

A Note on *n*-Set Distance-Labelings of Graphs

Roger K. Yeh

Department of Applied Mathematics, Feng Chia University, Taiwan Email: rkyeh@fcu.edu.tw

How to cite this paper: Yeh, R.K. (2021) A Note on *n*-Set Distance-Labelings of Graphs. *Open Journal of Discrete Mathematics*, **11**, 55-60. https://doi.org/10.4236/ojdm.2021.113005

Received: March 2, 2021 **Accepted:** June 5, 2021 **Published:** June 8, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

This note is considered as a sequel of Yeh [1]. Here, we present a generalized (vertex) distance labeling (labeling vertices under constraints depending the on distance between vertices) of a graph. Instead of assigning a number (label) to each vertex, we assign a set of numbers to each vertex under given conditions. Some basic results are given in the first part of the note. Then we study a particular class of this type of labelings on several classes of graphs.

Keywords

Graph Distance Labeling

1. Introduction

Inspired by a channel assignment problem proposed by Roberts [2] in 1988, Griggs and Yeh [3] formulated the L(2,1)-labeling problem for graphs. There are considerable amounts of articles studying this labeling and its generalizations or related problems. Readers can see [4] or [5] for a survey. In this note, we like to consider a generalization of the L(2,1)-labeling. Let A and B be two subsets of natural numbers. Define $||A - B|| = \min\{|a - b| : a \in A, b \in B\}$. Denote the set

$$[k] = \{0, 1, \dots, k\}$$
 and $\binom{[k]}{n}$ the collection of all *n*-subsets of $[k]$.

Motivated by the article [6], we propose the following labeling on a graph.

Let G = (V, E) be a graph and *n* be a positive integer. Given non-negative

integers $\delta_1 \ge \delta_2$ an $L^{(n)}(\delta_1, \delta_2)$ -labeling is a function $f: V(G) \to {\binom{[k]}{n}}$ for

some $k \ge 1$ such that $|f(u) - f(v)| \ge \delta_i$ whenever the distance between u and v in G is i, for i = 1, 2. (The minimum value and the maximum value of

 $\bigcup_{v \in V(G)} f(v) \text{ is 0 and } k \text{, respectively.) The value } k \text{ is called the span of } f \text{. The smallest } k \text{ so that there is an } L^{(n)}(\delta_1, \delta_2) \text{ -labeling } f \text{ with span } k \text{, is denoted by } \lambda^{(n)}(G; \delta_1, \delta_2) \text{ and called the } L^{(n)}(\delta_1, \delta_2) \text{ -labeling number of } G \text{. An } L^{(n)}(\delta_1, \delta_2)$

-labeling with span $\lambda^{(n)}(G; \delta_1, \delta_2)$ is called an optimal $L^{(n)}(\delta_1, \delta_2)$ -labeling. If n = 1 then notations $L^{(1)}$ and $\lambda^{(1)}$ will be simplified as L and λ , respectively.

Note: 1) The elements in [k] are called "numbers" and f(u) is called the "label" of u. So, a label is a set in this problem. 2) Using our notation, the labeling in [6] is the $L(\delta_1, 0)$ -labeling for $\delta_1 \ge 1$.

Previously, we have studied the $L^{(2)}(2,1)$ -labeling problem (cf. [1]). In this note, we will first investigate properties of the $L^{(n)}(\delta_1, \delta_2)$ for $n \ge 1$. Then, we study the case of $(\delta_1, \delta_2) = (1,1)$.

2. Preliminarily

Let *G* be a graph and *n* an positive integer. Now, we construct a new graph $G^{(n)}$ by replacing each vertex *v* in *G* by *n* vertices v_i , $1 \le i \le n$ and u_i is adjacent to v_j for all *i*, *j*, in $G^{(n)}$, whenever *u* and *v* is adjacent in *G*. That is, u_i and v_j , for all *i*, *j*, induces a complete bipartite graph $K_{n,n}$. Note that $G^{(1)} = G$.

It is easy to verify that $\lambda^{(n)}(G; \delta_1, 1) = \lambda(G^{(n)}; \delta_1, 1)$. Thus, for example,

 $\lambda^{(n)}(K_m;2,1) = \lambda(K_{n,n,\dots,n};2,1) = nm + m - 2$, where $m \ge 2$, by previous result on complete *m*-partite graph $K_{n,n,\dots,n}$ (cf. [3]).

