2

2
1iu υ

υ
=

−
, 

1υ < , 1,2,3i = , normalized 2 1u = . 
For instance, in an abstract Lobachevskian plane 2L  creates images in the 

Euclidean plane 2E  by specifying coordinates in 2E  within the range of ad-
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missible values, see e.g. [16]. Thus the coordinates in an open disc representation 
(without a boundary at infinity) of a Lobachevskian plane are: 

1) Coordinates in the disc 2D  of the form v tanh cosx θ α= ,  
v tanh siny θ α= , 2 2v v 1x y+ < , 0 2α π≤ ≤  result in the Beltrami-Klein model 
of the Lobachevskian velocity plane. 

2) Coordinates in the disc 2D  of the form tanh cos
2x
θυ α= ,  

tanh sin
2y
θυ α= , 2 2 1x yυ υ+ < , 0 2α π≤ ≤  result in the Poincare model of the 

Lobachevskian velocity plane.  
The angular coordinate α  is irrelevant to our discussion and will be omit-

ted. 
As we have seen, different models (maps) of Lobachevskian geometry in Euc-

lidean space show different distortions. All effects of “special relativities”, either 
ESR or BSR, are just distortions caused by the mapping of a Lobachevskian, ne-
gatively curved (velocity) space into a flat space. We already noted that in ESR 
velocity v and intrinsic Lobachevskian velocity θ  are related as tanhθ=v , 
while in our BSR this relation is tanh

2
θυ = . 

Since: 

2
2

2 tanh 22- tanh ,
11 tanh

2

Beltrami Klein Poincare

θ
υθ υ

θ υ
= = = ∈

++
 v    (88) 

and since (inverse map) 

2 2

tanhtanh
2 1 1 tanh 1 1

θ θυ
θ

= = =
+ − + −

v

v
            (89) 

we see that the velocity v measured in experiments due to ESR and the velocity 
υ  measured in experiments due to BSR are mutually related by (88) and (89), 
which are known as isomorphism maps between the Beltrami-Klein ball mod-
el (v) of Lobachevskian geometry and the Poincare ball model of Lobachevs-
kian geometry. It follows that all formulas of Einstein’s ESR regarding velocities 
and their functions (or metric relations and their functions) due to the Beltra-
mi-Klein model can be converted to formulas in our BSR due to the Poincare 
model (and vice-versa) via respective substitutions (88) and (89). 

Proposition 20 The Poincare model of Lobachevskian geometry corresponds 
to the double sided action of the Lorentz group on Lobachevskian space while 
Beltrami-Klein model of Lobachevskian geometry corresponds to the left action 
of the Lorentz group on Lobachevskian space. The isomorphism between these 
two actions is realized by [ )tanh tanh , 0,

2
θθ θ⇔ ∈ ∞  given explicitly by the 

correspondence Formula (90) below:  
2

2 22 2

2

2 2 2 2

1 v1 2
1 v 1 v1 1

v 12 1
1 1 1 v 1 v

υ υ
υ υ
υ υ
υ υ

  +
   − −− −    ⇔
  +
    − −  − − 

            (90) 
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The LHS of (90) is the matrix from the “special relativity” of Lobachevski - 
Poincare - von Brzeski (77), ( ) ( ), ,t x t x′ ′ → , based on the present work. The 
RHS of (90) is the matrix from the “special relativity” of Einstein (Lobachevski - 
Beltrami-Klein). The double sided arrow in the middle of (90) shows the iso-
morphism of the mappings, and can be shown as follows: 

1) Mapping from Einstein to von Brzeski, or ESR ⇒  BSR. 
Take Equation (42) or (88) of the isomorphism 2

2v
1
υ
υ

=
+

 relating the Bel-
trami-Klein and Poincare models of Lobachevskian geometry and substitute it 
into all entries in the RHS of (92), i.e. into ESR. Simple calculations will result in 
the LHS (von Brzeski) matrix, i.e. BSR. 

