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Abstract 
In this paper we analyze and model three open problems posed by Harris, 
Insko, Prieto-Langarica, Stoisavljevic, and Sullivan in 2020 concerning the 
tipsy cop and robber game on graphs. The three different scenarios we model 
account for different biological scenarios. The first scenario is when the cop 
and robber have a consistent tipsiness level through the duration of the game; 
the second is when the cop and robber sober up as a function of time; the 
third is when the cop and robber sober up as a function of the distance be-
tween them. Using Markov chains to model each scenario we calculate the 
probability of a game persisting through M rounds of the game and the ex-
pected game length given different starting positions and tipsiness levels for 
the cop and robber. 
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1. Introduction 

The game of cops and robbers on graphs was introduced independently by Quil-
liot [1] and Nowakowski and Winkler [2]. In this game, a cop and a robber al-
ternate turns moving from vertex to adjacent vertex on a connected graph G 
with the cop trying to catch the robber and the robber trying to evade the cop. In 
2014, Komarov and Winkler studied a variation of the cop and robber game in 
which the robber is too inebriated to employ an escape strategy, and at each step 
he moves to a neighboring vertex chosen uniformly at random [3]. 

In 2020, Harris, Insko, Prieto-Langarica, Stoisavljevic, and Sullivan introduced 
another variant of the cop and robber game that they call the tipsy cop and 
drunken robber game on graphs [4]. Each round of this game consists of inde-
pendent moves where the robber begins by moving uniformly and randomly on 
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the graph to an adjacent vertex from where he began, this is then followed by the 
cop moving to an adjacent vertex from where she began; since the cop is only 
tipsy, some percentage of her moves are random and some are intentionally di-
rected toward the robber. 

In this paper, we generalize the work of Harris et al. to analyze the tipsy cop 
and tipsy robber game. One inspiration for this study to model is the biological 
scenario illustrated in the YouTube video [5]  
https://www.youtube.com/watch?v=Z_mXDvZQ6dU where a neutrophil chases 
a bacteria cell moving in random directions. While the bacteria’s movement 
seems mostly random, the neutrophil’s movement appears slightly more pur-
poseful but a little slower. 

Harris et al. modeled the game by having the players alternate turns. In this 
paper we use a slightly different model of the game that was suggested to us by 
Dr. Florian Lehner. We let the cop and robber be any amount of tipsy and rather 
than assume that the players alternate turns and flip a coin to determine if the 
player moves randomly or not, we use a spinner wheel to determine the proba-
bility of whether the next move will be a sober cop move, a sober robber move, 
or a tipsy move by either player. We model this scenario on vertex-transitive 
graphs (both finite and infinite examples) and on non-vertex transitive graphs 
(friendship graphs) using the theory of Markov chains. Given a set of initial 
conditions on each player’s tipsiness and their initial distance, the questions we 
consider are: 
● What is the probability ( ), ,P i j M  that the game, beginning in state i, will 

be in state j after exactly M  rounds?  
● What is the probability ( )dGM  that the game lasts at least M  rounds if 

they start distance d away?  
● What is the expected number ( )E d  of rounds the game should last if they 

start distance d away?  
For some of these graphs we are able to identify when the expected capture 

time is finite and when the robber is expected to escape. 
In Section 2 we introduce our model of the tipsy cop and robber game on both 

vertex-transitive and non-vertex transitive graphs. In Section 3 we analyze the 
game on regular trees and compare it to the famous Gambler’s ruin problem [6]. 
In Section 4 we present our general method for analyzing the game using Mar-
kov chains, and we then apply these methods to analyze the game on specific 
families of graphs in Sections 5-8. In Section 5 we analyze the game on cycle 
graphs. In Section 6 we analyze the game on Petersen graphs. In Section 7 we 
analyze the game on friendship graphs. In Section 8 we analyze the game on to-
roidal grids. In Section 9 we present a model for the game where players start off 
drunk and sober up as the game progresses, answering Question 6.1 from Harris 
et al. [4]. Finally, in Section 10 we present a model for the game where the play-
ers’ tipsiness increases as a function of the distance between them, thus provid-
ing an answer to Question 6.6 from Harris et al. [4]. While we present our me-
thods with specific examples from each family of graphs we analyze, we also in-
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clude our SageMath (CoCalc) code in the Appendix so that any reader may 
adapt our methods to their own models. 

2. Background and Introduction of Our Model  

In this paper we model the tipsy cop and tipsy robber game on a graph G by first 
placing the cop on one vertex and the robber on another vertex on the graph G. 
Rather than require the players alternate turns as in previous models of the cops 
and robbers game, we allow for four possible outcomes in each round of the 
game: a sober robber move r, a sober cop move c, a tipsy robber move tr, or a 
tipsy cop move tc, where 1c rc r t t+ + + = . The outcome of each round is as-
signed at random, perhaps by a probability spinner as depicted in Figure 1. 
● r is the probability of a sober robber move (in yellow)  
● c is the probability of a sober cop (in green)  
● tr is the probability of a tipsy move by the robber (in red)  
● tc is the probability of a tipsy move by the cop (in blue)  

If the game is played on a non-vertex transitive graph the probability of tran-
sition from one state to another depends on the starting location of the players. 
One such graph is a friendship graph, where n copies of the cycle graph C3 are 
joined by a common vertex (see Figure 2 for an example of a friendship graph 
with 3 copies of the C3 cycle graph). 

A vertex-transitive graph is a graph, where every vertex has the same local en-
vironment, so that no vertex can be distinguished from any other based on the 
vertices and edges surrounding it. On a non-vertex-transitive graph a tipsy move 
by the cop is not necessarily equivalent to a tipsy move by the robber, as it may 
increase, keep the same, or decrease the distance between the players based on 
each player’s starting state. For example, the first part of Figure 2 gives us the 
possible movements of the cop (in blue) if she is in the center of a friendship 
graph with 3 triangles. If the cop makes a tipsy move to a green vertex (which  

accounts for 4
6

 of tc moves), the distance between her and the robber (in red) 

increases to 2. If she moves tipsy to the vertex in orange the distance will not 

change ( 1
6

 of tc moves), and if she moves to the vertex in red (that move can be 

either 1
6

 of tc moves or the only sober move) she will catch the robber (distance  

will be 0). On the other hand, if the cop’s starting position is on an outer vertex 
(second part of Figure 2) there are only two possible outcomes, she moves closer  

to the robber (in black-either 1
2

 of tc or the only sober move) or keeps the same 

distance (in orange, 1
2

 of tc moves). 

Similarly, the starting state of the robber determines the probability of moving 
to the next state. The first part of Figure 3 depicts the possible movements of the 
robber (in red) if he is in the center of a friendship graph with 3 triangles. If the  
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Figure 1. Probability of each move based on spinner. 

 

 
Figure 2. Possible cop moves (double circles) on a friendship graph with 3 triangles. 

 

 
Figure 3. Possible robber moves (single circles) on a friendship graph with 3 triangles. 

 

robber makes a sober or tipsy (which accounts for 4
6

 of tr moves) move to a 

green vertex, the distance between him and the cop (in blue) increases to 2. If he 

moves tipsy ( 1
6

 of tr moves) to the vertex in orange the distance will not change, 

and if he moves to the vertex in blue (a different tipsy move 1
6

 of tr moves) he  

will get caught (distance will be 0). On the other hand, if the robber’s starting 
position is on an outer vertex (second part of Figure 3) there are only two possible  

outcomes, he moves closer to the cop (in black, 1
6

 of tr moves) or keeps the 

same distance (in orange, 1
6

 of tr moves or a sober move). 

