A Note on \boldsymbol{n}-Set Distance-Labelings of Graphs

Roger K. Yeh
Department of Applied Mathematics, Feng Chia University, Taiwan
Email: rkyeh@fcu.edu.tw

How to cite this paper: Yeh, R.K. (2021) A Note on n-Set Distance-Labelings of Graphs. Open Journal of Discrete Mathematics, 11, 55-60.
https://doi.org/10.4236/ojdm.2021.113005

Received: March 2, 2021
Accepted: June 5, 2021
Published: June 8, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

This note is considered as a sequel of Yeh [1]. Here, we present a generalized (vertex) distance labeling (labeling vertices under constraints depending the on distance between vertices) of a graph. Instead of assigning a number (label) to each vertex, we assign a set of numbers to each vertex under given conditions. Some basic results are given in the first part of the note. Then we study a particular class of this type of labelings on several classes of graphs.

Keywords

Graph Distance Labeling

1. Introduction

Inspired by a channel assignment problem proposed by Roberts [2] in 1988, Griggs and Yeh [3] formulated the $L(2,1)$-labeling problem for graphs. There are considerable amounts of articles studying this labeling and its generalizations or related problems. Readers can see [4] or [5] for a survey. In this note, we like to consider a generalization of the $L(2,1)$-labeling. Let A and B be two subsets of natural numbers. Define $\|A-B\|=\min \{|a-b|: a \in A, b \in B\}$. Denote the set $[k]=\{0,1, \cdots, k\}$ and $\binom{[k]}{n}$ the collection of all n-subsets of $[k]$.

Motivated by the article [6], we propose the following labeling on a graph.
Let $G=(V, E)$ be a graph and n be a positive integer. Given non-negative integers $\delta_{1} \geq \delta_{2}$ an $L^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling is a function $f: V(G) \rightarrow\binom{[k]}{n}$ for some $k \geq 1$ such that $|f(u)-f(v)| \geq \delta_{i}$ whenever the distance between u and v in G is i, for $i=1,2$. (The minimum value and the maximum value of $\bigcup_{v \in V(G)} f(v)$ is 0 and k, respectively.) The value k is called the span of f. The smallest k so that there is an $L^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling f with span k, is denoted by $\lambda^{(n)}\left(G ; \delta_{1}, \delta_{2}\right)$ and called the $L^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling number of G. An $L^{(n)}\left(\delta_{1}, \delta_{2}\right)$
-labeling with span $\lambda^{(n)}\left(G ; \delta_{1}, \delta_{2}\right)$ is called an optimal $L^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling. If $n=1$ then notations $L^{(1)}$ and $\lambda^{(1)}$ will be simplified as L and λ, respectively.

Note: 1) The elements in [k] are called "numbers" and $f(u)$ is called the "label" of u. So, a label is a set in this problem. 2) Using our notation, the labeling in [6] is the $L\left(\delta_{1}, 0\right)$-labeling for $\delta_{1} \geq 1$.

Previously, we have studied the $L^{(2)}(2,1)$-labeling problem (cf. [1]). In this note, we will first investigate properties of the $L^{(n)}\left(\delta_{1}, \delta_{2}\right)$ for $n \geq 1$. Then, we study the case of $\left(\delta_{1}, \delta_{2}\right)=(1,1)$.

2. Preliminarily

Let G be a graph and n an positive integer. Now, we construct a new graph $G^{(n)}$ by replacing each vertex v in G by n vertices $v_{i}, 1 \leq i \leq n$ and u_{i} is adjacent to v_{j} for all i, j, in $G^{(n)}$, whenever u and v is adjacent in G. That is, u_{i} and v_{j}, for all i, j, induces a complete bipartite graph $K_{n, n}$. Note that $G^{(1)}=G$.
It is easy to verify that $\lambda^{(n)}\left(G ; \delta_{1}, 1\right)=\lambda\left(G^{(n)} ; \delta_{1}, 1\right)$. Thus, for example, $\lambda^{(n)}\left(K_{m} ; 2,1\right)=\lambda\left(K_{n, n, \cdots, n} ; 2,1\right)=n m+m-2$, where $m \geq 2$, by previous result on complete m-partite graph $K_{n, n, \cdots, n}$ (cf. [3]).

