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Abstract 

Analytic atlases on n  can be easily defined making it an n-dimensional 
complex manifold. Then with the help of bi-Möbius transformations in com-
plex coordinates Abelian groups are constructed making this manifold a Lie 
group. Actions of Lie groups on differentiable manifolds are well known and 
serve different purposes. We have introduced in previous works actions of Lie 
groups on non orientable Klein surfaces. The purpose of this work is to ex-
tend those studies to non orientable n-dimensional complex manifolds. Such 
manifolds are obtained by factorizing n  with the two elements group of a 
fixed point free antianalytic involution of n . Involutions ( )h z  of this 
kind are obtained linearly by composing special Möbius transformations of 
the planes with the mapping ( ) 1k z z= − . A convenient partition of n  is 

performed which helps defining an internal operation on n h  and finally 
actions of the previously defined Lie groups on the non orientable manifold 

n h  are displayed. 
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1. Introduction 

We dealt in [1] and [2] with Lie groups of bi-Möbius transformations defined on 
 . The concept can be extended linearly to n  in the following way. 

If n∈z  then ( )1 2, , , nz z z= z , kz ∈ , 1,2, ,k n=  . Let us study the 
function : n n n× →  f  defined by  

( ) ( ) ( ) ( )( )1 1 1 2 2 2, , , , , , ,n n nf z w f z w f z w= f z w              (1) 
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where ( ) ( ) ( ), 1k k k k k k k k k k k k k k kf z w A z w a z w a z w z w A   = + − − − − +    ,  
2 1k k kA a a= − + , { }\ 0,1ka ∈ , ( ) ( ) ( ), 1 1 1 1k k k k k kf z a a z z ∞ = − + − −  ,  

( ) ( ) ( ), 1 1 1 1k k k k k kf w a a w w ∞ = − + − −  , ( ), 1 1k k kf a a∞ ∞ = − + . 
Theorem 1. Let us denote ( )1,1, ,1= 1  and ( )1 2, , , na a a= ≠a 1 ,  

( )1
1 21 ,1 , ,1 nz z z− = z . The function ( ),f z w  satisfies the following rela-

tions: 
1) ( ) ( ), ,=f z w f w z , for every , n∈z w  
2) ( ), =f z 1 z  and ( ), =f 1 w w , for every , n∈z w  
3) ( )1, − =f z z 1 , for every n∈z  
4) ( ) ( ) 11 1, ,

−− −=f z w f z w , hence ( ) ( ) 11 1, , −− − =f z w f z w , for every , n∈z w  
5) ( )( ) ( )( ), , , ,=f u f v w f f u v w  for every , , n∈u v w  
6) ( ) ( ), ,= =f z a f a w a  and ( ) ( )1 1 1, ,− − −= =f z a f a w a  for every , , n∈z w a . 

Moreover, ( ), =f z w a  only if =z a  or =w a  and ( ) 1, −=f z w a  only if  
1−=z a  or 1−=w a . 

It results that the composition law ( ),=z w f z w  defines a structure of Ab-
elian group on n  with the unit element 1  and 1−z  the inverse element of 
z .  

Proof. The proof requires only elementary computation. For (5) it is enough 
to show that ( )( ) ( )( ), , , ,k k k k k k k k k kf u f v w f f u v w=  for arbitrary 1,2, ,k n=   
and this results again after an elementary (although a little more tedious) com-
putation. The relation (6) shows that by removing the elements =z a  and 1−=z a  
we obtain a subgroup aG  of this group. The functions  

( ) ( ) ( )
( ) { }

1
, \ ,1

1k

k k k k k k
z k k k k

k k k k k k

A z a w a z
g w z a a

a z w A a z
− − −

= ∈
− + −

        (2) 

are Möbius transformations, since ( )( ) ( )22 1 0k k k k k k k kA z a A a z a z− − + − ≠  as 
long as k kz a≠  and 1k kz a≠ , which has been postulated. Moreover, due to 
the fact that 

kzg  are injective and taking into account Theorem 1 (6),  
( )

kz k kg w a=  if and only if k kw a=  and ( ) 1
kz k kg w a=  if and only if  

1k kw a= . These Möbius transformations induce transformations of n  de-
fined by 

( ) ( ) ( ) ( )( )1 21 2, , ,
nz z z ng w g w g w= zg w               (3) 

 
Theorem 2. The set of transformations { }{ }1| \ ,n −= ∈zG g z a a  endowed 

with the composition law 

× =
z zg g gζ ζ                          (4) 

is an Abelian group having the identity element 1g  and such that the inverse 
element of zg  is 1−z

g . 
This group is isomorphic with aG , the isomorphism being given by the 

mapping ( )χ =zg z . It makes G  a Lie group with analytic structure as n-di- 
mensional complex differentiable manifold.  