For example: 

( )

2

22 2 22

2 22

1 1 1 1
11 v 4 11

11

υ
υυ υ

υυ

+
= = =

−−  −−  ++  

         (91) 

and: 
2

2 2 22

v 1 2 2
1 1 11 v

υ υ υ
υ υ υ

+
= =

− + −−
                 (92) 

2) Mapping from von Brzeski to Einstein, or BSR ⇒  ESR: 

Take Equation (89) of the isomorphism 
2

v

1 1 v
υ =

+ −
 between the Poin-

care and Beltrami - Klein models of Lobachevskian geometry and substitute it  
into all entries in the LHS of (90), i.e. into BSR. This will convert it into the RHS 
of (90), i.e. ESR. We leave the calculation to the reader. 

It is quite remarkable that in the course of the present work on physics, the 
isomorphism Formulas (88) and (89), which are in the domain of pure geometry, 
were “rediscovered” by means of physics. It shows the deep and amazing inter-
connection between the abstract world of (Lobachevskian) geometry and the 
material world of physics. 

6. Homotopy of Maps. Uncountable Infinity of “Special  
Relativities”. Undecidability of High Energy Physics 

First, if we are interested in High Energy Physics (HEP), we have to say what 
kind of physics this is exactly. To do so, we will first define “low energy physics”. 

Definition 21 Low Energy (“Non Relativistic”) Physics is physics modeled on 
Euclidean geometry.  

Low energy physics deals in small distances in Lobachevskian velocity/ 
momentum space ( ) ( )2 2SL C SU . Next, we need to explain what we mean by 
“large distances” and “small distances”. In Euclidean space adjectives such as 
“large”, “small” are meaningless. They carry zero information associated with 
them. However, in Lobachevskian spaces they have a very definite meaning. The 
key is the value of the negative curvature. Note that the Gaussian curvature of 
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Lobachevskian velocity space is 2K c−= − . It follows that low distances will be 
those distances represented by relative velocities much less in comparison with c, 
or equivalently when the curvature K is close to zero. In other words, when 
viewed locally, the curvature of Lobachevskian space may be disregarded. Phys-
ics in such domains may be regarded as Euclidean, i.e. “low energy”, physics. 

Definition 22 High Energy (“Relativistic”) Physics is physics modeled on Lo-
bachevskian geometry. 

This is because energy is determined by distance in Lobachevskian veloci-
ty/momentum space ( ) ( )2 2SL C SU . The larger the distance, the larger the 
energy associated with it. Thus HEP is the physics of large distances in 

( ) ( )2 2SL C SU . Accordingly, high energy physics is physics when the negative 
curvature of Lobachevskian space ( ) ( )2 2SL C SU , in either coordinate repre-
sentation or in velocity/momentum representation, must be taken into account. 

We already introduced the notion of a homotopy of maps in Section 2.3 in an 
informal way. In this section, homotopy will be used to prove the existence of an 
uncountable infinity (continuum) of “special relativities” and consequently an 
uncountable infinity of high energy relativistic) physics. We begin with the defi-
nition of homotopy. 

Definition 23 Two continuous mappings f and g are homotopic (form a ho-
motopy) if there exists a continuous mapping [ ]0,1th ×  such that ( )0h t f= =  
and ( )1h t g= = . 

The mapping h as per definition 23 is represented by the Equation (93) below. 

( ) ( ) [ ]1 , 0,1h t t f tg t= − + ∈                    (93) 

Since the unit segment [ ]0,1  of the real line contains an uncountable infinity 
(continuum) of points, it follows that there is an uncountable infinity of maps 
which are in one-to-one correspondence with points [ ]0,1t∈ . Maps related by 
a homotopy are called homotopy equivalent, in a similar way as topological 
spaces are equivalent when related by a homeomorphism. Equivalence in this 
context is understood in its standard mathematical sense. Equation (93) has 
simple intuitive meaning. Starting with the map f at some real parameter 0t =  
we continuously deform the map f until it becomes the map g at some other 
value of a real parameter 1t = . 

With respect to “special relativities” BSR and ESR given by stereographic and 
gnomonic maps respectively, and represented by Poincare and Beltrami-Klein 
models of Lobachevskian geometry, respectively, we have the following theorem. 
Recall that the Poincare model is conformal while the Beltrami-Klein is not. 

Theorem 24 There exists an uncountable infinity of non-isometric and 
non-conformal models of Lobachevskian geometry and the uncountable in-
finity (continuum) of “special relativities” built upon them. Any such hybrid 
(mixed) model is in one-to-one correspondence with the some point [ ]0,1t∈  
in Equation (93).  