Next, we consider the relation between the labeling numbers for $n=1$ and $n \geq 1$. In the following, $\lambda(G ; 1,1)$ and $\lambda^{(n)}(G ; 1,1)$ are denoted by $\lambda_{1}(G)$ and $\lambda_{1}^{(n)}(G)$, respectively, for short.

Proposition 2.1. Let $n \geq 1, \delta_{1} \geq \delta_{2}$ be nonnegative integers and Δ be the maximum degree of G. Then

1) $(n-1)(\Delta+1)+\delta_{1}+(\Delta-1) \delta_{2} \leq \lambda^{(n)}\left(G ; \delta_{1}, \delta_{1}\right)$.
2) $\lambda^{(n)}\left(G ; \delta_{1}, \delta_{1}\right) \leq \lambda\left(G ; n+\delta_{1}-1, n+\delta_{2}-1\right)+n-1$.

Proof.

1) A vertex u with the maximum degree Δ in a graph G is called a major vertex of G. By counting the numbers for the labels of a major vertex and its neighbors and numbers need to separate each label (the (δ_{1}, δ_{2}) condition), we shall have the trivial lower bound.
2) Let $\lambda\left(G ; n+\delta_{1}-1, n+\delta_{2}-1\right)=k$ and f an optimal $L\left(n+\delta_{1}-1, n+\delta_{2}-1\right)$ -labeling. Define sets $L_{i}=\{i, i+1, \cdots, i+n-1\}, i=0,1, \cdots, k$ and function $g_{f}: V(G) \rightarrow\binom{[k+n-1]}{n}$ by $g_{f}(u)=L_{i}$ whenever $f(u)=i$ for $i=0,1, \cdots, k$.

Let u and v be distinct vertices with $d_{G}(u, v)=j$ for $j=1,2$ in G. Suppose $f(u)=i$ and $f(v)=i+n+\delta_{j}^{\prime}-1$ for $\delta_{j}^{\prime} \geq \delta_{j}$ for $j=1,2$. Then $g_{f}(u)=\{i, i+1, \cdots, i+n-1\}$ and $g_{f}(v)=\left\{i+n+\delta_{j}^{\prime}-1, i+n+\delta_{j}^{\prime}, \cdots, i+n+\delta_{j}^{\prime}-1+n-1\right\}$. Hence
$\left\|g_{f}(u)-g_{f}(v)\right\|=\left(i+n+\delta_{j}^{\prime}\right)-(i+n-1)=\delta_{j}^{\prime} \geq \delta_{j}$ for $j=1,2$. Thus g_{f} is an $L^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling with span $k+n-1$. Therefore $\lambda^{(n)}\left(G ; \delta_{1}, \delta_{1}\right) \leq \lambda\left(G ; n+\delta_{1}-1, n+\delta_{2}-1\right)+n-1$.

The following is the direct consequence of Proposition 2.1 when $\left(\delta_{1}, \delta_{1}\right)=(1,1)$.

Also notice that $\lambda\left(G ; d \delta_{1}, d \delta_{2}\right)=d \lambda\left(G ; \delta_{1}, \delta_{2}\right)$.
Corollary 2.2. Let Δ be the maximum degree of G. Then

$$
(\Delta+1) n-1 \leq \lambda_{1}^{(n)}(G) \leq n \lambda_{1}(G)+n-1 .
$$

By Corollary 2.2, we know that whenever $\lambda_{1}(G)=\Delta$, the lower bound and the upper bound are equal and hence $\lambda_{1}^{(n)}(G)=(\Delta+1) n-1$. There are several well-known classes of graphs whose λ_{1} values are all Δ (see [7]). For example, tree T, wheel W_{m} (with m rims), the square lattice Γ_{S} (4-regular infinite plane graph), the hexagonal lattice Γ_{H} (3-regular infinite plane graph), and the triangular lattice Γ_{Δ} (6-regular infinite plane graph) are all with $\lambda_{1}=\Delta$. We summarize as follows.