We will analyze the friendship graph game in more detail in Section 7. 
The game is simpler to model on vertex-transitive graphs. A sober cop move 

will always decrease the distance between the two (as the cop is chasing the rob-
ber). A sober robber move will always increase the distance between the two, or 
if they are at a maximum distance from each other on a finite graph, he can de-
cide to stay in the same place. Finally, a tipsy move by either player is a random 
move, and therefore may increase or decrease the distance between the two. 
When modeling the game on a vertex-transitive graph, a tipsy move by the cop 
is equivalent to a tipsy move by the robber, so we regroup all tipsy moves to-
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gether. Every move in the game is guaranteed to fall in one of those three cate-
gories hence, 1c r t+ + =  (Figure 4). 
● r is the probability of a sober robber move (in yellow)  
● c is the probability of a sober cop (in green)  
● t is the probability of a tipsy move by either player (in red)  

For example, if the game is played on an infinite path as depicted in Figure 5, 
the probability that the distance between the cop and robber increases by one in 
a round is equal to the probability of a sober robber move, since a sober robber 
will always run from the cop, plus one half of the probability of a tipsy move by 
either player, since half of all random moves will increase the distance between 
them. We will employ Markov chains and transformation matrices to model 
how the players move from one state to another on these graphs. 

3. Regular Trees and the Gambler’s Ruin Problem  

On an infinite regular tree of degree ∆ , the distance between the two players  

decreases with probability 1
∆

 and increases with probability 1∆ −
∆

 when either  

player makes a tipsy move. When the cop makes a sober move, the distance al-
ways decreases, and when the robber makes a sober move the distance always 
increases. Hence, if we assume that the cop calls off the hunt when the distance 
between the players reaches a specified distance d = n , then the Markov chain 
in Figure 6 models the game where the probability of the distance increasing is  

1p t r∆ − = + ∆ 
 and the probability of the distance decreasing is 1 tp c− = +

∆
. 

 

 
Figure 4. Probability of each move based on spinner where tipsy moves are grouped to-
gether. 
 

 
Figure 5. Move of a tipsy cop (blue) and tipsy robber (red). 

 

 
Figure 6. Markov chain on infinite regular trees. 
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Those familiar with the gambler’s ruin problem will immediately realize that 
this Markov chain is the same as the gambler’s ruin chain with a probability of  

the gambler winning a round given by 
1p t r∆ − = + ∆ 

 and the gambler losing 

a round given by 1 tp c− = +
∆

. 

It is well-known that the expected game length of the gambler’s ruin problem 

is given by the equation ( ) ( )E d d d= −n  when 1
2

p =  ([7], p. 79) and  

 ( )

1 1

1 2 1 21 1

d
p

p dE d
p pp

p

 −
− 

 = − +
− − −

− 
 

n

n
                 (1) 

when 1
2

p ≠  ([7], p. 79]. 

After finding a common denominator and factoring out 1
1 2 p−

 we can re-

write ( )E d  using our notation as 

( ) ( )
( )
11 .

1 2 1

dd
d p p

E d d p
p p p

−
  − −   = − ⋅ ⋅    − − −    

n

nn
n            (2) 

When 1
2

p <  (favoring cop success) then the right hand side of Equation (2) 

has a limit of d as →∞n . So if the cop never gives up, we get the formula  

 ( ) ( )( )1 2 2 1 1 2
d dE d

p c r
∆

= =
− ∆ − − ∆ − −

              (3) 

 
( ) ( )

.
2 1 2 1 2

d
c c r

∆
=

− ∆ + − −
                    (4) 

If 1
2

c > , then as ∆ →∞   

 ( ) .
2 1

dE d
c

=
−

                         (5) 

If ( )R d  and ( )C d  represent the probability of the robber or cop winning 
respectively when starting the game from distance d away from each other, then 
of course ( ) ( ) 1R d C d+ = . Formulas for ( )R d  and ( )C d  can easily be de-
rived from well-known formulas modeling the gambler’s ruin problem. For  

instance, when 1
2

p = , the probability of the robber escaping ( )R d  is the 

same as the probability of the gambler’s success in the fair gambler’s ruin prob-

lem ( ) dR d =
n

 and when 1
2

p ≠ , we have  

https://doi.org/10.4236/ojdm.2021.113006


V. Bardenova et al. 
 

 

DOI: 10.4236/ojdm.2021.113006 67 Open Journal of Discrete Mathematics 
 

 ( )

11

11

d
p

p
R d

p
p

 −
−  
 =
 −

−  
 

n
                        (6) 

is the same as the probability of the gambler’s success in the unfair gambler’s 
ruin problem ([6], Equation 1.2). 

Substituting 1p t r∆ −
= +

∆
 (transition probability to increase distance) and 

1 tp c− = +
∆

 (transition probability to decrease distance) we find ( )R d  to be  

 ( )

1 1

.

1 1

dtc

t r
R d

tc

t r

 + ∆−  ∆ − +
 ∆ =
 + ∆−  ∆ − +
 ∆ 

n
                    (7) 

Numerical Examples  

As an example, we consider the game on an infinite regular tree of degree 
4∆ = , where the proportion of moves follows the distribution of 0.3c = , 

0.4r = , 0.3t = , and the cop calls off the chase if the robber reaches a distance 
of 10=n . Table 1 gives the expected game time ( )E d , and the probability of 
the robber or cop winning from each possible starting distance d. 

We observe that if this game begins at 9d = , then it has the lowest expected 
game time of any possible starting distance. This makes sense as 40% of the time 
the robber will escape in the first move, or with probability 22.5% either player will 
move drunkenly to allow the robber to escape in the first move; hence, the rob-
ber has a 66.5% chance of escaping in the first move if the game begins at 9d = . 

 
Table 1. Expected game times and probabilities of cop or robber win. 

Distance Measure 

d E(d) R(d) C(d) 

1 12.10 0.4024 0.5976 

2 17.76 0.6439 0.3561 

3 19.55 0.7888 0.2112 

4 19.03 0.8757 0.1243 

5 17.11 0.9278 0.0722 

6 14.37 0.9591 0.0409 

7 11.12 0.9779 0.0221 

8 7.567 0.9892 0.0108 

9 3.838 0.9959 0.0041 
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4. General Matrix Method for Analyzing Markov Processes  

In this section we describe how to use various matrix equations to find the criti-
cal data points of the game. These include, the probability of transitioning from 
one vertex to another in exactly M  rounds, the probability the game lasts at 
least M  rounds, and the expected game time. To calculate these values for a fi-
nite Markov chain we will use its probability matrix P, where ,i jP  is the proba-
bility of transitioning from state i to state j in one round of the Markov process. 
We will use these matrix methods repeatedly to analyze various families of graphs 
in the subsequent sections of this paper. 

4.1. Calculating Probability of Moving from State i to State j in M  
Rounds  

The probability of starting in state i and ending in state j in exactly M  moves is  

 ( ), , i jP i j e P e= ⋅ ⋅MM                         (8) 

where ie  and je  are the row and column basis vectors respectively associated 
with state i and state j. 

For example, given the Markov chain in Figure 7, the probability matrix for 
this Markov chain is  

 

1 0 0 0
1 0 0

.
0 1 0
0 0 0 1

p p
P

p p

 
 − =
 −
 
 

                    (9) 

Some probabilities of going from one state to another in M  rounds are dis-
played in Table 2. 
 

 
Figure 7. Sample for a Markov chain with four states. 

 
Table 2. Multi-round state transition probabilities. 

From state to state in M  rounds ( ), ,P i j M  

3i =  0j =  1=M  ( )3,0,1 0P =  

3i =  0j =  2=M  ( )3,0,2 0P =  

3i =  0j =  3=M  ( )3,0,3 0P =  

2i =  0j =  1=M  ( )2,0,1 0P =  

2i =  0j =  2=M  ( )21 p−  

2i =  0j =  3=M  ( ) ( )2 31 1 1p p p− ⋅ + − ⋅  

2i =  0j =  4=M  ( ) ( )2 321 1 1p p p− ⋅ + − ⋅  
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Note that in this example, state 0 and state 3 are both absorbing states, and 
that it is possible when calculating ( ), ,P i a M  for an absorbing state a, that the 
robber reaches the absorbing state a in m < M  moves, and then sits there for 
the remaining m−M  moves. 

4.2. Calculating the Probability ( )dMG  That the Game Will Last  
at Least M Rounds  

To calculate the probability that the cop will still be actively chasing the robber 
through M  rounds of this game with a starting distance d between the players, 
we restrict attention to the matrix transientT P=  modeling only the non-absorbing 
states of the Markov chain. Note that in this case, T is the matrix obtained from 
P by removing the columns and rows associated with any absorbing states in P. 
The probability of the game lasting at least M  rounds of the game if the play-
ers start at distance d from each other is then given by the following product of 
matrices  

 ( ) 1ldd e T= ⋅ ⋅G M
M                        (10) 

where de  denotes a standard basis row vector with 1 in column d and zero 
elsewhere, and 1l  is the column vector with 1 in each entry. 