Proof. Indeed, if { }1, \ ,n −∈z a aζ , then by Theorem 1 (6) { }1\ ,n −∈ z a aζ , 
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hence × = ∈
z zg g g Gζ ζ . 

The commutativity results from: ζ× = = = ×
 z z z zg g g g g gζ ζ ζ . 

The identity element is 1g , since × = =
z 1 z 1 zg g g g . 

The composition law is associative since:  
( ) ( )× × = × = = = × = × ×

     u v w u v w u (v w) (u v) w u v w u v wg g g g g g g g g g g g . 
Finally, the inverse element of zg  is 1−z

g  since 1 1− −× = =


z 1z z z
g g g g  for 

every n∈z . 
It is obvious that the mapping χ  is bijective. Since ( )

kz kg w  are analytic 
functions in { }\ ,1k ka a , the function ( )zg w  is analytic in { }1\ ,n − a a . 
Obviously, aG  as complex n-dimensional manifold has an analytic structure and 
then the isomorphism χ  makes from G  a Lie group with analytic structure as 
complex n-dimensional manifold.                                     

We used [3] [4] [5] for the basic knowledge about Lie groups and their ac-
tions. 

The actions by left and right translations of G  on itself are defined as: 
( ),L =

z w z wg g g , respectively ( ) 1,R −=


z w w z
g g g . 

Theorem 1 implies that G  acts freely and transitively on itself by left and 
right translations. 

2. Discrete Subgroups of G 

Let n∈z  be an arbitrary element and for every k ∈  let us denote 
( ) ( )1k k+ = z z z                        (5) 

where ( )0 =z 1  and ( )1 =z z . 
Then, for every ,j k ∈  we have ( ) ( ) ( )j k j k+=z z z  and using the formula 

(4), ( ) ( ) ( )j k j k+× =
z z z

g g g  for every { }1\ ,n −∈z a a , in particular  

( ) ( ) ( )0k k z−× = = 1z z
g g g g  which is the identity element in G . It results that the 
group zg  generated by zg  is a subgroup of G . By Theorem 1 (2) we have 
that ( ) ( )1k k+ =z z  only if =z 1 , hence for every 0k ≠  we have ( ) ( )1k k+ ≠

z z
g g  

and since for every j∈ , ≠z a  implies ( )j ≠z a  then for 0k ≠  and 0j ≠ , 
we have ( ) ( )k j k+ ≠

z z
g g , therefore the elements of zg  are all distinct.  

Theorem 3. For every { }1\ ,n −∈z a a , the group zg  generated by zg  is 
a discrete subgroup of G . 

Proof. The case of =z 1  is trivial. Suppose that for a given ≠z 1  we would 
have ( )lim kk→∞ = ∈

z
g g G  then ( ) ( )1lim limk kk k+→∞ →∞= = × = ×z zz z

g g g g g g ,  
which means that =z 1g g , contrary to the assumption.                   

Corollary 1. For every { }\ ,n∈z a 1 a  the subgroup zg  acts freely and 
properly discontinuously on G  by left and by right translations. 

3. Antianalytic Involutions of n  

Let 1 2, , , kn n n  be a non-empty subsequence of 1,2, , n  and let 

( ) ( )1 2 1 21 , , , , , , , , , .j j j k j j j kh z z j n n n h z z j n n n= − = = ≠          (6) 

Then the mapping : n n→ h  defined by 
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( ) ( ) ( ) ( )( )1 1 2 2, , , n nh z h z h z= h z                  (7) 

is a fixed point free involution of n  in the sense that some of the mappings 

( )j jh z  are fixed point free involutions of  , while the others are the identity 
mapping. Then, it is true for h  itself that for every n∈z  we have ( )( ) =h h z z . 
Moreover, there is no ( )1 2, , , n

nz z z= ∈ z  for which ( ) =h z z , since this 
would imply ( )j j jh z z=  for every j and if 1 2, , , kj n n n=   this would mean 

2
1jz = − , which is absurd. Since 1 2, , , ,j kh j n n n=   are antianalytic self map-

pings of  , we will say that h  is antianalytic. 
Let us notice that the functions h  of the form we just listed are not the only 

antianalytic involutions of n . If for a∈ , 1a <  and α ∈  we take the 
Möbius transformation ( ) e

1
i z aM z

az
α −

=
−

 which maps the unit disc onto itself, 
the unit circle onto itself and the exterior of the unit disc onto itself, we can 
prove: 

Theorem 4. The function ( )1M h M z−
  , where ( )( ) ( )1h M z M z= − , is a 

fixed point free antianalytic involution of  . 
Proof. We have that  

( )( ) 1ei azh M z
z a

α −
= −

−
                     (8) 

