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Abstract: Simple formulas for the number of different cyclic and dihedral necklaces containing nj beads of 

the j-th color, and , are derived, using the Pólya enumeration theorem. mj  Nn j
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Among a vast number of counting problems one of the 
most popular is a necklace enumeration. A cyclic neck-
lace is a coloring in m colors of the vertices of a regular 
N--gon, where two colorings are equivalent if one can be 
obtained from the other by a cyclic symmetry CN, e.g. 
colored beads are placed on a circle, and the circle may 
be rotated (without reflections). A basic enumeration 

problem is then: for given m and , how 

many different cyclic necklaces containing nj beads of 
the j-th color are there. The answer follows by an appli-
cation of the Pólya's theorem [1]: the number γ (CN, nm) 
of different cyclic necklaces is the coefficient of 

 in the cycle index  
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where )(g  denotes the Euler totient function and nm 

denotes a tuple . ),,( 1 mnn 
Since γ (CN, nm) is not available in closed form in 

standard and advanced textbooks [2–6] we found it 
worthwhile to derive this number from (1). In this article 
we prove that 
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and Δ denotes a great common divisor gcd n^m of the 

tuple nm. We denote also . ),,(= 1 m
m kkk 

Note that the term  does appear only  mn
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once in the multinomial series expansion (MSE) of (1) 

with a weight  mnP  when ,  1=g
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Show that for  the polynomial 1>g  iNC xZ  con-

tributes in γ (CN, nm) if and only if . We prove that 
if N is divisible by g and Δ is not divisible by g then the 

term  does not appear in MSE of (1). 
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Denote ,  and consider MSE of 

(1) 
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where lm denotes a tuple (l1,…,lm). However MSE in (4) 
does not contribute in γ (CN, nm)  since Δ is not divisible 
by g, i.e. we cannot provide such g that  holds 

for all . Thus, we have reduced expression (1) 
by summing only over the divisors d of Δ,  

ii ngl =

mi ,1,= 

  .)(
1

= /

|

dN
d

d
iNC Xd

N
xZ 



       (5) 

Denoting , , and 

considering MSE of (5) we obtain  
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Combining (5) and (6) we arrive at (2). 
It is easy to extend the explicit Formula (2) to the case 

of dihedral necklaces where two colorings are equivalent 
if one can be obtained from the other by a dihedral sym-
metry DN, e.g. colored beads are placed on a circle, and 
the circle may be rotated and reflected. Start with the 
cycle indices [5]  
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If  we have to distinguish two different 
cases.  
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1) There is one odd integer , while 

the rest of ni are even, , ,  
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2) There is more than one odd integer 
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If  we have to distinguish three different 
cases.   
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2) There is one pair of odd integers,  

, while the rest of ni are even, ,  
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and mjj ccccL  
2111= .  

3) There is more than one pair of odd integers 
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