Proof. Directly from definition of homotopy. 
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( ) ( ) [ ]*1 , 0,1h t t u x u tux t′ ′= − + ∈                     (94) 

We see that the above mapping (94) obeys the definition of homotopy. At 
0t = , ( )0h  we have a stereographic map *u x u′   , while at 1t = , ( )1h  we 

have a gnomonic map ux′ , and there is an uncountable infinity of mixed 
(hybrid) maps, neither stereographic nor gnomonic, in between. In this way, the 
Poincare model is continuously deformed into the Beltrami-Klein model, or in 
terms of special relativities, our “relativity” BSR is continuously deformed into 
Einstein’s “relativity” ESR. 

The message from theorem 24 is very disturbing. If there were only two op-
tions, we could run an experiment to see which option might better fit a particu-
lar condition. If the number of options would be (arbitrarily) finite, we could “in 
principle” verify which map best fit the experiment. But if the number of options 
is uncountably infinite, we unfortunately cannot run an infinity of experiments 
even in principle since it obviously would require infinite time. Thus experi-
ments in HEP show only one of infinitely many faces of reality, and one point 
of infinitely many possibilities cannot be regarded as the ultimate truth. 

Conclusion 25 (Incompleteness of HEP) Based on assumptions:  
2 1x invariant= = , 2 1c invariant= = , under the isometries of 3-dim real Loba-

chevskian spaces 3
XL  and 3

VL  executed by the Lorentz group ( )2SL C , the 
knowledge acquired from “relativistic” or high energy physics is inconclusive 
and/or incomplete.  

To see the validity of the above conclusion, consider a typical experiment in 
“relativistic” particle physics: the decay of unstable particles. Let take the well 
known decay of 0π  into two photons, 0 2π γ→ . The experiment, in an Euc-
lidean laboratory frame, results in some lifetime data, i.e. some real number 

0t
π

. Now we need to calculate back (interpret): what is the lifetime of 0π  in its 
frame, i.e. in the momentum hyperboloid which is Lobachevskian space. If the 
calculations are done in Beltrami-Klein model (or ESR), we obtain some value, 
say BKt . If the calculations are done using the Poincare model (BSR), we will 
obtain a different value P BKt t≠ . So what we end up with is a 0π  meson with 
two different lifetimes which is obviously impossible. Furthermore, the same 
argument applies to momenta, energy, polarizations, reaction cross-sections, 
angular distribution of reaction products (since ESR is non-conformal while BSR 
is conformal), and so on. As we noted above, the situation is even more vague 
since there is in fact an infinity of mixed (hybrid) “relativities”. 

Remark 26 (Analogy with Quantum Mechanics) It is well known that quan-
tum mechanics deals with states which can be either pure states or mixed states. 
If we label, for instance the Beltrami-Klein model as a pure state BKΦ  and 
Poincare model as a pure state PΨ , then the mixed state, or hybrid model 
mentioned here will be, ( )1 11BK PF p p= Φ + − Ψ , where 1p  and 1 21 p p− =  
are real, non-negative numbers 1 20 , 1p p≤ ≤  representing probability ampli-
tudes of finding the mixed state in one of the pure states BKΦ  or PΨ . It is 
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clear that there exists a continuum of such hybrid models or mixed states. For  

example, if 1
1
2

p =  and 2
1 11
2 2

p = − =  then we have a mixed state representing  

the hybrid model, which is neither a Poincare model nor a Beltrami-Klein 
model of Lobachevskian geometry. It follows that maps viewed as a physical 
states, which are homotopy related or which are of the same homotopy type, 
will produce isomorphic physics. We know that in quantum mechanics mixed 
states are represented by density matrices. Hybrid “relativities” can be 
represented in the same way which makes “classical physics” as probabilistic 
as quantum physics. This is an extremely interesting insight into “quantum 
classical worlds”, which dismisses the common belief that quantum physics is 
probabilistic while classical physics is deterministic. 