Next, we consider the relation between the labeling numbers for n = 1 and $n \ge 1$. In the following, $\lambda(G; 1, 1)$ and $\lambda^{(n)}(G; 1, 1)$ are denoted by $\lambda_1(G)$ and $\lambda_1^{(n)}(G)$, respectively, for short.

Proposition 2.1. Let $n \ge 1$, $\delta_1 \ge \delta_2$ be nonnegative integers and Δ be the maximum degree of *G*. Then

- 1) $(n-1)(\Delta+1)+\delta_1+(\Delta-1)\delta_2 \leq \lambda^{(n)}(G;\delta_1,\delta_1).$
- 2) $\lambda^{(n)}(G;\delta_1,\delta_1) \leq \lambda(G;n+\delta_1-1,n+\delta_2-1)+n-1.$

Proof.

1) A vertex *u* with the maximum degree Δ in a graph *G* is called a major vertex of *G*. By counting the numbers for the labels of a major vertex and its neighbors and numbers need to separate each label (the (δ_1, δ_2) condition), we shall have the trivial lower bound.

2) Let $\lambda(G; n + \delta_1 - 1, n + \delta_2 - 1) = k$ and f an optimal $L(n + \delta_1 - 1, n + \delta_2 - 1)$ -labeling. Define sets $L_i = \{i, i + 1, \dots, i + n - 1\}$, $i = 0, 1, \dots, k$ and function

$$g_f: V(G) \to \begin{pmatrix} \lfloor k+n-1 \rfloor \\ n \end{pmatrix}$$
 by $g_f(u) = L_i$ whenever $f(u) = i$ for

 $i=0,1,\cdots,k$.

Let u and v be distinct vertices with $d_G(u,v) = j$ for j = 1,2 in G. Suppose f(u) = i and $f(v) = i + n + \delta'_j - 1$ for $\delta'_j \ge \delta_j$ for j = 1,2. Then $g_f(u) = \{i,i+1,\dots,i+n-1\}$ and $g_f(v) = \{i+n+\delta'_j-1,i+n+\delta'_j,\dots,i+n+\delta'_j-1+n-1\}$. Hence $\|g_f(u) - g_f(v)\| = (i+n+\delta'_j) - (i+n-1) = \delta'_j \ge \delta_j$ for j = 1,2. Thus g_f is an $L^{(n)}(G_1,\delta_2)$ -labeling with span k+n-1. Therefore $\lambda^{(n)}(G;\delta_1,\delta_1) \le \lambda(G;n+\delta_1-1,n+\delta_2-1)+n-1$.

The following is the direct consequence of Proposition 2.1 when $(\delta_1, \delta_1) = (1, 1)$.

Also notice that $\lambda(G; d\delta_1, d\delta_2) = d\lambda(G; \delta_1, \delta_2)$.

Corollary 2.2. Let Δ be the maximum degree of G. Then

$$(\Delta+1)n-1 \le \lambda_1^{(n)}(G) \le n\lambda_1(G)+n-1.$$

By Corollary 2.2, we know that whenever $\lambda_1(G) = \Delta$, the lower bound and the upper bound are equal and hence $\lambda_1^{(n)}(G) = (\Delta + 1)n - 1$. There are several well-known classes of graphs whose λ_1 values are all Δ (see [7]). For example, tree *T*, wheel W_m (with *m* rims), the square lattice Γ_s (4-regular infinite plane graph), the hexagonal lattice Γ_H (3-regular infinite plane graph), and the triangular lattice Γ_{Δ} (6-regular infinite plane graph) are all with $\lambda_1 = \Delta$. We summarize as follows.

Theorem 2.3.

1) $\lambda_1^{(n)}(T) = (\Delta(T)+1)n-1.$ 2) $\lambda_1^{(n)}(W_m) = (m+1)n-1.$ 3) $\lambda_1^{(n)}(\Gamma_s) = 5n-1.$ 4) $\lambda_1^{(n)}(\Gamma_H) = 4n-1.$ 5) $\lambda_1^{(n)}(\Gamma_{\Delta}) = 7n-1.$

•

3. Cycles

We know that the maximum degree of a cycle C_m of order $m \ge 3$ is 2. However, $\lambda_1(C_m)$ is not necessary 2. It depends on m. In this section, we will consider $L^{(n)}(1,1)$ -labelings on cycles.