4.3. Calculating Expectation E(d)  

As the number of rounds goes to infinity the likelihood that the game is still 
going on goes to zero. If we sum all the ( )dGM  probabilities for all M  we 
can find the expected number of rounds the game should last. That is,  

 ( ) 2 3 1ldE d e I T T T T = ⋅ + + + + + + ⋅  

M             (11) 

 1 1l
1de

T
= ⋅ ⋅

−
                                 (12) 

 ( ) 1 1lde I T −= ⋅ − ⋅                               (13) 

where I is the identity matrix. 

5. Cycle Graphs  

The study of cycle graphs breaks down into two families of cases based on if the 
number of vertices n  is even or odd. We start by analyzing the case when n  is 
even, and then explain how the odd case differs slightly. 

For a cycle graph Cn  with n  nodes, where n  is even we have the states 
where the robber and the cop are 0 (cop catches the robber or the robber is tipsy  

and stumbles upon the cop herself), 1,2,3,  or 
2
n  moves away from each 

other. 
We assume that the cop always moves until they are at distance 0 away. Also,  

if they are at distance 
2
n  away, and the robber is sober, he will stay at the same 

location since it is the furthest from the cop. The Markov chain for a cycle graph 
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with n  nodes has 
2
n  states as shown in Figure 8. 

From this Markov chain we find the probability matrix P to be a tridiagonal  

( 1 1
2 2
+ × +

n n ) matrix of the following form: 1,1 1P = , 
1,

2 2

P c t
+

= +n n , 
1, 1

2 2

P r
+ +

=n n  

and the upper and lower diagonal entries are 1, 2k k
tP c+ = +  for 1 1

2
k≤ ≤ −

n , 

and 1, 2 2k k
tP r+ + = +  for 1 1

2
k≤ ≤ −

n , and finally , 0i jP =  otherwise. 

The transition matrix T is derived by removing the first row and column cor-

responding to the absorbing state of P. Hence, T is an (
2 2
×

n n ) matrix with 

, 1
2 2

T c t
−
= +n n , 

,
2 2

T r=n n , 1, 2k k
tT c+ = +  for 1 2

2
k≤ ≤ −

n , , 1 2k k
tT r+ = +  for 

1 1
2

k≤ ≤ −
n , and , 0i jT =  otherwise. 

When n  is odd, the only difference in the Markov chain is that the probability  

of transitioning from state 
2
n  to itself is 

2
tr +  and the probability of transi-

tioning from 
2
n  to 1

2
−

n  is 
2
tc + . Hence 

1,
2 2 2

tP c
+

= +n n , 
1, 1

2 2 2
tP r

+ +
= +n n , 

since the robber and cop move all the time. 
We may now use our formulas involving T to find the probability that the 

game lasts at least M  rounds as in Subsection 4.2 and the expected game time 
Subsection 4.3. It is also important to note that because our model does not 
guarantee turns alternate, and this graph is finite where the cop never calls off 
the chase, ( ) 1C d =  for all values of d, c, r, t, and n . 

5.1. Numerical Examples  

For cycle graph with 6=n  nodes we have the states where the robber and the 
cop are 0 (cop catches the robber or the robber is tipsy and stumbles upon the 
cop himself), 1, 2 or 3 moves away from each other as shown in Figure 9. 

We assume that the cop always moves until they are at distance 0 away. Also, 
if they are at distance 3 away and the robber is sober he will stay at the same lo-
cation since it is the furthest from the cop. We derive the Markov chain in Fig-
ure 10 for a cycle graph with 6 nodes. 

We use a stochastic matrix P to represent the transition probabilities of this 
system. The rows and columns in this matrix are indexed by the possible states  
 

 
Figure 8. Markov chain for cycle graph with n  nodes where n  is even. 
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Figure 9. Distance between cop (blue double circle) and robber (red single circle) on a 
cycle C6 graph. 
 

 
Figure 10. Markov chain on C6 graph. 

 
listed above, with the pre-transition state as the row and post-transition state as 
the column. Transition probability matrix  

 

1 0 0 0

0 0
2 2 .

0 0
2 2

0 0

t tc r
P

t tc r

c t r

 
 
 + +
 =  
 + +
 
 + 

                  (14) 

This transition probability matrix P can be restricted to a transient transition 
matrix T with absorbing state 0 removed  

 

0 0
2

0 .
2 2

0

tr

t tT c r

c t r

 + 
 
 = + + 
 +  
 

                     (15) 

Using our general matrix method as in Section 4 we can solve the following 
numerical example.  

5.2. Numerical Examples 

We assume the tipsy moves by either player account for half of all moves 
0.5t =  and 1 0.5c r t+ = − = . Table 3 gives the probability the cop will still be 

chasing the robber after 7=M  rounds provided the cop and the robber start at 
distance 1,2d =  or 3 as the percentage of the sober moves allocated to the cop 
and the robber varies.  

Table 3 also shows the game will last longest, and the chase has the largest 
probability of still continuing after 7 rounds, if the starting distance is 3 and the 
robber takes the maximum percentage of sober moves possible. The accompa-
nying SageMath code for these computations is included in Appendix A.1, so 
the interested reader can adapt these calculations to model the game for any 
values of , , ,r c tM  they choose. 
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Table 3. Some survival rates and expected game durations on C6. 

Measure Proportion of Sober moves 0.5c r+ =  

Robber 0r =  0.1r =  0.2r =  0.3r =  0.4r =  0.5r =  

Cop 0.5c =  0.4c =  0.3c =  0.2c =  0.1c =  0.0c =  

( )7 1G  0.020 0.073 0.169 0.307 0.473 0.649 

( )7 2G  0.084 0.195 0.349 0.526 0.702 0.849 

( )7 3G  0.084 0.222 0.402 0.59 0.759 0.887 

( )1E  1.89 2.69 4.14 7.07 13.91 34 

( )2E  3.56 4.83 6.98 11.04 19.86 44 

( )3E  4.56 5.94 8.23 12.47 21.53 46 

6. Petersen Graph 

The Petersen graph is a vertex-transitive graph where the cop and robber can 
only be 0, 1, or 2 moves away from each other as illustrated in Figure 11. 

We assume that the cop moves until eventually she captures the robber. Also, 
if robber is distance 2 away from the cop, and the robber is sober, he will stay at 
the same location since it is the furthest from the cop. Hence the Markov chain 
for the Petersen graph is as depicted in Figure 12. 

We use a stochastic matrix P to represent the transition probabilities of this 
system. The rows and columns in this matrix are indexed by the possible states 
listed above, with the pre-transition state as the row and the post-transition state 
as the column.  

 

1 0 0
20

3 3
20

3 3

t tP c r

t tc r

 
 
 
 = + + 
 
 + + 
 

                     (16) 

To calculate the probability of the game lasting at least M  rounds and the 
expected number of rounds in the game, we remove the absorbing state 0 to get 
the restricted transition matrix  

 

20
3
2

3 3

tr
T

t tc r

 + 
 =
 + + 
 

                        (17) 

We may now use our formulas involving T to find the probability that the game 
will last at least M  rounds as in Subsection 4.2 and the expected number of 
rounds as in Subsection 4.3. 

Numerical Examples  

In Table 4 we assume the tipsy moves by either player account for half of all 
moves 0.5t =  and 1 0.5c r t+ = − = . We then calculate the probability the cop  
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Figure 11. Distance between cop (blue double circle) and robber (red single circle) on a 
Petersen graph. 
 

 
Figure 12. Markov chain for Petersen graph. 

 
Table 4. Some survival rates and expected game durations on petersen Graph. 