( )

( )( )( ) ( )( )
( )( )

( )
( )

1

1

2

2

e ,
e

e
e

1 1e e e e

2 1

1 2

i

i

i

i

i i i i

w aM w
aw

h M z a
M h M z

ah M z

az aza a
z a z a

az a

a z a

α

α

α

α

α α α α

−

−

+
=

+
+

=
+

− −   = − + − +   − −   

− +
=

+ −

       (9) 

( )
( )

( )
2

1
2

2 1

1 2

az a
M h M z

a z a
−

− +
=

+ −
                   (10) 

which shows that ( )1M h M z−
   is antianalytic, since its complex conjugate is 

analytic. The equality ( )1M h M z z− =   implies ( )( ) ( )h M z M z= , which is 
impossible since h is fixed point free, hence ( )1M h M z−

   is fixed point free. 
Finally, 

( ) ( ) ( )
( )

( )

1 1 1 1

1

1

M h M z M h M z M h M M h M z

M h h M z

M M z z

− − − −

−

−

    =   
=

= =

         

  



   (11) 

showing that ( )1M h M z−
   is an involution. 

We keep the notation h  for any antianalytic involution of n  constructed 
with the functions of this type by the method of the previous paragraph. 

A given antianalytic involution h  and the identity mapping of n  form a 
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group of transformations h  of n .                                
Theorem 5. The quotient space n h  can be endowed with a differentia-

ble manifold structure, so that it becomes a non orientable differentiable mani-
fold. 

Proof. Indeed, an analytic atlas can be created on n  such that the local 
chart for any point n∈z  is the identity on n . Next, if for a  

( )1 2, , , nw w w= w  we have jw = ∞  when 1 2, , , kj n n n=   local charts ( ),ϕU  
can be used, where { }\n= U ζ  with j jwζ =  for 1 2, , , kj n n n=   and  

0jζ =  otherwise and ( )j j jz zϕ =  when 1 2, , , kj n n n=   and ( ) 1j j jz zϕ =  
otherwise. Obviously, n  with such an atlas is a differentiable manifold for 
which every change of chart is a complex analytic function. The projection func-
tion : n nπ → h  , by which we have ( ) ( )( )π π=z h z  for every n∈z , 
induces a differentiable manifold structure on n h . Indeed, to every chart 
( ),ϕU  on n  corresponds a chart ( ),ψU  on n h , where 1ψ ϕ π −=  U  and 
if ( )2 1=U h U  then 

1 2

1π π − =U U h , hence  

2 1

1 1 1 1
2 1 2 1 2 1ψ ψ ϕ π π ϕ ϕ ϕ− − − −= =     U U h . This structure is no more analytic 

since every change of charts 1
2 1ϕ ϕ−
 h  is antianalytic. However, it is harmonic 

and therefore of class C∞ .                                          
Theorem 6. For any fixed point free antianalytic involution h  of n  there 

is a partition of n  into two sets H  and K  such that ∈z H  if and only if 
( )∈h z K . With the induced topology of n  the topological spaces H  and 

K , as well as n h  are homeomorphic under the projection  
( ) ( ),π =z z h z . 
Proof. We give a constructive proof. Let 1

n∈z  be arbitrary. Since h  is a 
fixed point free involution of n  we have that ( )1 1≠h z z . Then there are dis-
joint open neighborhoods 1U  of 1z  and 1V  of ( )1h z  such that 1∈z U  if 
and only if ( ) 1∈h z V . Let ( )2 1 1\n∈ z U V  be arbitrary. We infer that 
( ) ( )2 1 1\n∈ h z U V . Indeed, supposing ( )2 1∈h z U  would imply that  

( )( )2 2 1= ∈z h h z V , contrary to the hypothesis. Analogously we find a contra-
diction supposing ( )2 1∈h z V . Then there are open disjoint neighborhoods 2U  
of 2z  and 2V  of ( )2h z  such that 2∈z U  if and only if ( ) 2∈h z V . More-
over, we can take 2U  such that ( ) ( )1 2 1 2 = ∅  U U V V . In this way we can 
build two sequences of open sets ( )nU  and ( )nV  such that 

1 nn

∞

=
=


U U  
and 

1 nn

∞

=
=


V V  are disjoint and ∈z U  if and only if ( )∈h z V . To make 
sure that the process ends in a countable number of steps, we can decide to take 
all the points nz  such that their coordinates in 2n  are rational. Moreover, 
U  and V  are then maximal in the sense that ( )\n= F U V  does not 
contain any open set. The set F  with the trace atlas of n  is a complex diffe-
rentiable manifold of dimension less than n. We repeat the process for F  and 
we find that there are two relatively open maximal sets ′U  and ′V  such that 

