
Open Journal of Discrete Mathematics, 2021, 11, 55-60 
https://www.scirp.org/journal/ojdm 

ISSN Online: 2161-7643 
ISSN Print: 2161-7635 

 

DOI: 10.4236/ojdm.2021.113005  Jun. 8, 2021 55 Open Journal of Discrete Mathematics 
 

 
 
 

A Note on n-Set Distance-Labelings of Graphs 

Roger K. Yeh 

Department of Applied Mathematics, Feng Chia University, Taiwan 

 
 
 

Abstract 
This note is considered as a sequel of Yeh [1]. Here, we present a generalized 
(vertex) distance labeling (labeling vertices under constraints depending the 
on distance between vertices) of a graph. Instead of assigning a number (la-
bel) to each vertex, we assign a set of numbers to each vertex under given 
conditions. Some basic results are given in the first part of the note. Then we 
study a particular class of this type of labelings on several classes of graphs. 
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1. Introduction 

Inspired by a channel assignment problem proposed by Roberts [2] in 1988, 
Griggs and Yeh [3] formulated the L(2,1)-labeling problem for graphs. There are 
considerable amounts of articles studying this labeling and its generalizations or 
related problems. Readers can see [4] or [5] for a survey. In this note, we like to 
consider a generalization of the L(2,1)-labeling. Let A and B be two subsets of 
natural numbers. Define { }min : ,A B a b a A b B− = − ∈ ∈ . Denote the set  

[ ] { }0,1, ,k k= 
 and [ ]k

n
 
 
 

 the collection of all n-subsets of [ ]k . 

Motivated by the article [6], we propose the following labeling on a graph. 
Let ( ),G V E=  be a graph and n be a positive integer. Given non-negative 

integers 1 2δ δ≥  an ( ) ( )1 2,nL δ δ -labeling is a function ( ) [ ]:
k

f V G
n

 
→  

 
 for  

some 1k ≥  such that ( ) ( ) if u f v δ− ≥  whenever the distance between u and 
v in G is i, for 1,2i = . (The minimum value and the maximum value of 

( )( )v V G
f v

∈
 is 0 and k, respectively.) The value k is called the span of f. The 

smallest k so that there is an ( ) ( )1 2,nL δ δ -labeling f with span k, is denoted by 
( ) ( )1 2; ,n Gλ δ δ  and called the ( ) ( )1 2,nL δ δ -labeling number of G. An ( ) ( )1 2,nL δ δ
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-labeling with span ( ) ( )1 2; ,n Gλ δ δ  is called an optimal ( ) ( )1 2,nL δ δ -labeling. If 
1n =  then notations ( )1L  and ( )1λ  will be simplified as L and λ , respective-

ly. 
Note: 1) The elements in [ ]k  are called “numbers” and ( )f u  is called the 

“label” of u. So, a label is a set in this problem. 2) Using our notation, the labe-
ling in [6] is the ( )1,0L δ -labeling for 1 1δ ≥ . 

Previously, we have studied the ( ) ( )2 2,1L -labeling problem (cf. [1]). In this 
note, we will first investigate properties of the ( ) ( )1 2,nL δ δ  for 1n ≥ . Then, we 
study the case of ( ) ( )1 2, 1,1δ δ = . 

2. Preliminarily 

Let G be a graph and n an positive integer. Now, we construct a new graph ( )nG  
by replacing each vertex v in G by n vertices iv , 1 i n≤ ≤  and iu  is adjacent 
to jv  for all ,i j , in ( )nG , whenever u and v is adjacent in G. That is, iu  and 

jv , for all ,i j , induces a complete bipartite graph ,n nK . Note that ( )1G G= . 
It is easy to verify that ( ) ( ) ( )( )1 1; ,1 ; ,1n nG Gλ δ λ δ= . Thus, for example,  
( ) ( ) ( ), , ,; 2,1 ;2,1 2n

m n n nK K nm mλ λ= = + −


, where 2m ≥ , by previous result on 
complete m-partite graph , , ,n n nK



 (cf. [3]).  
Next, we consider the relation between the labeling numbers for 1n =  and 

1n ≥ . In the following, ( );1,1Gλ  and ( ) ( );1,1n Gλ  are denoted by ( )1 Gλ  and 
( ) ( )1
n Gλ , respectively, for short. 
Proposition 2.1. Let 1n ≥ , 1 2δ δ≥  be nonnegative integers and Δ be the 

maximum degree of G. Then 
1) ( )( ) ( ) ( ) ( )1 2 1 11 1 1 ; ,nn Gδ δ λ δ δ− ∆ + + + ∆ − ≤ . 
2) ( ) ( ) ( )1 1 1 2; , ; 1, 1 1n G G n n nλ δ δ λ δ δ≤ + − + − + − . 
Proof. 
1) A vertex u with the maximum degree Δ in a graph G is called a major ver-

tex of G. By counting the numbers for the labels of a major vertex and its neigh-
bors and numbers need to separate each label (the ( )1 2,δ δ  condition), we shall 
have the trivial lower bound.  