Measure Proportion of Sober moves 0.5c r+ =  

Robber 0r =  0.1r =  0.2r =  0.3r =  0.4r =  0.5r =  

Cop 0.5c =  0.4c =  0.3c =  0.2c =  0.1c =  0.0c =  

( )7 1G  0.039 0.1 0.204 0.352 0.536 0.735 

( )7 2G  0.078 0.175 0.318 0.496 0.687 0.86 

( )1E  2.25 3.11 4.59 7.44 14.06 40 

( )2E  3.75 4.87 6.73 10.17 17.81 42 

 
will still be chasing the robber after 7=M  rounds based on their starting dis-
tances 1d =  or 2 and on the percentage of the sober moves allocated to the cop 
and the robber. 

We have published the accompanying SageMath code for these computations 
in Appendix A.1, so the interested reader can change these calculations to mod-
el the game for any values of , , ,r c tM  that they choose. 

7. Friendship Graphs  

As friendship graphs are not vertex-transitive, we cannot simply model the game 
on them with a Markov chain where each state is determined by the distance 
between the cop and robber, and we must treat tipsy cop moves and tipsy robber 
moves separately as the transition probabilities from state to state depend on 
who is moving. Hence, in this section the spinner we use has four distinct possi-
ble outcomes satisfying 1r cr c t t+ + + = . 

The following notation will be used to model the tipsy cop and tipsy robber 
game on friendship graphs of n triangles. The states 1e, 1cc, and 1rc all refer to 
the cop and robber being distance 1 away from each other but, 1e means both 
players are on the same outer edge, 1cc means the cop is in the center, and 1rc 
means the robber is in the center as depicted in Figure 13. 
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Figure 13. All possible states of friendship graphs of n = 2 triangles. 

 
Friendship graphs with 2,3n =  and 4 triangles are shown in Figure 14. 

Since the cop never calls off the chase on this finite graph, the cop will win 
eventually ( ) 1C d =  even if the robber is completely sober throughout. 

The Markov chain modeling the game on a friendship graph with n triangles 
is shown in Figure 15. 

From this Markov chain we derive the transition probability matrix  

 

0 0
2 2 2 2

1 0
2 2 2 2

1 0
2 2 2 2

0 0
2 2 2 2

0 0 0 0 1

c cr r

c cr r
c

c cr r
r

c cr r

t tt tr c

t tt tnt r c
n n n

P t tt tnr t c
n n n

t tt tr c

 + + + 
 

− ⋅ + + + 
 

= − + ⋅ + + 
 
 + + +
 
 
 

          (18) 

and transition matrix with absorbing state 0 removed  

0
2 2 2 2

1 0
2 2 .

1 0
2 2

0 0
2 2

c cr r

cr
c

c r
r

c r

t tt tr c

ttnt r
n nT

t tnr t
n n

t tr

 + + + 
 

− ⋅ + 
=  

− + ⋅ 
 
 + 
 

               (19) 

Sample Calculations  

In this subsection we compute the expected game times and probability of the 
game lasting through 10=M  rounds on a friendship graph with 5n =  cli-
ques. Table 5 summarizes the results. In these computations we assume that the 
cop and robber each get 50% of the moves so 0.5r cr t c t+ = + = , but we vary 
the tipsiness of the cop and robber. The code for these computations is available 
in Appendix A.4.  

8. Toroidal Grids  

A toroidal grid is the Cartesian product of two cycle graphs m nC C  and 
represents a grid that can be embedded on the surface of a torus. Since our mod-
el does not guarantee turns alternate, and the cop never calls off the chase, the 
cop will eventually win ( ) 1C d =  on any toroidal grid. 

The Markov chain for our model on a 7 × 7 toroidal grids is shown in Figure 16.  
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Figure 14. Examples of friendship graphs with 2,3,4n =  triangles with cop (blue) and 
robber (red).  
 

 
Figure 15. Markov chain for tipsy cop and tipsy robber game on friendship graphs of n 
cliques. 
 

 
Figure 16. Markov chain for a 7 × 7 toroidal grid. 

 
Table 5. Some survival rates and expected game durations on friendship graph. 

Measure Proportion of Tipsy moves 

Robber 0.1rt =  0.25rt =  0.4rt =  

Cop 0.1ct =  0.25ct =  0.4ct =  0.1ct =  0.25ct =  0.4ct =  0.1ct =  0.25ct =  0.4ct =  

( )10 2G  0.0448 0.1836 0.4300 0.0252 0.1129 0.2836 0.0143 0.0691 0.1862 

( )10 1ccG  0.0156 0.1043 0.3198 0.0076 0.0584 0.1948 0.0037 0.0326 0.1183 

( )10 1rcG  0.0337 0.1275 0.2949 0.0192 0.0791 0.1960 0.0109 0.0486 0.1291 

( )10 1eG  0.0229 0.0856 0.2167 0.0116 0.0473 0.1297 0.0056 0.0251 0.0752 

( )2E  4.628 6.914 12.09 4.093 5.697 8.668 3.689 4.893 6.874 
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Continued 

( )1E cc  2.540 4.505 9.344 2.160 3.543 6.333 1.878 2.914 4.769 

( )1E rc  3.419 4.979 8.590 3.051 4.159 6.270 2.765 3.603 5.032 

( )1E e  2.665 3.804 6.735 2.252 3.002 4.618 1.923 2.445 3.463 

 
The number of states in our Markov chain model grows considerably as the 
number of nodes in m nC C×  grows. 

Therefore,  

0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 0
4 4 4 4

0 0 0 0 0 0
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0 0 0 0 0 0 0
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4 4 4 4
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4 2 4
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(20) 

and  
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  (21) 
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Numerical Examples  

In this section we model the game on a 7 × 7 Toroidal grid with the following 
proportion of moves 0.4r = , 0.3c = , 0.3t = . Table 6 shows the probability 
of the robber evading the cop through the first 50 rounds of the game as well as 
the expected game length based on each of the players’ possible starting confi-
gurations. The SageMath code for these calculations is available to the interested 
reader in Appendix A.2. 

9. Modeling the Game Where Players Sober up over Time  

Harris et al. asked how to model a tipsy cop and drunk robber game when the 
cop is sobering up over time ([4], Question 6.1). In this section, we model the 
game where both players begin completely drunk and sober up as time passes. 
We define our probability of a tipsy move by either player t as a function of m 
rounds that have passed ( )t f m= . Additionally, we set the proportion of sober  

cop moves to be ( )1ac t
b

= −  and the proportion of sober robber moves to be 

( )1b ar t
b
−

= − , where a and b are any desired integers that determine the pro-  

portion of sober moves that is assigned to the cop and to the robber. As we as-
sume the players are sobering up as time passes, we choose to use a function f 
with the following properties:  

 ( )1 1f =                             (22) 

 ( )lim 0
m

f m
→∞

=                          (23) 

with these assumptions, the probability of surviving M  rounds, given an initial 
state d, is given by:  

 ( )
1

1ld m
m

d e T
=

 = ⋅ 
 
∏G
M

M                      (24) 

The expected game time is given by the series:  

 ( )
1

1 1
1l

n

d m
n m

E d e T
−=∞

= =

  = ⋅ ⋅  
  

∑ ∏


                  (25) 

We conclude this section with some sample calculations in tables. The code 
for the calculations is attached in Appendix A.3, so the interested reader can 
change these calculations to model the game for any values of ( ), ,a b t f m= , or 
  they choose. 

 
Table 6. Survival rates and expected durations on 7 × 7 toroidal grid. 

Measure Initial State d 

 (3,3) (3,2) (3,1) (3,0) (2,2) (2,1) (2,0) (1,1) (1,0) 

( )50 dG  0.5480 0.5307 0.4942 0.4520 0.4958 0.4376 0.3731 0.3506 0.2331 

( )E d  78.18 95.95 71.21 65.62 71.42 63.66 54.75 51.65 34.75 
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Numerical Examples  

Assuming the game is played on a cycle graph of six nodes Figure 9, its accom-
panying Markov Chain is given in Figure 10. 

