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Abstract 
In this paper, we study a single server queueing system with Coxian-2 service.  
In Particular, we study M/C-2/M/1 queue with Coxian-2 service and expo-
nential vacation. We assume that units (customers) arrive at the system one 
by one in a Poisson process and the server provides one-by-one service based 
on first in first out (FIFO) rule. We obtained the steady state queue size dis-
tributions in terms of the probability generating functions, the average num-
ber of customers and their average waiting time in the system as well as in the 
queue. 
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1. Introduction 

In queueing theory we study situations where units of some kind arrive at a ser-
vice facility for receiving service, some of the units having to wait for service, 
and go out after service. A queue or a waiting line develops when the service fa-
cility cannot deal with the number of units requiring service. 

A system is generally defined as something that has an input, output and 
transformation process, which changes the input into the output. The study of a 
queuing system provides us with some characteristics that can be used to meas-
ure the performance of the system, like the proportion of time the service chan-
nel is idle, the proportion of time the service channel is busy and the average 
waiting time of a customer. Using these and similar measures one can predict 
what will happen if certain changes are made in the components of the system. 

For many queueing systems the queue discipline that is used is first in, first 
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out “FIFO”. Other queue disciplines are last in, first out “LIFO” or there could 
be a priority service as is common in hospital emergency cases. In this paper we 
assume FIFO queue discipline. 

Coxian-2 Distribution 

A random variable X is said to have a Coxian-2 distribution if X can be  

represented by 1 2
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with probability 1

X X
X

X
b

b
+

=
−





 

where 1X  and 2X  are independent random variables having exponential  
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The probability density function of the Coxian-2 distribution random variable  

X is given by ( )
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where ( )1 1 1 21p bµ µ µ= − −  if 1 2µ µ≠  and 1 1p b= −  if 1 2µ µ= . 
For more details see Tijms [1]. 
In recent years, vacation queues have been developed as an important area of 

queueing theory. In classical queueing theory it was assumed that the server is 
always available in the system. However, this is not true in many real life situa-
tions. In many queueing systems such as the large production systems, computer 
systems or communication networks, there may be a need to stop the system 
from time to time for routine maintenance or for overhauling. Recently many 
researchers including Crammer [2], Doshi [3], Keilson and Servi [4], Shanthi-
kumar [5], Madan and Saleh [6] [7] and Madan, Abu-Dayyeh and Tayyan [8] 
have studied some such queueing systems with server vacations. 

In this paper we study the M/C-2/M/1 queue with Poisson arrivals Coxian-2 
service and exponential vacation. Whenever a customer takes a service, his ser-
vice time is a random variable distributed as Coxian-2. Further, we assume that 
after every service the server may take a vacation of random length with proba-
bility p or may continue the next service with probability (1-p). Whenever the 
server takes a vacation, his vacation time is distributed exponentially. We have 
obtained time-dependent as well as steady state queue size distribution. In addi-
tion, for the steady state we find the mean queue size, the mean system size and 
the mean waiting time of a customer.  

2. Assumptions, Definitions and Equations Governing the  
System 

In this work we assume that  
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1) Customers arrive to the system in a Poisson pattern with mean arrival rate 
λ . 

2) Phase-k service is exponential with mean service time 1

kµ
, 1, 2k = . 

3) The server’s vacation period has an exponential distribution with mean  

vacation time 1
β

. 

4) All random variables involved in the system such as the inter-arrival times 
of customers, the service times of the customers and the vacation times of the 
server are independent of each other. 

Also we define. 
( )k

n tΡ : - Probability that at time t there are n units (customers) in the queue 
excluding one unit in phase-k service, 1,2k = ; 0,1,2,n =   

( )Q t : - Probability that at time t there is no unit in the queue and the server 
is idle. 

( )nV t : - Probability that at time t there are n units in the queue and the server 
is on vacation. 

p: - Probability that the server takes a vacation after completion of service. 
 

 
 

Then we have the following set of equations:  
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( ) ( )( ) ( )( )( )( )( )
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1
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In order to give a detailed reasoning needed to get the above equations, we 
shall explain how Equation (1) has been obtained. We connect the system prob-
abilities at time t with those at time t + Δt by considering ( )1

n t tΡ + ∆  which 
means the probability that there are n units at time t + Δt excluding one unit in 
phase-1 of the service. Then we have the following four mutually exclusive cases: 

1) At time t, there are n units in the queue excluding one unit in phase-1 ser-
vice and there is no arrival and no service completion during ( ],t t t+ ∆ . This 
case has the joint probability ( )( )1

1( ) 1 1n t t tλ µΡ − ∆ − ∆ . 
2) At time t, there are n − 1 units in the queue excluding one unit in phase-1 

service and there is one arrival and no service completion during ( ],t t t+ ∆ . 
This case has the joint probability ( )( )( )1

1 11n t t tλ µ−Ρ ∆ − ∆ . 
3) At time t, there are n + 1 units in the queue excluding one unit in phase-1 

service and there is no arrival, one service completion during ( ],t t t+ ∆  and the 
customer decides not to take phase-2 of service, also the server doesn’t take va-
cation with probability (1-p). This case has the joint probability  

( )( )( )( )( )1
1 11 1 1n t t b t pλ µ+Ρ − ∆ − ∆ − . 