2) Let ( )1 2; 1, 1G n n kλ δ δ+ − + − =  and f an optimal ( )1 21, 1L n nδ δ+ − + −

-labeling. Define sets { }, 1, , 1iL i i i n= + + −
, 0,1, ,i k=   and function  

( ) [ ]1:f
k n

g V G
n

 + −
→  

 
 by ( )f ig u L=  whenever ( )f u i=  for  

0,1, ,i k=  . 
Let u and v be distinct vertices with ( ),Gd u v j=  for 1,2j =  in G. Suppose 

( )f u i=  and ( ) 1jf v i n δ ′= + + −  for j jδ δ′ ≥  for 1,2j = . Then  

( ) { }, 1, , 1fg u i i i n= + + −
 and  

( ) { }1, , , 1 1f j j jg v i n i n i n nδ δ δ′ ′ ′= + + − + + + + − + − . Hence  
( ) ( ) ( ) ( )1f f j j jg u g v i n i nδ δ δ′ ′− = + + − + − = ≥  for 1,2j = . Thus fg  is an 

( ) ( )1 2,nL δ δ -labeling with span 1k n+ − . Therefore  
( ) ( ) ( )1 1 1 2; , ; 1, 1 1n G G n n nλ δ δ λ δ δ≤ + − + − + − .                         ∎ 
The following is the direct consequence of Proposition 2.1 when ( ) ( )1 1, 1,1δ δ = . 
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Also notice that ( ) ( )1 2 1 2; , ; ,G d d d Gλ δ δ λ δ δ= . 
Corollary 2.2. Let Δ be the maximum degree of G. Then 

( ) ( ) ( ) ( )1 1Δ 1 1 1nn G n G nλ λ+ − ≤ ≤ + − .                ∎ 

By Corollary 2.2, we know that whenever ( )1 Gλ = ∆ , the lower bound and 
the upper bound are equal and hence ( ) ( ) ( )1 1 1n G nλ = ∆ + − . There are several 
well-known classes of graphs whose 1λ  values are all Δ (see [7]). For example, 
tree T, wheel mW  (with m rims), the square lattice SΓ  (4-regular infinite plane 
graph), the hexagonal lattice HΓ  (3-regular infinite plane graph), and the tri-
angular lattice ∆Γ  (6-regular infinite plane graph) are all with 1λ = ∆ . We 
summarize as follows. 

Theorem 2.3. 
1) ( ) ( ) ( )( )1 1 1n T T nλ = ∆ + − . 
2) ( ) ( ) ( )1 1 1n

mW m nλ = + − . 
3) ( ) ( )1 5 1n

S nλ Γ = − . 
4) ( ) ( )1 4 1n

H nλ Γ = − . 
5) ( ) ( )1 7 1n nλ ∆Γ = − .                                             ∎ 

3. Cycles 

We know that the maximum degree of a cycle Cm of order 3m ≥  is 2. However, 

( )1 mCλ  is not necessary 2. It depends on m. In this section, we will consider 
( ) ( )1,1nL -labelings on cycles. 
Proposition 3.1. Let Cm be a cycle of order 3m ≥ . Then ( ) ( )1 3 1n

mC nλ = −  if 

( )0 mod3m ≡ . 
Proof. Since the maximum degree of Cm is 2, the trivial lower bound is 3 1n −  

by Corollary 2.2. On the other hand, we use { }0,1, , 1n −
, { }, 1, , 2 1n n n+ −

 
and { }2 ,2 1, ,3 1n n n+ −

 consecutively to label vertices of Cm where 

( )0 mod3m ≡ , to obtain an ( ) ( )1,1nL -labeling of Cm with span 3 1n − . Thus, 
we have the exact value of ( ) ( )1

n
mCλ  in this case.                        ∎ 

Lemma 3.2. Let Cm be a cycle of order m where ( )0 mod3m ≡/ . Then  
( ) ( )1 3n

mC nλ ≥ . 
Proof. Let ( ) { }1 2, , ,m mV C v v v= 

 where iv  is adjacent to 1iv +  for  
1,2, ,i m= 

 where 1 1mv v+ = . Suppose ( ) ( )1 3 1n
mC nλ ≤ − . Let f be an ( ) ( )1,1nL

-labeling with span 3 1n − . Let ( ) ( )1 2,f v A f v B= =  and ( )3f v C= . Since, 
by definition, ( ) ( )1 2,f v f v  and ( )3f v  are distinct, that is, 3A B C n= 

 
and [ ]3 1A B C n= − 

. Now, ( ) ( )4f v B C = ∅ 
 and ( ) [ ]4 3 1f v n⊆ − . 