7. Paradoxes as Distortions of Maps between Non-Isometric  
Spaces 

When humans explore the world around them, they encounter new phenomena, 
and use mathematical tools, e.g. maps, to make sense of the new phenomena. 
But if incorrect maps are used for such exploratory experiments, bizarre conclu-
sions will result. Unfortunately new phenomena are often judged and inter-
preted in terms of already existing knowledge, which is frequently incompatible 
with experimental results. Sometimes, as was the case with quantum mechanics, 
a new fruitful approach emerges, but in many cases, the incompatibility between 
existing science and new theoretical or experimental facts leads to bizarre and 
false conclusions. 

In this section, we prove the apparent nature of the so called Twin Paradox, 
and we resolve (in general) the problem of the shape of a circular fast moving 
object. 

7.1. The “Twin Paradox”, Its Origin, and Its Trivial Solution 

The Twin Paradox is as old as ESR itself and so far there is no satisfactory and 
reasonable solution of the problem. It is interesting that Einstein himself never 
gave any solution to Twin paradox in the “special relativity” he authored. The 
solution presented here is the first and only one in the literature on the subject 
which is mathematically sound and does not involve any subjective factors. 

We start with the standard scenario, but since we have already introduced the 
isomorphism between ESR and BSR, we proceed with a symmetrical treatment 
of both twins A and B, referenced to the same stationary clock C. Doing so re-
moves all kinds of arguments based on asymmetry, e.g. traveling versus 
non-traveling twin, still present in literature. 

At a fixed time, say “time zero” 0t  on an Earth clock C, both twin A and twin 
B start their journey in the same fast rocket and are subjected precisely to the 
same conditions. Upon returning to Earth, and before seeing clock C, the twins 
use isomorphic relativities and calculate what each will see on clock C. Note that 
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all three objects, twin A, twin B, and clock C are in the same place and are mu-
tually motionless. 

Twin A makes his calculation due to the Lobachevski-Beltrami-Klein model 
(ESR), and expects that the clock will show the time as 0 ESRt t+ ∆ . Twin B, who 
knows of Poincare model, makes his calculations of temporal distortions due to 
Lobachevski-Poincare-von Brzeski model (BSR), and expects that the clock will 
show the time as 0 BSRt t+ ∆ . Since ESR BSRt∆ ≠ ∆  it implies that  

0 0ESR BSRt t t+ ≠ + ∆ , which in turn implies that the clock should display two dif-
ferent readings - an impossible outcome, i.e. a “paradox”. Obviously, the clock 
will display a single reading at the same instance when twins A and B look at it. 
The state of the clock, i.e. the real number on the clock’s display, does not 
depend on an identical copy of an observer (twin) who is looking at it. 
Needless to say, this will cause much confusion for both twins. 

Next, when twin A and twin B attempt to calculate their ages due to different 
isomorphic “relativities” (maps they used in their journeys), they will discover 
that their ages are no longer the same, despite the fact that they underwent 
precisely the same journey and were subjected to precisely to the same con-
ditions. 

Using Formulas (58) and (84), we can summarize the situation as follows:  
1) If A Bt t′ ′∆ = ∆  it implies that A Bt t∆ ≠ ∆ , 
2) If A Bt t∆ = ∆  it implies that A Bt t′ ′∆ ≠ ∆ . 
In other words, after the trip(s), we will obtain quite bizarre results: either the 

clock will show double readings or twins A and B have two different ages. This is 
obviously an impossible outcome showing the apparent nature of distortions 
resulting from non-isometric maps called “special relativities”. 

The so called Twin Paradox is not real and it is due to apparent distortions 
only. The paradox is apparent in the same way as the shape and size of Green-
land is different on two (homotopic) maps; see Figure 1. Distortions introduced 
by various maps of curved space into a flat space are of apparent character only 
and should not be viewed as something real. 

The following example is even more evident in its outcome. It is in essence 
what high energy particle physicists confront routinely in their work (we will 
return to this when we discuss problem with lifetimes of unstable particles. 