4) At time t, there are n + 1 units in the queue excluding one unit in phase-2 
service and there is no arrival, one service completion during ( ],t t t+ ∆ , and the 
server does not take vacation with probability (1-p). This case has the joint 
probability ( )( )( )( )2

1 21 1n t t t pλ µ+Ρ − ∆ ∆ − . 
5) At time t, there are n + 1 units in the queue and the server is on vacation, 

and no arrival, one vacation complete during ( ],t t t+ ∆ . This case has the joint 
probability ( )( )1 1nV t t tλ β+ − ∆ ∆ . 

After rearranging the terms in the above equations and letting 0t∆ →  we 
obtain the following set of differential equations: 
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( ) ( ) ( )

1 1 1 1
1 1 1 1

2
2 1 1

d 1 1
d

1 , 1

n n n n

n n

t t t b p t
t

p t V t n

λ µ λ µ

µ β

− +

+ +

Ρ = − + Ρ + Ρ + − − Ρ

+ − Ρ + ≥
      (8-1) 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1 1
0 1 0 1 1

2
2 1 1

d 1 1
d

1 ,

t t b p t
t

p t V t Q t

λ µ µ

µ β λ

Ρ = − + Ρ + − − Ρ

+ − Ρ + +
          (8-2) 

( ) ( ) ( ) ( ) ( )2 2 2 1
2 1 1

d , 1
d n n n nt t t b t n

t
λ µ λ µ−Ρ = − + Ρ + Ρ + Ρ ≥        (8-3) 

( ) ( ) ( ) ( )2 2 1
0 2 0 1 0

d ,
d

t t b t
t

λ µ µΡ = − + Ρ + Ρ               (8-4) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1
1 2 1

d 1 , 1
d n n n n nV t V t V t p t b p t n
t

λ β λ µ µ−= − + + + Ρ + − Ρ ≥  (8-5) 

( ) ( ) ( ) ( ) ( ) ( )2 1
0 0 2 0 1 0

d 1 ,
d

V t V t p t b p t
t

λ β µ µ= − + + Ρ + − Ρ         (8-6) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 2
1 0 2 0 0

d 1 1 1 .
d

Q t Q t b p t p t V t
t

λ µ µ β= − + − − Ρ + − Ρ +    (8-7) 

https://doi.org/10.4236/ojapps.2021.116056


Z. R. Al-Rawi, K. M. S. Al Shboul 
 

 

DOI: 10.4236/ojapps.2021.116056 770 Open Journal of Applied Sciences 
 

3. Time Dependent Solution 

Assuming that initially there are no customers in the system and the server is 
idle, we have the following initial conditions: 

( )0 0, 1,2k
n k =Ρ = , ( )0 0, 0nV n= ∀ ≥ , ( )0 1Q =              (9) 

Now by taking Laplace transformation of Equations [(8-1)-(8-7)] and using 
(9) we get the following: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
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( ) ( ) ( ) ( )*2 *2 *1
2 1 1 , 1n n ns s s b s nλ µ λ µ−+ + Ρ = Ρ + Ρ ≥          (10-3) 

( ) ( ) ( )*2 *1
2 0 1 0s s b sλ µ µ+ + Ρ = Ρ                 (10-4) 

( ) ( ) ( ) ( ) ( ) ( )* * *2 *1
1 2 11 , 1n n n ns V s V s p s p b s nλ β λ µ µ−+ + = + Ρ + − Ρ ≥   (10-5) 

( ) ( ) ( ) ( ) ( )* *2 *1
0 2 0 1 01s V s p s p b sλ β µ µ+ + = Ρ + − Ρ         (10-6) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )* *1 *2 *
1 0 2 0 01 1 1 1s Q s b p s p s V sλ µ µ β+ = − − Ρ + − Ρ + +  (10-7) 

Next, we define the following probability generating functions in terms of their 
Laplace transforms:  
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where z is a dummy variable and 1z ≤ . 
Multiply Equation (10-1) by 1nz +  and sum over n = 1 to ∞, and multiply 

(10-2) by z, then add them together we get  
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And by using the terms defined by (11) and (12), we obtain  
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 (13) 

Now using Equations (10-7), (13) can be re-written as  
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( ) ( ) ( )( )
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Next multiply (10-3) by zn and sum over n = 1 to ∞, and (10-4) to the result. 
Thus we have  

( )( ) ( )*2 *1
2 1, ,z s s z b z sλ µ λ µΡ + + − = Ρ                (15) 

Then multiplying Equation (10-5) by zn and summing over n = 1 to ∞, then 
adding the result to (10-6) will give: 
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Now, on solving Equations (14)-(16) using Cramer’s rule we get: 
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4. Steady State Solution 

Using the well known property of L.T. 