Proposition 3.1. Let C_m be a cycle of order $m \ge 3$. Then $\lambda_1^{(n)}(C_m) = 3n-1$ if $m \equiv 0 \pmod{3}$.

Proof. Since the maximum degree of C_m is 2, the trivial lower bound is 3n-1 by Corollary 2.2. On the other hand, we use $\{0,1,\dots,n-1\}$, $\{n,n+1,\dots,2n-1\}$ and $\{2n,2n+1,\dots,3n-1\}$ consecutively to label vertices of C_m where $m \equiv 0 \pmod{3}$, to obtain an $L^{(n)}(1,1)$ -labeling of C_m with span 3n-1. Thus, we have the exact value of $\lambda_1^{(n)}(C_m)$ in this case.

Lemma 3.2. Let C_m be a cycle of order m where $m \neq 0 \pmod{3}$. Then $\lambda_1^{(n)}(C_m) \ge 3n$.

Proof. Let $V(C_m) = \{v_1, v_2, \dots, v_m\}$ where v_i is adjacent to v_{i+1} for $i = 1, 2, \dots, m$ where $v_{m+1} = v_1$. Suppose $\lambda_1^{(n)}(C_m) \leq 3n-1$. Let f be an $L^{(n)}(1,1)$ -labeling with span 3n-1. Let $f(v_1) = A, f(v_2) = B$ and $f(v_3) = C$. Since, by definition, $f(v_1), f(v_2)$ and $f(v_3)$ are distinct, that is, $|A \cup B \cup C| = 3n$ and $A \cup B \cup C = [3n-1]$. Now, $f(v_4) \cap (B \cup C) = \emptyset$ and $f(v_4) \subseteq [3n-1]$. Hence $f(v_4) = A$. Consider $f(v_5)$. Again, we have $f(v_5) \cap (A \cup C) = \emptyset$ and $f(v_5) \subseteq [3n-1]$. Hence $f(v_5) = B$. In general, we have 1) $f(v_i) = A$ if $i \equiv 1 \pmod{3}, 2$) $f(v_i) = B$ if $i \equiv 2 \pmod{3}$ and 3) $f(v_i) = C$ if $i \equiv 0 \pmod{3}$, for $i = 1, 2, \dots, m$.

If $m \equiv 1 \pmod{3}$ then $f(v_m) = A$. But v_m is adjacent to v_1 , where $f(v_1) = A$. This violates the condition on adjacent vertices. If $m \equiv 2 \pmod{3}$ then $f(v_m) = B = f(v_2)$ while the distance between v_m and v_2 is 2. Again,

this violates the condition on distance 2 vertices. We have a contradiction on each case. Therefore, $\lambda_1^{(n)}(C_m) \ge 3n$ for $m \ne 0 \pmod{3}$.

Proposition 3.3. If 1) $m \equiv 1 \pmod{3}$ and $m \ge 3n+1$ or 2) $m \equiv 2 \pmod{3}$ and $m \ge 6n+2$ then $\lambda_1^{(n)}(C_m) = 3n$.

Proof. Let $V(C_m) = \{v_1, v_2, \dots, v_m\}$.

1) Suppose m = 3n+1 and Define $A_0 = \{0, 1, \dots, n-1\}$,

 $A_{1} = \{n, n+1, \dots, 2n-1\}, A_{2} = \{2n, 2n+1, \dots, 3n-1\} \text{ and } A_{3} = \{3n, 0, \dots, n-2\}.$ Denote $X - i \pmod{k}$ to be that set $\{x - i \pmod{k} : x \in X\}$. Then we use

$$A_1, A_2, A_3, A_1 - 1, A_2 - 1, A_3 - 1$$
,

 $A_1 - 2, A_2 - 2, A_3 - 2, \dots, A_1 - (n-1), A_2 - (n-1), A_3 - (n-1)$ to label v_1, v_2, \dots, v_{3n} . The last vertex v_{3n+1} is labeled by A_0 . We see that this is an $L^{(n)}(1,1)$ -labeling with span 3n of C_m .

Suppose m > 3n+1. Then we label first 3n+1 vertices as we did above. And then we repeatedly use A_0, A_1 and A_2 to label remaining vertices.