Example 9.1.1. Let the tipsiness function be given by the formula  

( ) 4
3

t f m
m

= =
+

 as it is an example of a function that follows the rules stated  

above. Then, Table 7 shows the probability of the game lasting 5 rounds from 
varying starting positions and proportions of sober moves allotted to each player. 
It also shows estimates for expected game times from each starting position 
where we use  

 ( )
1

1 1
1l

n

d m
n m

E d e T
−

= =

  = ⋅  
  

∑ ∏


                    (26) 

to approximate the infinite sum in Equation (25). We choose either 1000=  
or 3000=  to approximate these values because these values of   are suf-
ficiently large to approximate the expected game time accurately to at least five 
digits as we vary the proportion of sober moves allocated to the robber. 

The expected game time for 80% was also calculated at 3000= , and found 
to be the same for at least the first five digits. It seems only at 90% and above is 

1000=  not sufficiently large. 
Example 9.1.2. Let tipsiness be the function given by the formula  

( ) 4
2 2mt f m= =

+
, because it changes exponentially and follows the rules state  

above. Then, Table 8 shows the probability of the game lasting 5 rounds from 
varying starting positions and proportions of sober moves allocated to each 
player. It also shows estimates for expected game times from each starting posi-
tion where we use  

 ( )
1

1 1
1l

n

d m
n m

E d e T
−

= =

  = ⋅  
  

∑ ∏


                    (27) 

 
Table 7. Some survival rates and expected game times on C6 when players sober up over 
time. 

Measure Percentage of Sober Moves that are Robber Moves 

4
3

t
m

=
+

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

( )5 1G  0.1393 0.1709 0.2023 0.2331 0.2630 0.2917 0.3189 0.3444 0.3681 0.3899 0.4095 

( )5 2G  0.3667 0.4078 0.4484 0.4882 0.5270 0.5646 0.6008 0.6354 0.6684 0.6995 0.7286 

( )5 3G  0.2786 0.3419 0.4047 0.4663 0.5260 0.5833 0.6378 0.6889 0.7363 0.7798 0.8190 

( )1E  3.029* 3.245* 3.530* 3.922* 4.504* 5.456* 7.281* 11.83* 30.39* 242.8** ∞ 

( )2E  4.586* 4.962* 5.456* 6.140* 7.153* 8.812* 11.99* 19.92* 52.27* 422.9** ∞ 

( )3E  5.059* 5.491* 6.059* 6.845* 8.008* 9.913* 13.56* 22.67* 59.78* 484.7** ∞ 

*Sum calculated to 1000= , ** 3000= . 
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Table 8. Survival rates and expected duration from different starting states on C6. 

Measure Percentage of Sober Moves that are Robber Moves 

4
2 2mt =

+
 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

( )5 1G  0.0381 0.0895 0.1435 0.1978 0.2505 0.3000 0.3449 0.384 0.4177 0.4445 0.4649 

( )5 2G  0.1926 0.2723 0.3511 0.4275 0.5004 0.5688 0.6317 0.6885 0.7388 0.7820 0.8181 

( )5 3G  0.0763 0.1790 0.2869 0.3956 0.5010 0.6000 0.6899 0.7688 0.8354 0.8890 0.9298 

( )1E  2.546* 2.757* 3.060* 3.531* 4.329* 5.849* 9.228* 18.68* 57.75** 283.7** ∞ 

( )2E  3.753* 4.119* 4.647* 5.467* 6.858* 9.507* 15.40* 31.90* 100.2** 496.6** ∞ 

( )3E  4.093* 4.513* 5.120* 6.062* 7.659* 10.70* 17.46* 36.36* 114.5** 566.5** ∞ 

*Sum calculated to 500= , ** 1000= . 

 
to approximate the infinite sum in Equation (25). We use either 500=  or 

1000=  to approximate these values because these values of   are suffi-
ciently large for their respective proportion of sober moves allocated to the rob-
ber to accurately approximate the expected game time to at least five digits. 

The expected game time for 70% was also calculated at 1000=  and found 
to be the same for at least five digits. However, we are certain that for the ex-
pected game time at 90% 1000=  is not sufficiently large, yet trying to cal-
culate the sum with any larger   causes the SageMath server to timeout. 

10. Modeling the Game Where Tipsiness Is a Function of  
Distance  

Mentioning that it may be more biologically realistic, Harris et al. also asked 
how to model a tipsy cop and drunk robber game where the players’ tipsiness is 
determined by the distance between them ([4], Question 6.6). In this section, we 
model the tipsy cop and robber game where the players sober up as they get 
closer to each other. This models the scenario where the cop’s ability to track the 
robber improves the closer they get, and the robber senses that the cop is on his 
trail so he moves more deliberately. The transition matrix Tδ  represents the 
stochastic matrix, where both the cop and robber sober up as they get closer to 
each other and get more tipsy as the distance between the two increases. If n  is 
the maximum distance the two can be apart on a finite graph (or the distance at 
which the cop calls off the hunt), then we assume that the function ( )dδ  has 
the following properties:  

 ( )1 0δ =                           (28) 

 ( )lim 1
d

dδ
→

=
n

                        (29) 

Additionally, we set the proportion of sober cop moves to be ( )1ac t
b

= −  and 

the proportion of sober robber moves to be ( )1b ar t
b
−

= − , where a and b are  
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any desired integers that determine what fraction of all sober moves is assigned 
to the cop and to the robber. 

10.1. Linear Increase of Tipsiness  

In this scenario, we choose to use the function ( ) 1ddδ −
=
n

, where d is the  

distance between the cop and the robber when they start the chase and n  is the 
maximum distance they can be apart; this value n  is specified to be either the 
radius of the graph on finite graphs, or the maximum specified distance before 
the cop calls off the chase on an infinite graph. The probability of the game last-
ing at least M  rounds when starting in state d is  

 ( ) 1l.M dd e Tδ= ⋅ ⋅G M                       (30) 

The expected game time is  

 ( ) ( ) 1 1l.dE d e I Tδ
−= ⋅ − ⋅                     (31) 

10.2. Exponential Increase of Tipsiness  

Now, we choose to use the function ( )
1

1

1 1.2
1 1.2

d

ddδ
−

−

−
=

+
, where d is the distance  

between the cop and the robber when they start the chase. The probability of the 
game lasting through M  rounds is given by:  

 ( ) 1lM dd e Tδ= ⋅ ⋅G M                      (32) 

The expected game time is given by:  

 ( ) ( ) 1 1ldE d e I Tδ
−= ⋅ − ⋅                    (33) 

We conclude this section with some sample calculations in tables. We have 
published the accompanying SageMath code for these computations in Appen-
dix A.5, so the interested reader can change these calculations to model the 
game for any values of , , ,m d rn  that they choose. 

10.3. Numerical Example on Cycle Graph  

Given a cycle graph of 10=n  nodes, we will have the possibilities of starting at 
distances 0 to 5 away with maximum distance 2 5= =n n . The accompanying 
Markov Chain is (again we assume that the cop always moves and the sober 
robber chooses not to move if they are furthest away from each other as noted in 
Section 5 - even nodes cycle graphs) (Figure 17). 
 

 
Figure 17. Markov chain for cycle graph C10. 
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Based on the Markov chain we get the transformation matrix based on dis-
tance Tδ   

 

1
1

2 2
2 2

3 3
3 3

4 4
4 4

5 5 5

0 0 0 0
2

0 0 0
2 2

0 0 0
2 2

0 0 0
2 2

0 0 0

tr

t tc r

t tT
c r

t tc r

c t r

δ

 + 
 
 + + 
 

=  + + 
 
 + +
 
 + 

          (34) 

Note that for each distance d, 1d d dr c t+ + = . In our model we specify what 
percentage of all sober moves ( )1 dt−  are given to the robber. 

The probability of surviving 20 rounds when starting at distance d apart 
( )20 dG  and the expected duration of the chase ( )E d  using the linear growth  

of the tipsiness ( ) 1dt dδ −
= =

n
 is shown in Table 9. 

Similarly, the probability of surviving 20 rounds when starting distance d apart 
( )20 dG  and the expected duration of the chase ( )E d  using the exponential  

growth for tipsiness ( )
1

1

1 1.2
1 1.2

d

dt dδ
−

−

−
= =

+
 are shown in Table 10. 