Since we have alternative “relativities”, we do not need twins, and we limit our 
consideration to one traveler only. A traveler takes a trip in a rocket. After the 
trip (returning to Earth), the traveler is asked about his or her age. The traveler 
has many options for the answer. One option is to calculate the age due to ESR 
(gnomonic map); another option is to calculate the age due to BSR (stereo-
graphic map); furthermore, the traveler has an infinity of options to calculate 
the age due to the hybrid maps in between. As a result, the traveler is unable to 
give a definite answer. Then, the traveler is asked again: who might know your 
age? The answer is, that after the trip nobody really knows the actual age of the 
traveler. Problems of this sort are called undecidable problems. A theory which 
contains undecidable problems is incomplete. 
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Remark 27 A reader familiar with quantum mechanics is familiar with the di-
lemma known as “Schrodinger’s cat” regarding the incompleteness of informa-
tion due to a quantum mixed state. If we replace the Earth clock C in the above 
analysis with the cat (biological clock), we will come to the analogous situation 
of inconclusiveness of the state of the cat prior to actually seeing it. One of the 
twins will claim that the cat is already dead while the other will claim that the cat 
is still alive. Since both claims are due to isomorphic “relativities” of equal logical 
value, we arrive at a state of the cat which is half dead and half alive. The only 
possibility is to observe the cat after returning from the trip (collapse of the wave 
function by breaking the cat box) and checking the state of the cat.  

Conclusion 28 Relativistic physics contains undecidable problems, and 
therefore is an incomplete theory.  

The close resemblance here with quantum mechanics (QM) is striking. The 
information about the traveler’s age is lost due to the geometry of mixed maps 
(mixed states in QM). This clearly shows that what we have here is the quantum 
mechanical - probabilistic case rather than “classical” deterministic case. It is 
ironic that Einstein who was hostile of quantum mechanics developed his ESR 
not realizing that ESR is just a “pure state” (or “pure map”), one of infinitely 
many, in a more general scheme which is inherently probabilistic and in which 
the outcome of a physical process is specified not by a single real number but 
by probability amplitudes for alternative outcomes. 

7.2. “Wheels of a Fast Moving Bicycle” and Undecidable Questions  
in High Energy Physics 

Regarding the shape of fast moving circular objects (“bicycle wheels”) it is easy 
to see that all definite conclusions up to now, in one way or the other, are equally 
wrong. This means that all authors who conclude that a fast moving circular ob-
ject will appear as circular, or those who conclude they will appear as not circu-
lar (e.g. elliptical), are equally wrong. This is because the question about the shape 
of fast moving spherical/circular object is undecidable, which means that it is 
impossible a-priori to give a definitive answer to this question. Undecidabili-
ty here is of the same sort as the undecidability about the traveler’s age we discussed 
in Section 7.1, however, it follows from the conformality or non-conformality prop-
erties of different maps. 

Conformal maps are maps which preserve angular relations, so shapes of ob-
jects in images remain unchanged however the size of the objects change. 
Non-conformal maps do not preserve angular relations and consequently shapes 
of objects in images will be deformed. It is well known that the stereographic 
map is conformal while the gnomonic is not. The Poincare model of Lobachevs-
kian geometry, and BSR which is a result of a stereographic projection are con-
formal, while the Beltrami-Klein model of Lobachevskian geometry and ESR 
which results from a gnomonic projection are non-conformal. Therefore, there 
is no way to conclude a-priori anything definite about the shape of a fast 
moving circular object because the definite “truth” depends on which map of 
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Lobachevskian velocity space or which model of “relativity” is used. 
Suppose you have two cameras, one producing Poincare images or maps, and 

the other one producing Beltrami-Klein images or maps onto a piece of flat pa-
per. (“Camera” here does not refer to a piece of hardware that takes pictures, but 
as a mapping or algorithm which maps objects between spaces of different cur-
vatures). If you use the Beltrami-Klein camera, the images of a fast moving circle 
will be ellipses and not circles. This is because Beltrami-Klein model of Lo-
bachevskian geometry (used in ESR) is a non-conformal model. On the other 
hand, if you use the Poincare camera, the images of fast moving circles will be 
circles, not ellipses. This is because Poincare model is conformal. Lobachevs-
kian circles (spheres) in the Poincare model are also the Euclidean circles 
(spheres); there is distortion in size but not in a shape, a fact well known in 
non-Euclidean geometry. We have the following theorem: 

Theorem 29 It is impossible a-priori to determine the shape of fast mov-
ing circular (spherical) objects. The shape of fast moving circular objects is 
model dependent. In a Lobachevski-Beltrami-Klein-Einstein map, the image of 
a fast moving circle will be an ellipse. This is because the Beltrami-Klein model 
used in ESR is a non-conformal model. In the Lobachevski-Poincare-von 
Brzeski map, the image of a fast moving circle will be a circle. This is because 
the Poincare model is a conformal model.  