Hence ( )4f v A= . Consider ( )5f v . Again, we have ( ) ( )5f v A C = ∅ 
 and  

( ) [ ]5 3 1f v n⊆ − . Hence ( )5f v B= . In general, we have 1) ( )if v A=  if  

( )1 mod3i ≡ , 2) ( )if v B=  if ( )2 mod 3i ≡  and 3) ( )if v C=  if  

( )0 mod3i ≡ , for 1,2, ,i m= 
. 

If ( )1 mod3m ≡  then ( )mf v A= . But mv  is adjacent to 1v , where  
( )1f v A= . This violates the condition on adjacent vertices. If ( )2 mod3m ≡  

then ( ) ( )2mf v B f v= =  while the distance between mv  and 2v  is 2. Again, 
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this violates the condition on distance 2 vertices. We have a contradiction on each 
case. Therefore, ( ) ( )1 3n

mC nλ ≥  for ( )0 mod3m ≡/ .                      ∎ 
Proposition 3.3. If 1) ( )1 mod3m ≡  and 3 1m n≥ +  or 2) ( )2 mod3m ≡  

and 6 2m n≥ +  then ( ) ( )1 3n
mC nλ = . 

Proof. Let ( ) { }1 2, , ,m mV C v v v= 
. 

1) Suppose 3 1m n= +  and Define { }0 0,1, , 1A n= −
,  

{ }1 , 1, , 2 1A n n n= + −
, { }2 2 , 2 1, ,3 1A n n n= + −

 and { }3 3 ,0, , 2A n n= −
. 

Denote ( )modX i k−  to be that set ( ){ }mod :x i k x X− ∈ . Then we use  

1 2 3 1 2 3, , , 1, 1, 1A A A A A A− − − ,  
( ) ( ) ( )1 2 3 1 2 32, 2, 2, , 1 , 1 , 1A A A A n A n A n− − − − − − − − −

 to label 1 2 3, , , nv v v . 
The last vertex 3 1nv +  is labeled by 0A . We see that this is an ( ) ( )1,1nL -labeling 
with span 3n of mC . 

Suppose 3 1m n> + . Then we label first 3 1n +  vertices as we did above. And 
then we repeatedly use 0 1,A A  and 2A  to label remaining vertices.  

2) First consider 6 2m n= + . We use the sequence presented in (1) for 
3 1m n= +  twice to label vertices of 6 2nC + . Obviously, it is still an ( ) ( )1,1nL

-labeling for 6 2nC +  with span 3n. 
For 6 2m n> + , we label the first 6 1n +  vertices (namely, 1 2 6 1, , , nv v v + ) 

using the same sequence as above and then repeat using 0 1,A A  and 2A  to la-
bel remaining vertices. Thus ( ) ( )1 3n

mC nλ ≤  in each case. On the other hand, by 
Lemma 3.2, we have the equality.                                     ∎ 

Lemma 3.4. Let G be a diameter two graph with order p. Then  
( ) ( )1 1n G npλ = − . 
Proof. Since G is a diameter two graph, every vertex must receive distinct la-

bel. Thus, we need at least np numbers, i.e., ( ) ( )1 1n G npλ = − . On the other hand, 
we can use { }, 1, , 1in in in n+ + −

 for 0,1, , 1i p= −  to label vertices of G in 
any order. Hence ( ) ( )1 1n G npλ ≤ − .                                   ∎ 

Corollary 3.5. 

( ) ( )

( )
( ) ( )

1

5 0 mod3 ,
6 1 mod3 , 7 or 2 mod3 , 14,
7 4,8,11,
9 5.

n
m

m
m m m m

C
m

m

λ

≡
 ≡ ≥ ≡ ≥= 

=
 =

 

Proof. Let ( ) { }1 2, , ,m mV C v v v= 
 where iv  is adjacent to 1iv +  for  

1,2, ,i m= 
 where 1 1mv v+ = . 

Claim 1. ( ) ( )2
1 8 7Cλ = . 