′∈z U  if and only if ( ) ′∈h z V . Moreover, ( )\′ ′ ′= F F U V  is a complex 
differentiable manifold of dimension less than that of F  and the process con-
tinues k n≤  steps until we obtain dimension 0. Then ( )kF  is a countable set 
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such that ( )k∈z F  if and only if ( ) ( )k∈h z F . Then a partition of ( )kF  into 
( )kU  and ( )kV  such that ( )k∈z U  if and only if ( ) ( )k∈h z V  is straightfor-

ward. Let us denote ( )k′=  H U U U  and ( )k′=  K V V V . Then 
H  and K  are such that n= H K , = ∅H K  and ∈z H  if and only if 
( )∈h z K . 
It is obvious that |π H  and |π K  are one-to-one and onto functions and if the 

topology of n h  is chosen such that the projection ( )π z  is continuous, 
then the three topological spaces are homeomorphic. 

We needed this construction for the following reason. The notation  
( )( ),=z z h z  is ambiguous in the sense that on the right hand side we have an 

ordered couple of points, while in reality for the n∈ z h  the order does not 
count and there is a situation which will appear later where this fact is essential. 
Now we can decide that once H  and K  have been built, they will remain 
permanently the same and every time we meet a couple ( )( ),z h z  we have 
chosen ∈z H . It is as if we ignore occasionally the existence of K  and instead 
of n h  we work only with H . 

We can define an operation on n h  by using the composition law in n  
from the section 1. For every couple z  and w  from n h  we write  

⋅ = 
z w z w , where , ∈z w H .                                       

Theorem 7. The multiplication ⋅ z w  is an internal composition law in 
n h  with the unit element ( )( )=1 1,h 1  and 1−z , the inverse element of 
z . The multiplication is commutative but not associative and therefore this law 

does not define a structure of Lie group on n h . 
Proof. It is obvious that for every , n∈z w h , z w  is well defined and 

represents an element of n h . Moreover,  ⋅ = = = ⋅   
 z w z w w z w z ,  

⋅ = =

 
1 z 1 z z  and  1 1− −⋅ = = 

z z z z 1 . The non associativity of the law comes 
from the fact that although , ∈z w H  it may happen that ∈z w K  and then 
the expression  ⋅ z w z  has no meaning.                               

We were expecting that one of the group axioms of the multiplication in 
n h  not to be satisfied, since otherwise this manifold would be a Lie group 

and it is known (see [5], page 140) that every Lie group is an orientable manifold. 
However, as proven in the next theorem, actions of Lie groups on such a mani-
fold exist. 

Theorem 8. The mapping ( ): n nα × →G h h   defined by  
( ) ,α =

zg w z w  is a left action of the Lie group G  on the non orientable ma-
nifold n h . 

Proof. The mapping is obviously of class C∞ . Moreover, ( ) ,α = = 
1g w 1 w w  

for every n∈ w h . Finally,  

( )( ) ( ) ( ) ( ) ( ) ( ), , , , ,α α α α α= = = = = ×


  
    z z z zg g w g w z w z w g w g g wζ ζ ζζ ζ ζ , 

hence indeed, α  is a left action of the Lie group G  on the non orientable 
manifold n h .     

Corollary 2. The mapping ( ): n nβ × → h G h  defined by  
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( ) 1,β −=
zw g w z  is a right action of G  on n h , since  

( ) ( )1, ,β α −= z zw g g w , as it can be easily checked. 
By the general theory of Lie groups, these actions of G  on n h  define 

homomorphisms t from the Lie group G  to the group ( )nDiff  h  of dif-
feomorphisms of n h  such that ( )t zg  is the mapping ( ),α→ zw g w , 
respectively ( ),β→  zw w g . Reciprocally, every homomorphism  

( ): nt Diff→ G h  defines left and right actions of G  on n h  by  
( ) ( ), tα = ⋅ g w g w , respectively ( ) ( )1, tβ −= ⋅ w g g w .  

4. Conclusion 

Non orientable n-dimensionl complex manifolds can be obtained by factoriza-
tion with a two elements group generated by an antianalytic involution of n . 
Such involutions can be obtained, for example, composing in some coordinate 
planes Möbius transformations of the form ( ) ( ) ( )e 1ki

k k k k kM z z a a zθ= − − , 
1ka <  with the mappings ( ) 1k kh z z= − . An internal composition law can be 

defined on such a manifold with the help of some bi-Möbius transformations 
and actions of Lie groups on the respective manifold can be put into evidence. 
We realized this task by devising an appropriate partition of that manifold. 
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