Theorem 2.3.

1) $\lambda_{1}^{(n)}(T)=(\Delta(T)+1) n-1$.
2) $\lambda_{1}^{(n)}\left(W_{m}\right)=(m+1) n-1$.
3) $\lambda_{1}^{(n)}\left(\Gamma_{S}\right)=5 n-1$.
4) $\lambda_{1}^{(n)}\left(\Gamma_{H}\right)=4 n-1$.
5) $\lambda_{1}^{(n)}\left(\Gamma_{\Delta}\right)=7 n-1$.

3. Cycles

We know that the maximum degree of a cycle C_{m} of order $m \geq 3$ is 2 . However, $\lambda_{1}\left(C_{m}\right)$ is not necessary 2 . It depends on m. In this section, we will consider $L^{(n)}(1,1)$-labelings on cycles.
Proposition 3.1. Let C_{m} be a cycle of order $m \geq 3$. Then $\lambda_{1}^{(n)}\left(C_{m}\right)=3 n-1$ if $m \equiv 0(\bmod 3)$.
Proof. Since the maximum degree of C_{m} is 2 , the trivial lower bound is $3 n-1$ by Corollary 2.2. On the other hand, we use $\{0,1, \cdots, n-1\}$, $\{n, n+1, \cdots, 2 n-1\}$ and $\{2 n, 2 n+1, \cdots, 3 n-1\}$ consecutively to label vertices of C_{m} where $m \equiv 0(\bmod 3)$, to obtain an $L^{(n)}(1,1)$-labeling of C_{m} with span $3 n-1$. Thus, we have the exact value of $\lambda_{1}^{(n)}\left(C_{m}\right)$ in this case.

Lemma 3.2. Let C_{m} be a cycle of order m where $m \not \equiv 0(\bmod 3)$. Then $\lambda_{1}^{(n)}\left(C_{m}\right) \geq 3 n$.

Proof. Let $V\left(C_{m}\right)=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ where v_{i} is adjacent to v_{i+1} for $i=1,2, \cdots, m$ where $v_{m+1}=v_{1}$. Suppose $\lambda_{1}^{(n)}\left(C_{m}\right) \leq 3 n-1$. Let f be an $L^{(n)}(1,1)$ -labeling with span $3 n-1$. Let $f\left(v_{1}\right)=A, f\left(v_{2}\right)=B$ and $f\left(v_{3}\right)=C$. Since, by definition, $f\left(v_{1}\right), f\left(v_{2}\right)$ and $f\left(v_{3}\right)$ are distinct, that is, $|A \cup B \cup C|=3 n$ and $A \cup B \cup C=[3 n-1]$. Now, $f\left(v_{4}\right) \cap(B \cup C)=\varnothing$ and $f\left(v_{4}\right) \subseteq[3 n-1]$. Hence $f\left(v_{4}\right)=A$. Consider $f\left(v_{5}\right)$. Again, we have $f\left(v_{5}\right) \cap(A \cup C)=\varnothing$ and $f\left(v_{5}\right) \subseteq[3 n-1]$. Hence $f\left(v_{5}\right)=B$. In general, we have 1) $f\left(v_{i}\right)=A$ if $i \equiv 1(\bmod 3), 2) \quad f\left(v_{i}\right)=B \quad$ if $i \equiv 2(\bmod 3)$ and 3$) \quad f\left(v_{i}\right)=C$ if $i \equiv 0(\bmod 3)$, for $i=1,2, \cdots, m$.