Based on the results in the tables the chase is longer if the tipsiness is increas-
ing exponentially and the percentage of all sober moves ( )1 dt−  are given to the 
robber is less than 50%. In the case that the percentage of all sober moves 
( )1 dt−  are given to the robber is greater than 50% the chase is longer if the tip-
siness is increasing linearly. Assuming the robber is given the choice, the robber 
should pick a strategy based on the percentage of sober moves assigned to him-if 
he gets to move more than 50% of the sober moves his tipsiness should increase  
 
Table 9. Sample calculations on C10 when tipsiness increases linearly with distance. 

Measure Percentage of Sober Moves that are Robber Moves 

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

( )20 1G  0 0.0001 0.0024 0.015 0.057 0.148 0.299 0.491 0.689 0.864 1 

( )20 2G  6E−5 0.001 0.009 0.041 0.125 0.277 0.48 0.69 0.86 0.958 1 

( )20 3G  0.0005 0.0049 0.025 0.085 0.208 0.391 0.599 0.784 0.912 0.978 1 

( )20 4G  0.0011 0.0088 0.039 0.118 0.261 0.454 0.657 0.824 0.932 0.984 1 

( )20 5G  0.0024 0.0139 0.053 0.144 0.295 0.489 0.683 0.839 0.938 0.985 1 

( )1E  1 1.29 1.81 2.78 4.77 9.25 20.58 53.89 177.7 914.8 ∞ 

( )2E  2.30 2.97 4.06 5.93 9.41 16.5 32.64 75.55 220.8 1015 ∞ 

( )3E  4.02 5.04 6.59 9.1 13.45 21.75 39.64 85.2 234.7 1036 ∞ 

( )4E  5.87 7.09 8.88 11.65 16.32 25.0 43.36 89.49 239.7 1042 ∞ 

( )5E  6.87 8.14 9.97 12.79 17.51 26.25 44.68 90.88 241.2 1044 ∞ 

https://doi.org/10.4236/ojdm.2021.113006


V. Bardenova et al. 
 

 

DOI: 10.4236/ojdm.2021.113006 82 Open Journal of Discrete Mathematics 
 

Table 10. Sample calculations on C10 when tipsiness grows exponentially with distance.  

Measure Percentage of Sober Moves that are Robber Moves 

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

( )20 1G  0 1.2E−5 0.0008 0.0093 0.049 0.152 0.325 0.532 0.726 0.881 1 

( )20 2G  4E−8 6.1E−5 0.0025 0.025 0.109 0.287 0.529 0.755 0.906 0.978 1 

( )20 3G  9E−7 0.0003 0.0072 0.0513 0.181 0.404 0.656 0.852 0.957 0.993 1 

( )20 4G  1.9E−6 0.0006 0.012 0.0741 0.234 0.477 0.722 0.891 0.972 0.997 1 

( )20 5G  8.2E−6 0.0012 0.018 0.0947 0.269 0.515 0.749 0.904 0.976 0.997 1 

( )1E  1 1.27 1.72 2.59 4.52 9.58 25.7 90.6 466.9 4825 ∞ 

( )2E  2.1 2.67 3.59 5.29 8.79 17.16 41.1 128 582.3 5360 ∞ 

( )3E  3.33 4.19 5.56 7.93 12.52 22.74 50.1 144 615 5443 ∞ 

( )4E  4.64 5.74 7.41 10.18 15.31 26.31 54.8 150.6 624.8 5459 ∞ 

( )5E  5.64 6.82 8.58 11.46 16.73 27.89 56.6 152.7 627.2 5462 ∞ 

 
linearly, otherwise (he gets to move 50% or less of all sober moves) he has a bet-
ter chance of surviving if the tipsiness changes exponentially. 

10.4. Infinite Regular Trees 

If we play the game on an infinite regular tree, and the cop calls off the hunt if 
the robber reaches a distance of n  nodes away from the cop, then the matrix P 
is an ( 1 1+ × +n n ) tridiagonal matrix with 1,1 1P = , 1, 1 1P + + =n n  and the upper  

and lower diagonal entries are 1
1, 1

k
k k k

t
P c +

+ += +
∆

 for 1 1k≤ ≤ −n , and  

1, 2 1 1
1

k k k kP t r+ + + +
∆ −

= +
∆

 for 1 1k≤ ≤ −n , and finally , 0i jP =  otherwise. To  

obtain the matrix T we remove from P the first and last rows and columns cor-
responding to both absorbing states. 

For example, on an infinite regular tree of degree ∆  with maximum speci-
fied distance 5=n , the accompanying Markov Chain is in Figure 18. Based on 
the Markov chain we get the transformation matrix based on distance Tδ   

 

1 1

2
2 2 2

3
3 3 3

4
4

10 0 0

10 0
.

10 0

0 0 0

r t

tc r t
T

t
c r t

tc

δ

∆ − + ∆ 
∆ − + + ∆ ∆=  

∆ − + + ∆ ∆
 
 + 
 ∆ 

         (35) 

Note that in this case we remove states 0 and 5 because they are absorbing. Si-
milarly in the numerical example on cycle graphs, we specify what percentage of 
all sober moves ( )1 dt−  are given to the robber. 
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10.5. Numerical Example on Infinite Regular Tree with 4∆ =   
and Maximum Distance 10n =   

The probability that the game continues for 30=M  rounds when starting dis-
tance d apart ( )30 dG  and the expected duration of the chase ( )E d  when  

4∆ =  when tipsiness increases linearly ( ) 1dt dδ −
= =

n
 is shown in Table 11. 

Note that we assume the cop calls off the chase if the distance reaches 10=n .  
Table 12 shows the probability of a game lasting 30 rounds when starting at 

distance d apart ( )30 dG  and the expected duration of the chase ( )E d  when 
the game takes place on a regular tree of degree 4∆ =  and tipsiness is modeled  
 

 
Figure 18. Markov chain for regular tree with maximum distance of 5=n .  
 
Table 11. Numerical results on infinite regular tree when tipsiness increases linearly with 
distance. 

Measure Percentage of Sober Moves that are Robber Moves 

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

( )30 1G  0 4.5E−5 0.0008 0.006 0.022 0.045 0.051 0.033 0.012 0.002 0.0002 

( )30 2G  1.4E−5 0.0003 0.0031 0.016 0.046 0.073 0.067 0.034 0.009 0.0013 0.0001 

( )30 3G  0.0002 0.0017 0.0099 0.035 0.077 0.099 0.077 0.034 0.008 0.0012 9.7E−5 

( )30 4G  0.0007 0.0042 0.0174 0.048 0.083 0.088 0.057 0.021 0.004 0.0005 3.9E−5 

( )30 5G  0.0026 0.0102 0.0303 0.063 0.089 0.08 0.046 0.016 0.003 0.0004 3.5E−5 

( )30 6G  0.0041 0.0128 0.031 0.054 0.065 0.051 0.025 0.008 0.001 0.0002 1.3E−5 

( )30 7G  0.0065 0.0161 0.0318 0.046 0.047 0.033 0.015 0.005 0.0009 0.0001 9.4E−6 

( )30 8G  0.0045 0.0102 0.0182 0.024 0.022 0.014 0.006 0.0016 0.0003 3.3E−5 2.6E−6 

( )30 9G  0.0027 0.0054 0.0086 0.01 0.009 0.005 0.002 0.0006 0.0001 1.4E−5 1.2E−6 

( )1E  1 1.29 1.82 2.86 4.75 7.3 9.58 11 11.5 11.6 11.4 

( )2E  2.2 2.88 4.09 6.21 9.38 12.6 14.3 14.2 13.2 11.8 10.4 

( )3E  3.72 4.9 6.8 9.68 13.1 15.5 15.6 14.2 12.3 10.7 9.39 

( )4E  5.64 7.29 9.62 12.5 15.15 16 14.8 12.8 10.9 9.38 8.28 

( )5E  7.81 9.61 11.77 13.9 15.19 14.7 12.8 10.8 9.17 7.99 7.11 

( )6E  9.54 10.97 12.37 13.4 13.4 12.1 10.3 8.63 7.41 6.53 5.87 

( )7E  9.75 10.44 10.92 10.9 10.3 8.99 7.58 6.44 5.61 5.01 4.55 

( )8E  7.8 7.86 7.75 7.37 6.67 5.76 4.91 4.25 3.78 3.42 3.14 

( )9E  4.11 3.99 3.79 3.51 3.14 2.73 2.37 2.11 1.91 1.75 1.63 
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Table 12. Some survival times and expected game durations on infinite regular tree of 
degree 4 when tipsiness increases exponentially with distance. 