Proof. Directly from properties of non-conformality/conformality of Beltra-
mi-Klein and Poincare models (Figure 8 and Figure 9). 

Conclusion 30 The inability to answer the question regarding the shape of a 
fast moving circular object is a result of incompleteness of information. In fact 
we proved that questions about the world of high relative velocities, or questions 
about the world of high energy physics, are a-priori undecidable. Answers to 
those questions are decidable only up to a homotopy of maps. 
 

 

Figure 8. The apparent shape of “fast moving” spherical (circular) objects due to Poin-
care model of Lobachevskian geometry and the associated with it version of our “special 
relativity” - BSR. Since the model is conformal, spheres (circles) will appear in preserved 
shapes but in decreased sizes as distance (relative velocity) in Lobachevskian veloci-
ty/momentum space increases. The apparent size of objects close to the boundary at in-
finity, which is the sphere S2 (circle S1 in the above figure), will be arbitrarily small - 
point-like. The same reasoning applies to Lobachevskian position space - Lobachevskian 
Universe, and can be viewed as a real example of Lobachevskian cartography. 
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Figure 9. The apparent shape of “fast moving” spherical (circular) objects due to Beltra-
mi-Klein model of Lobachevskian geometry and the associated Einstein’s “special relativ-
ity” - ESR. Since this model is non-conformal, as relative velocity (with respect to the 
center) increases, spheres (circles) will appear: a) flattened (ellipsoidal) and b) smaller in 
size. The apparent shape and size of objects close to the boundary at infinity (circle S1 in 
the above figure) will be very “thin” and very “small”, respectively. The same argument 
holds for a Lobachevskian Universe if perceived via the Beltrami-Klein model, and can be 
viewed as a real example of Lobachevskian cartography. 

Application to Astrophysics 
Deep space astrophysics shows that geometry of large scale vacuum (background 
geometry) of the Universe is Lobachevskian [4] [5] [6] [7]. Therefore we can ask 
a question. How do we perceive the Lobachevskian Universe around us, via the 
Beltrami-Klein model or via the Poincare model, or via a mixed model? This is 
an interesting question which can be resolved experimentally. 

As we already mentioned, Lobachevskian geometry in physics is represented 
by velocity space UL  and by position (coordinate) space XL  which we identi-
fy with the large scale vacuum - Lobachevskian Universe. We know that galaxies 
in the Universe are basically of two shapes, spherical and elliptical. If the Un-
iverse appears to us as in the Poincare model, then statistical distribution of 
galactic shapes will not depend on distance. Independently of how far we can 
see, there will on average be the same count of spherical and elliptical galaxies. 
That is because Poincare model is conformal, spheres are mapped onto spheres, 
ellipsoids are mapped onto ellipsoids. 

On the other hand if space appears to us as the Beltrami-Klein model, the dis-
tant spherical galaxies will look more and more elliptical. So the number of el-
liptical galaxies will rise with distance. However things are more complicated 
since depending on galaxy orientation with respect to an observer, some elliptic-
al galaxies will look even more elliptical while others will appear less elliptical, or 
maybe even as spheres. 

Moreover, there is still an infinity of mixed models which makes things even 
more complicated. The problem is not easy to resolve but we hope that astro-
physicists with help of advanced statistical analysis will be able to solve it. 

7.3. The Meaning of Distortions for Physics. What Is Real and  
What Is Apparent? 

Everybody has their own sense of reality and we will not comment on that. 
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However, the adjective “apparent” has more of an ambiguous meaning for each 
person. Therefore we take a definition of “apparent” from Webster’s New Colle-
giate Dictionary. 

Apparent (illusory, seeming, ostensible): manifest to the senses or mind as 
real or true on the basis of evidence that may or may not be factually valid. 

The main source of confusion about what is real and what is apparent is that 
we are comparing metric relations (sizes) in non-isometric spaces, e.g. com-
paring “apples and oranges”. We cannot reach conclusions about sizes be-
tween spaces of different curvature which are not isometric. While we can go 
directly to Greenland to verify our data regarding cartography from spheres, we 
cannot go to a Lobachevskian negatively curved space and to make direct mea-
surements there. What we can account for at most is that we have to work with 
distorted images in our 3-dim Euclidean world. Maps (projections) between 
curved and flat spaces result in distortions and there is no way to circum-
vent this misfortune. The reader can now appreciate why we devoted a consi-
derable portion of this paper to maps (projections) from curved to flat spaces. 