If $m \equiv 1(\bmod 3)$ then $f\left(v_{m}\right)=A$. But v_{m} is adjacent to v_{1}, where $f\left(v_{1}\right)=A$. This violates the condition on adjacent vertices. If $m \equiv 2(\bmod 3)$ then $f\left(v_{m}\right)=B=f\left(v_{2}\right)$ while the distance between v_{m} and v_{2} is 2. Again,
this violates the condition on distance 2 vertices. We have a contradiction on each case. Therefore, $\lambda_{1}^{(n)}\left(C_{m}\right) \geq 3 n$ for $m \not \equiv 0(\bmod 3)$.

Proposition 3.3. If 1$) m \equiv 1(\bmod 3)$ and $m \geq 3 n+1$ or 2$) m \equiv 2(\bmod 3)$ and $m \geq 6 n+2$ then $\lambda_{1}^{(n)}\left(C_{m}\right)=3 n$.

Proof. Let $V\left(C_{m}\right)=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$.

1) Suppose $m=3 n+1$ and Define $A_{0}=\{0,1, \cdots, n-1\}$,
$A_{1}=\{n, n+1, \cdots, 2 n-1\}, A_{2}=\{2 n, 2 n+1, \cdots, 3 n-1\}$ and $A_{3}=\{3 n, 0, \cdots, n-2\}$. Denote $X-i(\bmod k)$ to be that set $\{x-i(\bmod k): x \in X\}$. Then we use $A_{1}, A_{2}, A_{3}, A_{1}-1, A_{2}-1, A_{3}-1$,
$A_{1}-2, A_{2}-2, A_{3}-2, \cdots, A_{1}-(n-1), A_{2}-(n-1), A_{3}-(n-1)$ to label $v_{1}, v_{2}, \cdots, v_{3 n}$. The last vertex $v_{3 n+1}$ is labeled by A_{0}. We see that this is an $L^{(n)}(1,1)$-labeling with span $3 n$ of C_{m}.

Suppose $m>3 n+1$. Then we label first $3 n+1$ vertices as we did above. And then we repeatedly use A_{0}, A_{1} and A_{2} to label remaining vertices.
2) First consider $m=6 n+2$. We use the sequence presented in (1) for $m=3 n+1$ twice to label vertices of $C_{6 n+2}$. Obviously, it is still an $L^{(n)}(1,1)$ -labeling for $C_{6 n+2}$ with span $3 n$.

For $m>6 n+2$, we label the first $6 n+1$ vertices (namely, $v_{1}, v_{2}, \cdots, v_{6 n+1}$) using the same sequence as above and then repeat using A_{0}, A_{1} and A_{2} to label remaining vertices. Thus $\lambda_{1}^{(n)}\left(C_{m}\right) \leq 3 n$ in each case. On the other hand, by Lemma 3.2, we have the equality.

Lemma 3.4. Let G be a diameter two graph with order p. Then $\lambda_{1}^{(n)}(G)=n p-1$.

Proof. Since G is a diameter two graph, every vertex must receive distinct label. Thus, we need at least $n p$ numbers, i.e., $\lambda_{1}^{(n)}(G)=n p-1$. On the other hand, we can use $\{$ in, in $+1, \cdots$, in $+n-1\}$ for $i=0,1, \cdots, p-1$ to label vertices of G in any order. Hence $\lambda_{1}^{(n)}(G) \leq n p-1$.

Corollary 3.5.

$$
\lambda_{1}^{(n)}\left(C_{m}\right)=\left\{\begin{array}{lc}
5 & m \equiv 0(\bmod 3) \\
6 & m \equiv 1(\bmod 3), m \geq 7 \text { or } m \equiv 2(\bmod 3), m \geq 14 \\
7 & m=4,8,11 \\
9 & m=5
\end{array}\right.
$$

Proof. Let $V\left(C_{m}\right)=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ where v_{i} is adjacent to v_{i+1} for $i=1,2, \cdots, m$ where $v_{m+1}=v_{1}$.