2) First consider m = 6n + 2. We use the sequence presented in (1) for m = 3n + 1 twice to label vertices of C_{6n+2} . Obviously, it is still an $L^{(n)}(1,1)$ -labeling for C_{6n+2} with span 3n.

For m > 6n + 2, we label the first 6n + 1 vertices (namely, $v_1, v_2, \dots, v_{6n+1}$) using the same sequence as above and then repeat using A_0, A_1 and A_2 to label remaining vertices. Thus $\lambda_1^{(n)}(C_m) \le 3n$ in each case. On the other hand, by Lemma 3.2, we have the equality.

Lemma 3.4. Let *G* be a diameter two graph with order *p*. Then $\lambda_1^{(n)}(G) = np - 1$.

Proof. Since *G* is a diameter two graph, every vertex must receive distinct label. Thus, we need at least *np* numbers, *i.e.*, $\lambda_1^{(n)}(G) = np - 1$. On the other hand, we can use $\{in, in + 1, \dots, in + n - 1\}$ for $i = 0, 1, \dots, p - 1$ to label vertices of *G* in any order. Hence $\lambda_1^{(n)}(G) \le np - 1$.

Corollary 3.5.

$$\lambda_{1}^{(n)}(C_{m}) = \begin{cases} 5 & m \equiv 0 \pmod{3}, \\ 6 & m \equiv 1 \pmod{3}, m \ge 7 \text{ or } m \equiv 2 \pmod{3}, m \ge 14, \\ 7 & m = 4, 8, 11, \\ 9 & m = 5. \end{cases}$$

Proof. Let $V(C_m) = \{v_1, v_2, \dots, v_m\}$ where v_i is adjacent to v_{i+1} for $i = 1, 2, \dots, m$ where $v_{m+1} = v_1$.

Claim 1. $\lambda_1^{(2)}(C_8) = 7$.

Suppose $\lambda_1^{(2)}(C_8) \leq 6$. Let f be an $L^{(2)}(1,1)$ -labeling with span 6. Since m = 8, there must have three consecutive vertices, say v_1, v_2 and v_3 , be labeled without using 6; and let $6 \in f(v_4)$. Also let $f(v_1) = \{a_1, a_2\}$, $f(v_2) = \{b_1, b_2\}$ and $f(v_3) = \{c_1, c_2\}$. Then $f(v_4) = \{a, 6\}$ where $a = a_1$ or a_2 . Suppose $a = a_1$. Hence $f(v_5) \subseteq \{b_1, b_2, a_2\}$ and $f(v_8) \subset \{c_1, c_2, 6\}$. Since $(f(v_6) \cup f(v_7)) \cap (f(v_5) \cup f(v_8)) = \emptyset$, we left only 3 numbers for $f(v_6) \cup f(v_7)$, (that is two from $\{b_1, b_2, a_2, c_1, c_2, 6\} \setminus (f(v_5) \cup f(v_8))$ plus a_1). It is not enough. The case for $a = a_2$ is similar.

Thus, $\lambda_1^{(2)}(C_8) \ge 7$. On the other hand, we can use $\{0,1\},\{2,3\},\{4,5\},\{6,7\}$ consecutively to label v_1, v_2, \dots, v_8 to obtain an $L^{(2)}(1,1)$ -labeling with sapn 7. Hence the claim holds.

Claim 2. $\lambda_1^{(2)}(C_{11}) = 7$.

Let f be an $L^{(2)}(1,1)$ -labeling with span 6. Similar to Claim 1, we may assume that $f(v_1) = \{a_1, a_2\}$, $f(v_2) = \{b_1, b_2\}$, $f(v_3) = \{c_1, c_2\}$ and $f(v_4) = \{6, a\}$ where $a \in \{a_1, a_2\}$ and $6 \notin \{a_1, a_2, b_1, b_2, c_1, c_2\}$.

Again, we have $f(v_{11}) \subset \{c_1, c_2, 6\}$. Consider the following cases:

1) $f(v_8) \subset \{c_1, c_2, 6\}$. Since $f(v_4) = \{6, a\}$ (as indicated above), the discussion on $f(v_4), f(v_5), f(v_6), f(v_7)$ and $f(v_8)$ is the same as Claim 1.