The fundamental misunderstanding about Lorentz transformations which 
plagues all of physics since 1905 is that they introduce distortions. This is false. 
Lorentz transformations are isometries of Lobachevskian space and hence are 
distortion-less. Distortions are introduced when we map (project) information 
from a hyperboloid into our Euclidean laboratory. “Paradoxes” result from incor-
rect interpretation of “special relativities” via flat Minkowski pseudo-Euclidean 
geometry. In the interpretation of “special relativities” as maps from Lobachevs-
kian into Euclidean space no “paradoxes” are present. 

We’ve come to the point where we have to explain which effects of “special 
relativities” can be regarded as real, and which ones are only apparent. Recall 
that since it’s publication in 1905, some phenomena related to “special relativity” 
have been viewed as paradoxical. Moreover, due to formulation of “special rela-
tivity” via a Minkowski flat space, the origin and nature of such paradoxes were 
entire obscure. Our exposition makes it easy to understand the origin of such 
paradoxical phenomena, and below we give our view on what is real and what is 
not when dealing with “special relativities”. 

If we admit that the velocity of light in a vacuum is a limiting value, i.e. 1c = , 
and we admit the independence of the velocity of light (in a vacuum) with the 
state of motion, c u c± = , then space of velocities has a natural mathematical 
model as Lobachevskian (hyperbolic) 3 dimensional space, and its group of iso-
metries is the Lorentz group ( )2SL C . From here, due to various Lorentz group 
actions on Lobachevskian, space we obtain various “special relativities”, each 
identified as some map from Lobachevskian 0K <  into Euclidean space 

0K = . Thus it is natural to discuss the distortions or deformations such maps 
introduce. Since each map is between a pair of spaces of different curvature 
which are not isometric, the situation with distortions is more subtle than it 
might initially appear. 
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In fact two kinds of distortions of different origin have to be considered: 
1) Since Lobachevskian space is more volumetric than Euclidean space (see 

Table 1), images from Lobachevskian space recorded in Euclidean space, by ne-
cessity, will be compressed. It should be noted that the effect of compression is 
regarded as the compression of images, and not as a compression of material 
bodies. This effect is independent of the map used, and is a consequence of 
pure geometry. For this reason we think that effects of image compression 
might be regarded as real since they are given by Nature itself and they cannot 
be eliminated by man in any way. On the other hand, it has to be clearly un-
derstood that a comparison of metric relations (sizes) in two non-isometric 
spaces having different volumetric content and having two different units of 
length, is highly misleading.  

2) In addition to distortions (deformations) of images resulting from different 
curvatures, there are “technical” (man-made) distortions resulting from the par-
ticular type of map employed in the projection of images from curved into Euc-
lidean space. It has been shown that for instance gnomonic and stereographic 
maps introduce different distortions when mapping the same curved space into 
a flat space; see Figure 1(a) and Figure 1(b). The distortions resulting from the 
type of a map are purely apparent, i.e. not real, and may be altered by choosing 
an appropriate (to an experiment) map.  

As a result, in any experiment at high energies (large distances in Lobachevs-
kian space), we record a mixture of such real and apparent distortions, which 
cannot be untangled—the only option we have in order to obtain information 
from a negatively curved space is to employ some kind of map! Thus, images (data) 
which we record in “relativistic physics” should be regarded as “real/apparent” 
images (data). To which degree the images are real or cannot be separated in a 
unique way. 

8. Summary 

In this paper, we presented the discovery of the non-uniqueness of Einstein’s 
“special relativity” and inconclusiveness of the High Energy Physics (“rela-
tivistic physics”) resulting from different maps from Lobachevskian into 
Euclidean space. Different, yet homotopy equivalent, maps result in mathemat-
ically equivalent (isomorphic) but physically not-equivalent “special relativities” 
in that they will produce different numerical predictions. Another new result is 
the identification of “special relativities” as common maps from Lobachevskian 
spaces into Euclidean space, and their association with well known models of 
Lobachevsian geometry. 