Claim 1. $\lambda_{1}^{(2)}\left(C_{8}\right)=7$.
Suppose $\lambda_{1}^{(2)}\left(C_{8}\right) \leq 6$. Let f be an $L^{(2)}(1,1)$-labeling with span 6 . Since $m=8$, there must have three consecutive vertices, say v_{1}, v_{2} and v_{3}, be labeled without using 6; and let $6 \in f\left(v_{4}\right)$. Also let $f\left(v_{1}\right)=\left\{a_{1}, a_{2}\right\}, f\left(v_{2}\right)=\left\{b_{1}, b_{2}\right\}$ and $f\left(v_{3}\right)=\left\{c_{1}, c_{2}\right\}$. Then $f\left(v_{4}\right)=\{a, 6\}$ where $a=a_{1}$ or a_{2}. Suppose $a=a_{1}$. Hence $f\left(v_{5}\right) \subseteq\left\{b_{1}, b_{2}, a_{2}\right\}$ and $f\left(v_{8}\right) \subset\left\{c_{1}, c_{2}, 6\right\}$. Since $\left(f\left(v_{6}\right) \cup f\left(v_{7}\right)\right) \cap\left(f\left(v_{5}\right) \cup f\left(v_{8}\right)\right)=\varnothing$, we left only 3 numbers for $f\left(v_{6}\right) \cup f\left(v_{7}\right)$, (that is two from $\left\{b_{1}, b_{2}, a_{2}, c_{1}, c_{2}, 6\right\} \backslash\left(f\left(v_{5}\right) \cup f\left(v_{8}\right)\right)$ plus $\left.a_{1}\right)$. It is not enough. The case for $a=a_{2}$ is similar.

Thus, $\lambda_{1}^{(2)}\left(C_{8}\right) \geq 7$. On the other hand, we can use $\{0,1\},\{2,3\},\{4,5\},\{6,7\}$ consecutively to label $v_{1}, v_{2}, \cdots, v_{8}$ to obtain an $L^{(2)}(1,1)$-labeling with sapn 7 . Hence the claim holds.

Claim 2. $\lambda_{1}^{(2)}\left(C_{11}\right)=7$.
Let f be an $L^{(2)}(1,1)$-labeling with span 6 . Similar to Claim 1, we may assume that $f\left(v_{1}\right)=\left\{a_{1}, a_{2}\right\}, f\left(v_{2}\right)=\left\{b_{1}, b_{2}\right\}, f\left(v_{3}\right)=\left\{c_{1}, c_{2}\right\}$ and $f\left(v_{4}\right)=\{6, a\}$ where $a \in\left\{a_{1}, a_{2}\right\}$ and $6 \notin\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right\}$.

Again, we have $f\left(v_{11}\right) \subset\left\{c_{1}, c_{2}, 6\right\}$. Consider the following cases:

1) $f\left(v_{8}\right) \subset\left\{c_{1}, c_{2}, 6\right\}$. Since $f\left(v_{4}\right)=\{6, a\}$ (as indicated above), the discussion on $f\left(v_{4}\right), f\left(v_{5}\right), f\left(v_{6}\right), f\left(v_{7}\right)$ and $f\left(v_{8}\right)$ is the same as Claim 1.
2) $f\left(v_{8}\right) \subset\left\{a_{1}, a_{2}, b_{1}, b_{2}, 6\right\}$. Since $f\left(v_{1}\right)=\left\{a_{1}, a_{2}\right\}, f\left(v_{10}\right) \cap\left\{a_{1}, a_{2}\right\}=\varnothing$. Let $c \in\left\{c_{1}, c_{2}, 6\right\} \backslash f\left(v_{11}\right)$. Hence $f\left(v_{9}\right) \subset\left\{a_{1}, a_{2}, c\right\}$. So $f\left(v_{8}\right) \subset\left\{b_{1}, b_{2}, c\right\}$. Thus, there is only one number left available for $f\left(v_{10}\right)$. This is a contradiction.
3) Suppose $f\left(v_{8}\right)$ consists of one number of $f\left(v_{1}\right)$ and one number of $f\left(v_{3}\right)$. Without loss of generality, say $f\left(v_{8}\right)=\left\{a_{1}, c_{1}\right\}$. Then $f\left(v_{5}\right) \subset\left\{b_{1}, b_{2}, a^{\prime}\right\}$ where $a^{\prime}=a_{2}$ if $a=a_{1}$ and vice versa. Then there only three numbers available for $f\left(v_{6}\right) \cup f\left(v_{7}\right)$ and they are one from $\left\{b_{1}, b_{2}, a^{\prime}\right\} \backslash f\left(v_{5}\right), c_{1}$ and 6. That is not enough.