Measure Percentage of Sober Moves that are Robber Moves 

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

( )30 1G  0 0.0004 0.0016 0.0042 0.0085 0.014 0.019 0.021 0.02 0.017 0.014 

( )30 2G  0.0014 0.0029 0.0056 0.0098 0.015 0.02 0.022 0.021 0.017 0.013 0.0089 

( )30 3G  0.0055 0.0082 0.012 0.017 0.021 0.024 0.024 0.021 0.016 0.012 0.0085 

( )30 4G  0.0066 0.0084 0.0107 0.013 0.015 0.015 0.014 0.012 0.009 0.007 0.0048 

( )30 5G  0.0073 0.0086 0.0099 0.011 0.012 0.012 0.01 0.0087 0.007 0.005 0.0039 

( )30 6G  0.0041 0.0046 0.005 0.0054 0.006 0.005 0.005 0.0039 0.003 0.002 0.0018 

( )30 7G  0.0027 0.003 0.003 0.0033 0.003 0.003 0.0027 0.0023 0.0018 0.0015 0.0012 

( )30 8G  0.001 0.001 0.001 0.0012 0.0011 0.001 0.0009 0.0008 0.0007 0.0005 0.0004 

( )30 9G  0.004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0002 0.0002 0.0002 

( )1E  1 1.47 2.22 3.32 4.8 6.6 8.55 10.5 12.1 13.5 14.5 

( )2E  3.6 4.7 6.09 7.73 9.5 11.2 12.6 13.5 13.9 13.9 13.5 

( )3E  7.41 8.53 9.71 10.9 12 12.8 13.2 13.3 13.1 12.8 12.4 

( )4E  9.85 10.5 11 11.5 11.8 12.1 12.1 11.9 11.6 11.3 11 

( )5E  9.88 10.1 10.2 10.3 10.4 10.3 10.2 10 9.81 9.6 9.4 

( )6E  8.38 8.4 8.4 8.38 8.33 8.26 8.16 8.04 7.91 7.79 7.67 

( )7E  6.33 6.31 6.28 6.25 6.21 6.15 6.09 6.02 5.96 5.89 5.83 

( )8E  4.18 4.17 4.15 4.13 4.1 4.07 4.04 4.01 3.98 3.95 3.92 

( )9E  2.07 2.06 2.05 2.05 2.04 2.03 2.02 2 1.99 1.98 1.97 

 

using the exponential function ( )
1

1

1 1.2
1 1.2

d

d dt dδ
−

−

−
= =

+
. Again we assume the cop 

calls off the chase if the distance reaches 10=n . 
Based on the results in the tables above, the robber should pick the strategy 

where the tipsiness changes exponentially, since it gives him a higher chance of 
survival and the chase lasts longer. 

11. Future Directions and Open Questions 

We end this paper by pointing out a few possible areas of future study and pos-
ing a few open questions: modeling the game on infinite grids is considerably 
more difficult than on infinite regular trees because there are multiple states for 
a given distance, and it is not immediately clear what strategy the cop should use 
to decrease distance or the robber should use to increase distance. 

1) On an infinite grid, what are the optimal strategies for the cop and robber?  
2) Who is more likely to win on an infinite grid, if both players employ their 

optimal strategies?  
3) How will the game change if the cop and the robber do not take turns, but 

instead move simultaneously?  
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Appendix 
A. SageMath Code  

The code described in the manuscript is provided in this appendix. 

A.1. SageMath Code for Petersen Graph  
var ('c,t,M,i,p')  
#####################################################  
def check_rt(r,t):  
 check=1  
 if r<0:  
  check=0  
  print('r cannot be negative')  
 if t<0:  
  check=0  
  print('t cannot be negative')  
 if t+r>1:  
  check=0  
  print('r+t cannot be greater than 1')  
 return check  
#####################################################  
def define_P(n=4): #default n=4 can be changed later  
 L=[]  
 for i in range(n+1):  
  L.append([])  
  for j in range(n+1):  
   L[i].append(0)  
 L[0][0]=1  
 L[−1][−1]=1  
 for i in range(1,n):  
  L[i][i+1]=r+(2*t/3)  
 for i in range(1,n):  
  L[i][i−1] =c+t/3  
 L[n][n]=r+(2*t/3)  
 L[n][n−1]=c+t/3  
 M=matrix(L)  
 return M  
#####################################################  
def check_define_P(n=4):  
 if check_rt(r,t) ==1:  
 return define_P(n)  
#####################################################  
M=7 #number of rounds  
r=.30  
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t=.40  
c=1−t−r  
n=10 #default n=4 can be changed here  
check_define_P(n) 
#####################################################  
def define_T(n):  
 P=define_P(n)  
 T=P.submatrix(1,1,n,n)  
 return T  
##################################################### 
P=define_P(n)  
print(P)  
print() 
T=define_T(n)  
print(T)  
print() 
I = identity_matrix(n)  
print(I) 
one=[]  
for i in range(n):  
 one.append(1)  
N=vector(one) 
print(N) 
print('c=',c,'r=',r)  
for d in range(1,n+1):  
 e_d = I.column(d−1)  
 print('d=',d,'n=',n,'M=',M)  
 G = e_d*(T^M)*N  
 print('Surv. prob. of M rounds from')  
 print('distance', d, 'is', G)  
 E = e_d*((I−T)^(−1))*N  
 print('Expected number of rounds from')  
 print('distance', d, 'is', E)  
 print()  

A.2. SageMath Code for 7 × 7 Toroidal Grid  
var('r,t,c')  
r=0.4  
# Proportion of moves that are sober robber moves.  
c=0.3  
# Proportion of moves that are sober cop moves.  
t=0.3  
# Proportion of moves that are tipsy moves by  
# either player.  
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M=50  
# Number of rounds you want the robber to survive.  
#####################################################  
if c+r+t != 1:          # 
 print('Make sure your probabilities sum to 1:')  # 
 print('Sum = ' +'t+r+c' + ' = 1 ?')     # 
#####################################################  
else:  
 v=vector([1,1,1,1,1,1,1,1,1])  
 a=vector([1,0,0,0,0,0,0,0,0]) #starting state (3,3)  
 b=vector([0,1,0,0,0,0,0,0,0]) #starting state (3,2)  
 d=vector([0,0,1,0,0,0,0,0,0]) #starting state (3,1)  
 e=vector([0,0,0,1,0,0,0,0,0]) #starting state (3,0)  
 f=vector([0,0,0,0,1,0,0,0,0]) #starting state (2,2)  
 g=vector([0,0,0,0,0,1,0,0,0]) #starting state (2,1)  
 h=vector([0,0,0,0,0,0,1,0,0]) #starting state (2,0)  
 i=vector([0,0,0,0,0,0,0,1,0]) #starting state (1,1)  
 j=vector([0,0,0,0,0,0,0,0,1]) #starting state (1,0)  
 T=matrix([[r+t/2,c+t/2,0,0,0,0,0,0,0],  
   [r+t/4,t/4,t/4,0,c+t/4,0,0,0,0],  
   [0,r+t/4,t/4,t/4,0,c+t/4,0,0,0],  
   [0,0,r+t/2,t/4,0,0,c+t/4,0,0],  
   [0,r+t/2,0,0,0,c+t/2,0,0,0],  
   [0,0,r+t/4,0,t/4,0,t/4,c+t/4,0],  
   [0,0,0,r+t/4,0,t/2,0,0,c+t/4],  
   [0,0,0,0,0,r+t/2,0,0,c+t/2],  
   [0,0,0,0,0,0,r+t/4,t/2,0]])  
 G=vector((T^M)*v)  
 E=vector((1−T).inverse()*v)  
 print('G_'+'M'+'(3,3)=',G*a)  
 print('G_'+'M'+'(3,2)=',G*b)  
 print('G_'+'M'+'(3,1)=',G*d)  
 print('G_'+'M'+'(3,0)=',G*e)  
 print('G_'+'M'+'(2,2)=',G*f)  
 print('G_'+'M'+'(2,1)=',G*g)  
 print('G_'+'M'+'(2,0)=',G*h)  
 print('G_'+'M'+'(1,1)=',G*i)  
 print('G_'+'M'+'(1,0)=',G*j)  
 print('E(3,3)=',E*a)  
 print('E(3,2)=',E*b)  
 print('E(3,1)=',E*d)  
 print('E(3,0)=',E*e)  
 print('E(2,2)=',E*f)  
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 print('E(2,1)=',E*g)  
 print('E(2,0)=',E*h)  
 print('E(1,1)=',E*i)  
 print('E(1,0)=',E*j)  