2) $f(v_8) \subset \{a_1, a_2, b_1, b_2, 6\}$. Since $f(v_1) = \{a_1, a_2\}$, $f(v_{10}) \cap \{a_1, a_2\} = \emptyset$. Let $c \in \{c_1, c_2, 6\} \setminus f(v_{11})$. Hence $f(v_9) \subset \{a_1, a_2, c\}$. So $f(v_8) \subset \{b_1, b_2, c\}$. Thus, there is only one number left available for $f(v_{10})$. This is a contradiction.

3) Suppose $f(v_8)$ consists of one number of $f(v_1)$ and one number of $f(v_3)$. Without loss of generality, say $f(v_8) = \{a_1, c_1\}$. Then $f(v_5) \subset \{b_1, b_2, a'\}$ where $a' = a_2$ if $a = a_1$ and vice versa. Then there only three numbers available for $f(v_6) \cup f(v_7)$ and they are one from $\{b_1, b_2, a'\} \setminus f(v_5)$, c_1 and 6. That is not enough.

Therefore, $\lambda_1^{(2)}(C_{11}) \ge 7$. On the other hand, we can use

 $\{0,1\},\{2,3\},\{4,5\},\{6,7\}$ consecutively to label v_1,v_2,\cdots,v_{11} to obtain an

 $L^{(2)}(1,1)$ -labeling with span 7. Hence the claim holds. Finally, we have

- 1) $m \equiv 0 \pmod{3}$.
- By Proposition 3.2, $\lambda_1^{(2)}(C_m) = 5$.
- 2) $m \equiv 1 \pmod{3}$.

By Proposition 3.3, $\lambda_1^{(2)}(C_m) = 6$ if $m \ge 7$. Since C_4 is diameter 2 graph, by Lemma 3.4, $\lambda_1^{(2)}(C_4) = 7$.

3) $m \equiv 2 \pmod{3}$.

By Proposition 3.3, $\lambda_1^{(2)}(C_m) = 6$ if $m \ge 14$. Case for m = 11 and 8 are obtained by Claim 1 and Claim 2. Since C_5 is also a diameter 2 graph, by Lemma 3.4, $\lambda_1^{(2)}(C_5) = 9$.

4. Concluding Remark

We have obtained values of $\lambda_1^{(2)}(C_m)$ for all m and $\lambda_1^{(n)}(C_m)$ for some m where $n \ge 3$. Otherwise, the labeling numbers are still unknown. It is known that $\lambda_1(C_m) = 4$ if $m \ne 0 \pmod{3}$ (cf. [8]). Hence an upper bound is 4n-1 in this case. On the other hand, the lower bound we have in Lemma 3.2 is 3n. Thus, there is still a gap between 3n and 4n-1 for n > 1.

Acknowledgements

The author would like to thank the referee for valuable editorial suggestions.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- Yeh, R.K. (2019) Pair L(2,1)-Labelings of Infinite Graphs. *Discussiones Mathemati*cae Graph Theory, **39**, 257-269. <u>https://doi.org/10.7151/dmgt.2077</u>
- [2] Roberts, F.S. (1988) Private Communication with Griggs J. R.
- Griggs, J.R. and Yeh, R.K. (1992) Labelling Graphs with a Condition at Distance 2. SIAM Journal on Discrete Mathematics, 5, 586-595. https://doi.org/10.1137/0405048
- [4] Calamoneri, T. (2011) The L(h,k)-Labeling Problems: A Update Survey and Annotated Bibliography. *The Computer Journal*, 54, 1344-1371. <u>https://doi.org/10.1093/comjnl/bxr037</u>
- [5] Yeh, R.K. (2006) A Survey on Labeling Graphs with a Condition at Distance Two. Discrete Mathematics, 306, 1217-1231. <u>https://doi.org/10.1016/j.disc.2005.11.029</u>
- [6] Füredi, Z., Griggs, J.R. and Kleitman, D.J. (1989) Pair Labellings with Given Distance. SIAM Journal on Discrete Mathematics, 2, 491-499. https://doi.org/10.1137/0402044
- Griggs, J.R. and Jin, X.T. (2008) Real Number Channel Assignments for Lattices. SIAM Journal on Discrete Mathematics, 22, 996-1021. https://doi.org/10.1137/060650982
- [8] Liu, D.D.-F. and Yeh, R.K. (1997)On Distance Two Labelings of Graphs. Ars Combinatoria, 47, 13-22.