( ) ( )*

0
lim lim
s t

sQ s Q Q t
→ →∞

= = , 

We obtain from (20) 
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Then, for the steady state we have: 
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https://doi.org/10.4236/ojapps.2021.116056


Z. R. Al-Rawi, K. M. S. Al Shboul 
 

 

DOI: 10.4236/ojapps.2021.116056 772 Open Journal of Applied Sciences 
 

( ) ( ) ( )( )
( )

12 *2

0
lim ,
s

b Q z z
z s z s
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→
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Ρ = Ρ =          (23) 
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where ( )D z  is given in (21). 
In order to find the only unknown probability Q, we shall use the normalizing 

condition. 

( ) ( ) ( )1 21 1 1 1Q V+ Ρ + Ρ + =                    (25) 

Now since each of ( ) ( )1 2,z zΡ Ρ  and ( )V z  in (22)-(24) is indeterminate of  

the zero
zero

 form at z = 1, we use L’Hospital’s rule and obtain 
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1
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− − −

         (28) 

Using (26)-(28) in (25) and simplifying we obtain  

1 2 2 1 1 2

1 2

b pQ µ µ β λµ β λ µ β λ µ µ
µ µ β

− − −
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which on simplifying gives 

1 2 1 2

1 1 1b p b pQ λ λ λ λ λ λ ρ
µ µ β µ µ β

 
= − − − = − + + = − 

 
          (30) 

and so  

1 2

b pλ λ λρ
µ µ β

= + + ,                       (31) 

where ρ  is the utilization factor of the system. 
We may note that when 0p = , (no vacation), 

1 2

1 bQ λ λ
µ µ

 
= − + 

 
                       (32) 

Further, when 0, 1p b= =  (no vacation, two phase service),  
then  

1 2

1Q λ λ
µ µ

 
= − + 

 
                       (33) 

And when 0, 0p b= =  (no vacation, no second phase service) 

1

1Q λ
µ

= −                           (34) 

Note that (34) is a known result of the ordinary M/M/1 queue. 
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5. Mean Number in the System and Mean Waiting Time 

In this section we shall find the mean number of customers in the system and 
their mean waiting time. 

We define: 
L: - The average number in the system. 
Lq: - The average number in the queue (mean queue length). 
W: - The mean waiting time in the system. 
Wq: - The mean waiting time in the queue. 
Let ( ) ( ) ( ) ( )1 2z z z V zΡ = Ρ + Ρ +  define the p.g.f. of the number of units 

present in the queue without regard to the state of the server. Then we write  

( ) ( )
( )

N z
z

D z
Ρ =  

where 
( ) ( )( )( ) ( )( )

( ) ( ) ( )
2 1

1 2 1 2

1 1

1 1

N z Q z z z b z z

z bp p b z

λ µ λ λ β λ λ µ β λ λ

µ µ µ µ λ λ

= − + − + − + − + −
+ − + − + −  

 

and ( )D z  is given by (21). 

Now since ( )| 1

d 0
d 0q zL P z

z =
= =  Then we use L’Hospital’s rule twice to get  

( ) ( ) ( ) ( )
( ) 2

1 1 1 1

2 1
q

D N N D
L

D

′ ′′ ′ ′′−
=

′  
 

where after some algebra and simplification, 

( ) [ ]2 1 1 21N Q b pλ µ β µ β µ µ′ = + +  

( ) [ ]1 1 1 21 2 2 2 2 2N Q bp p bλ λ µ λβ λ µ λ µ λµ′′ = − − − −  

( ) 1 2 1 1 2 21D b pµ µ β λ µ β λ µ µ λµ β′ = − − −  

( ) 2 2
1 2 1 2 2

2 2 2
1 1 1

1 2 2 2 2 2

2 2 2

D

p b bp

λ β λµ µ λµ β λ µ λµ β

λ µ λ µ λ µ

′′ = − − + −

+ + −
 

Further qL L ρ= +  

where 
1 2

b pλ λ λρ
µ µ β

= + +  

LW
λ

=  and so .q
q

L
W

λ
=  
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