Therefore, $\lambda_{1}^{(2)}\left(C_{11}\right) \geq 7$. On the other hand, we can use $\{0,1\},\{2,3\},\{4,5\},\{6,7\}$ consecutively to label $v_{1}, v_{2}, \cdots, v_{11}$ to obtain an $L^{(2)}(1,1)$-labeling with span 7 . Hence the claim holds. Finally, we have

1) $m \equiv 0(\bmod 3)$.

By Proposition 3.2, $\quad \lambda_{1}^{(2)}\left(C_{m}\right)=5$.
2) $m \equiv 1(\bmod 3)$.

By Proposition 3.3, $\lambda_{1}^{(2)}\left(C_{m}\right)=6$ if $m \geq 7$. Since C_{4} is diameter 2 graph, by Lemma 3.4, $\lambda_{1}^{(2)}\left(C_{4}\right)=7$.
3) $m \equiv 2(\bmod 3)$.

By Proposition 3.3, $\lambda_{1}^{(2)}\left(C_{m}\right)=6$ if $m \geq 14$. Case for $m=11$ and 8 are obtained by Claim 1 and Claim 2. Since C_{5} is also a diameter 2 graph, by Lemma 3.4, $\lambda_{1}^{(2)}\left(C_{5}\right)=9$.

4. Concluding Remark

We have obtained values of $\lambda_{1}^{(2)}\left(C_{m}\right)$ for all m and $\lambda_{1}^{(n)}\left(C_{m}\right)$ for some m where $n \geq 3$. Otherwise, the labeling numbers are still unknown. It is known that $\lambda_{1}\left(C_{m}\right)=4$ if $m \neq 0(\bmod 3)$ (cf. [8]). Hence an upper bound is $4 n-1$ in this case. On the other hand, the lower bound we have in Lemma 3.2 is $3 n$. Thus, there is still a gap between $3 n$ and $4 n-1$ for $n>1$.

Acknowledgements

The author would like to thank the referee for valuable editorial suggestions.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Yeh, R.K. (2019) Pair L(2,1)-Labelings of Infinite Graphs. Discussiones Mathematicae Graph Theory, 39, 257-269. https://doi.org/10.7151/dmgt. 2077
[2] Roberts, F.S. (1988) Private Communication with Griggs J. R.
[3] Griggs, J.R. and Yeh, R.K. (1992) Labelling Graphs with a Condition at Distance 2. SIAM Journal on Discrete Mathematics, 5, 586-595. https://doi.org/10.1137/0405048
[4] Calamoneri, T. (2011) The L(h,k)-Labeling Problems: A Update Survey and Annotated Bibliography. The Computer Journal, 54, 1344-1371. https://doi.org/10.1093/comjnl/bxr037
[5] Yeh, R.K. (2006) A Survey on Labeling Graphs with a Condition at Distance Two. Discrete Mathematics, 306, 1217-1231. https://doi.org/10.1016/j.disc.2005.11.029
[6] Füredi, Z., Griggs, J.R. and Kleitman, D.J. (1989) Pair Labellings with Given Distance. SIAM Journal on Discrete Mathematics, 2, 491-499. https://doi.org/10.1137/0402044
[7] Griggs, J.R. and Jin, X.T. (2008) Real Number Channel Assignments for Lattices. SIAM Journal on Discrete Mathematics, 22, 996-1021. https://doi.org/10.1137/060650982
[8] Liu, D.D.-F. and Yeh, R.K. (1997)On Distance Two Labelings of Graphs. Ars Combinatoria, 47, 13-22.