Suppose ( ) ( )2
1 8 6Cλ ≤ . Let f be an ( ) ( )2 1,1L -labeling with span 6. Since 8m = , 

there must have three consecutive vertices, say 1 2,v v  and 3v , be labeled with-
out using 6; and let ( )46 f v∈ . Also let ( ) { }1 1 2,f v a a= , ( ) { }2 1 2,f v b b=  and 
( ) { }3 1 2,f v c c= . Then ( ) { }4 ,6f v a=  where 1a a=  or 2a . Suppose 1a a= . 

Hence ( ) { }5 1 2 2, ,f v b b a⊆  and ( ) { }8 1 2, ,6f v c c⊂ . Since  
( ) ( )( ) ( ) ( )( )6 7 5 8f v f v f v f v = ∅   , we left only 3 numbers for  
( ) ( )6 7f v f v

, (that is two from { } ( ) ( )( )1 2 2 1 2 5 8, , , , ,6 \b b a c c f v f v  plus 1a ). 
It is not enough. The case for 2a a=  is similar. 
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Thus, ( ) ( )2
1 8 7Cλ ≥ . On the other hand, we can use { } { } { } { }0,1 , 2,3 , 4,5 , 6,7  

consecutively to label 1 2 8, , ,v v v  to obtain an ( ) ( )2 1,1L -labeling with sapn 7. 
Hence the claim holds. 

Claim 2. ( ) ( )2
1 11 7Cλ = .  

Let f be an ( ) ( )2 1,1L -labeling with span 6. Similar to Claim 1, we may assume 
that ( ) { }1 1 2,f v a a= , ( ) { }2 1 2,f v b b= , ( ) { }3 1 2,f v c c=  and ( ) { }4 6,f v a=  
where { }1 2,a a a∈  and { }1 2 1 2 1 26 , , , , ,a a b b c c∉ . 

Again, we have ( ) { }11 1 2, ,6f v c c⊂ . Consider the following cases: 
1) ( ) { }8 1 2, ,6f v c c⊂ . Since ( ) { }4 6,f v a=  (as indicated above), the discus-

sion on ( ) ( ) ( ) ( )4 5 6 7, , ,f v f v f v f v  and ( )8f v  is the same as Claim 1. 
2) ( ) { }8 1 2 1 2, , , ,6f v a a b b⊂ . Since ( ) { }1 1 2,f v a a= , ( ) { }10 1 2,f v a a = ∅

. 
Let { } ( )1 2 11, ,6 \c c c f v∈ . Hence ( ) { }9 1 2, ,f v a a c⊂ . So ( ) { }8 1 2, ,f v b b c⊂ . 
Thus, there is only one number left available for ( )10f v . This is a contradiction. 

3) Suppose ( )8f v  consists of one number of ( )1f v  and one number of 
( )3f v . Without loss of generality, say ( ) { }8 1 1,f v a c= . Then ( ) { }5 1 2, ,f v b b a′⊂  

where 2a a′ =  if 1a a=  and vice versa. Then there only three numbers availa-
ble for ( ) ( )6 7f v f v

 and they are one from { } ( )1 2 5, , \b b a f v′ , 1c  and 6. 
That is not enough. 

Therefore, ( ) ( )2
1 11 7Cλ ≥ . On the other hand, we can use  

{ } { } { } { }0,1 , 2,3 , 4,5 , 6,7  consecutively to label 1 2 11, , ,v v v  to obtain an  ( ) ( )2 1,1L -labeling with span 7. Hence the claim holds. Finally, we have 
1) ( )0 mod3m ≡ . 
By Proposition 3.2, ( ) ( )2

1 5mCλ = . 
2) ( )1 mod3m ≡ . 
By Proposition 3.3, ( ) ( )2

1 6mCλ =  if 7m ≥ . Since C4 is diameter 2 graph, by 
Lemma 3.4, ( ) ( )2

1 4 7Cλ = . 
3) ( )2 mod3m ≡ . 
By Proposition 3.3, ( ) ( )2

1 6mCλ =  if 14m ≥ . Case for 11m =  and 8 are ob-
tained by Claim 1 and Claim 2. Since C5 is also a diameter 2 graph, by Lemma 
3.4, ( ) ( )2

1 5 9Cλ = .                                                 ∎ 

4. Concluding Remark 

We have obtained values of ( ) ( )2
1 mCλ  for all m and ( ) ( )1

n
mCλ  for some m 

where 3n ≥ . Otherwise, the labeling numbers are still unknown. It is known 
that ( )1 4mCλ =  if ( )0 mod3m ≠  (cf. [8]). Hence an upper bound is 4 1n −  
in this case. On the other hand, the lower bound we have in Lemma 3.2 is 3n. 
Thus, there is still a gap between 3n and 4 1n −  for 1n > . 
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