A.3. SageMath Code for Cycle Graphs Sobering up Over Time  
from sage.calculus.calculus import symbolic_sum  
var ('t,M,N,i,p')  
M=5 #number of rounds you want the robber to survive  
N=1000 #Nth partial sum of infinite sum.  
# Higher is more accurate but takes longer.  
k=9 #number of nodes in cycle graph  
p=0.51 #proportion of sober moves allocated to robber  
#####################################################  
# if p > 0.8 then N should be at at least 3000.    #  
# otherwise N=1000 is sufficient.      #  
##################################################### 
If k%2==0:  
  n=(k/2)  
else: n=(k−1)/2 
def define_P(n,p,t):  
 L=[]  
 for i in range(n+1):  
  L.append([])  
  for j in range(n+1):  
   L[i].append(0)  
 L[0][0]=1  
 L[−1][−1]=1  
 for i in range(1,n):  
  L[i][i+1]=p*(1−t) +t/2  
  # transition probability to increase distance  
  L[i][i−1]=(1−p)*(1−t) + t/2  
  # transition probability to decrease distance  
 if k%2==0: #i f cycgraph i s even 
  L[n][n]= p*(1−t)  
  L[n][n−1]=(1−p)*(1−t)+t  
 else: #if cycle graph is odd  
  L[n][n]=p*(1−t)+t/2  
  L[n][n−1]=(1−p)*(1−t)+t/2  
 M=matrix(L)  
 return M  
##################################################### 
def define_T(n,p,t):  
 P=define_P(n,p,t)  
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 T=P.submatrix(1,1,n,n)  
 return T 
#####################################################  
# ouptut: n length vector of all ones  
#####################################################  
def one_vector(n):  
 L=[]  
 for i in range(n):  
  L.append(1)  
 return vector(L)  
#####################################################  
def position_vector(n,d):  
 L=[]  
 for i in range(n):  
  L.append(0)  
 L[d]=1  
 return vector(L)  
##################################################### 
T=define_T(n,p,t)  
#print T  
#Uncomment the line above to see Transition Matrix 
print('Calculating...')  
x=vector(prod(define_T(n,p,4/(3+m))  
for m in range (1,M+1))*one_vector(n))  
y=vector(sum(prod(define_T(n,p,4/(3+m))  
for m in range (1,q))  
for q in range (1,N+1))*one_vector(n))  
print('done:') 
for i in range (0,n):  
 print('G_'+'M'+'('+'i+1'+')=',x*position_vector(n,i))  
 print('E('+'i+1'+')=',y*position_vector(n,i)) 
#####################################################  

A.4. SageMath Code for Friendship Graphs  
var('r,tr,tc,n,c')  
tr=.4 #Probability of a tipsy robber move  
tc=.4 #Probability of a tipsy cop move  
r=.1 #Probability of a sober robber move  
c=.1 #Probability of a sober cop move  
n=6 #Number of triangles  
M=5 #Number of rounds the game lasts  
#####################################################  
if tc+tr+r+c != 1:         #  
 print('Make sure your probabilities sum to 1:')  #  
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 print('Sum = '+'tc+tr+r+c' + ' = 1 ?')    #  
#####################################################  
else:  
 T=matrix([[r+tc/2+tr/2,c+tc/2,tr/2,0],  
   [tc*((n−1)/n),r+tr/2,0,tc/(2*n)],  
   [r+tr*((n−1)/n),0,tc/2,tr/(2*n)],  
   [0,tc/2,r+tr/2,0]])  
 v=vector([1,1,1,1])  
 a=vector([1,0,0,0]) #starting state 2  
 b=vector([0,1,0,0]) #starting state 1cc  
 c=vector([0,0,1,0]) #starting state 1rc  
 d=vector([0,0,0,1]) #starting state 1e  
 E=vector((matrix.identity(4)−T).inverse()*v) 
#################################################### 
 print('G_'+'M'+'(2)=',a*T^M*v)  
 print('G_'+'M'+'(1cc)=',b*T^M*v)  
 print('G_'+'M'+'(1rc)=',c*T^M*v)  
 print('G_'+'M'+'(1e)=',d*T^M*v)  
 print('E(2)=',E*a)  
 print('E(1cc)=',E*b)  
 print('E(1rc)=',E*c)  
 print('E(1e)=',E*d)  

A.5. SageMath Code for Regular Tree with Exponential Change of  
Tipsiness as a Function of Distance  

var('c,t,M,i,p')  
M=30 #number of rounds you want the robber to survive  
#c=1−t−c #proportion of sober cop moves  
#r—proportion of sober robber moves  
#t—proportion of tipsy moves, changes with distance  
#D—distance between cop and robber when they start  
n=10#maximum distance between cop and robber  
delta=4  
p=1 #proportion of sober moves allocated to robber 
######################################################  
# input: n is maximum distance between cop and robber  
# before calling off chase # input: p is proportion of sober moves allocated to  
# robber  
# output: transition matrix (including 2 absorbing  
# states)  
######################################################  
def define_P(n,p):  
 L=[]  
 for i in range(n+1):  
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  L.append([])  
  for j in range(n+1):  
   L[i].append(0)  
 T=[0]  
 R=[0]  
 C=[0]  
 L[0][0]=1  
 L[−1][−1]=1  
 for D in range(1,n+1):  
  s=1 − (1.2)^(1−D) q=1 + (1.2)^(1−D)  
  T.append(s/q) #tipsiness based on distance  
  R.append(p*(1−T[D]))  
  # Percentage of sober moves are robber moves  
  # as a function of t based on distance  
  C.append(1−T[D]−R[D])  
 print('T=',T)  
 print('R=',R)  
 print('C=',C)  
 for i in range(1,n):  
  L[i][i+1]=R[i]+(T[i]*((delta − 1)/delta))  
  # transition probability to increase distance  
  L[i][i−1] = C[i]+T[i]*(1/delta)  
  # transition probability to decrease distance  
 L[n][n−1]=0  
 L[n][n]=1  
 M=matrix(L)  
 return M  
###################################################### 
######################################################  
# input: n is maximum distance between cop and robber  
# before calling off chase  
# input: p is proportion of sober moves allocated to  
# robber  
# output: transition matrix (without absorbing states)  
######################################################  
def define_T(n,p):  
 P=define_P(n,p)  
 T=P.submatrix(1,1,n−1,n−1)  
 return T  
###################################################### 
######################################################  
# input: n the maximum distance between cop and robber  
# before calling off chase  
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# ouptut: n−2 length vector of all ones  
######################################################  
def one_vector(n):  
 L=[]  
 for i in range(n−1):  
  L.append(1)  
 return vector(L)  
###################################################### 
######################################################  
# input: n the maximum distance between cop and robber  
# before calling off chase  
# input: d such that d+1 is starting distance  
# between cop and robber  
######################################################  
def position_vector(n,d):  
 L=[]  
 for i in range(n−1):  
  L.append(0)  
 L[d]=1  
 return vector(L)  
###################################################### 
P=define_P(n,p)  
T=define_T(n,p) 
one= one_vector(n) 
print() print('G_d is probability of surviving', M,)  
print('rounds starting at distance d.')  
print('E_d is expected game length from distance d:') 
print()  
for d in range(n−1):  
 print('starting distance d=', d+1)  
 e=position_vector(n,d)  
 G_d=e*(T^M)*one  
 print('G_d=', float(G_d))  
 E_d=e*((1−T).inverse())*one  
 print('E_d=', float(E_d))  
 print() 
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