Einstein’s “special relativity” (ESR) is not a theory. It is a gnomonic map 
from Lobachevskian space into Euclidean space, is one of infinitely many possi-
ble maps, and as such is not unique. From a mathematical point of view, it is 
based on the Beltrami-Klein model of Lobachevskian geometry. This Loba-
chevski-Beltrami-Klein-Einstein “relativity” is isomorphic, but it is not isome-
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tric and not conformal with the authors’ BSR, what we call the Lobachevski- 
Poincare-von Brzeski “relativity”. From the point of view of physics, Einstein’s 
“special relativity” map corresponds to single sided motion. In physical appli-
cations, it is a natural choice for fixed target scattering experiments like those on 
accelerators with a fixed target. 

The “special relativity” presented in this paper, namely Lobachevski-Poincare- 
von Brzeski (BSR) is not a theory either. It is a stereographic map from Loba-
chevskian space into Euclidean space and as such is also not unique. From ma-
thematical point of view, it is based on a Poincare model of Lobachevskian geo-
metry, which is isomorphic but not isometric with the ESR “relativity”. From 
the point of view of physics, it describes two sided motion. It corresponds to 
center of momentum frame scattering, in accelerators with counter rotating 
beams. In astrophysics, it applies to so called “relativistic beams” ejected from 
galactic nuclei. 

Between ESR and BSR, there is a continuum of hybrid “relativities” due to 
homotopy between maps, as was explained in the Section 6. Therefore, results 
acquired in High Energy “Relativistic” Physics are not conclusive. More pre-
cisely, they are conclusive up to homotopy only. 

The results of experiments in High Energy Physics and deep space astrophys-
ics depend on maps called “special relativities”, which translate non-Euclidean 
reality into Euclidean data in our laboratory, data which are inevitably deformed 
due to different distortions introduced by those different maps. 

Our “special relativity” BSR is equally valid from the logical, the mathematical, 
and the physical point of view. There are no criteria of any kind to discriminate 
BSR versus ESR since there are no criteria (beyond the matter of convenience in 
a particular situation) to discriminate the Poincare model versus Beltrami-Klein 
model of Lobachevskian geometry. 

To our knowledge, the BSR alternative to ESR is presented here for the first 
time in scientific literature. “Alternative” has to be understood in the same sense 
as alternative maps are used in the practice of mapping the Earth’s surface. As 
we said in the introduction, map making is mathematics. Navigation and explo-
ration of the physical world, using those maps, is experimental physics. 

Unfortunately, we cannot experience (perceive) global Lobachevskian geome-
try directly, but only via our local Euclidean reality. Our Euclidean experience is 
only projections—images or maps due to the Poincare model or due to the Bel-
trami-Klein model, or due to an infinity of homotopy equivalent hybrid models. 
Different maps or projections or images will result in different data from the 
world of high energy physics, and we do not have any “solid reference” to know 
their true nature (pre-images). We have no direct access to the Lobachevskian 
geometry “source code” of Nature and we must work with the Lobachevskian 
world in terms of its Euclidean images. The situation is reminiscent of Plato’s 
Allegory of the Cave. The bird-eye’s view of the presented paper is summarized 
in Table 2. 
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Table 2. Bird’s eye view of Einstein’s and the authors’ “relativities”. 

 
Einstein 

“Special Relativity” (ESR) 
von Brzeski 

“Special Relativity” (BSR) 

Lobachevskian 
Real 3-dim Space 

( ) ( )2 2SL C SU  

Quotient of Lorentz Group 
( ) ( )2 2SL C SU  

Quotient of Lorentz Group 

Type of Lorentz Group 
Action on ( ) ( )2 2SL C SU  

Single sided (left) 
x gx′=  

Double sided 
*x g x g′=  

Type of Projection 
(Type of Map) 

Gnomonic (central), 
non-conformal 

Stereographic, 
conformal 

Type of Coordinates Projective Weierstrass Projective rational 

Resulting Model of 
Lobachevskian Geometry 

Beltrami-Klein, 
non-conformal 

Poincare, conformal 

Relation between BSR and ESR 
Isomorphic as models, 

Homotopic as maps 
Isomorphic as models, 

Homotopic as maps 
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