

On the Pólya Enumeration Theorem

L. G. FEL

Department of Civil Engineering, Technion, Haifa, Israel Email: lfel@tx.technion.ac.il

Abstract: Simple formulas for the number of different cyclic and dihedral necklaces containing n_j beads of the j-th color, $j \le m$ and $\sum_{j=1}^{m} n_j = N$, are derived, using the Pólya enumeration theorem.

Keywords: permutations and cyclic invariance, cycle index, Pólya enumeration theorem

Among a vast number of counting problems one of the most popular is a necklace enumeration. A cyclic necklace is a coloring in m colors of the vertices of a regular N--gon, where two colorings are equivalent if one can be obtained from the other by a cyclic symmetry C_N , e.g. colored beads are placed on a circle, and the circle may be rotated (without reflections). A basic enumeration problem is then: for given m and $N = \sum_{j=1}^{m} n_j$, how many different cyclic necklaces containing n_j beads of the j-th color are there. The answer follows by an application of the Pólya's theorem [1]: the number γ (C_N , n^m) of different cyclic necklaces is the coefficient of $x_1^{n_1} \cdot \ldots \cdot x_m^{n_m}$ in the cycle index

$$Z_{C_N}(x_i) = \frac{1}{N} \sum_{g \mid N} \phi(g) X_g^{N/g} , \quad X_g = x_1^g + \dots + x_m^g , \quad (1)$$

where $\phi(g)$ denotes the Euler totient function and n^m denotes a tuple $(n_1,...,n_m)$.

Since γ (C_N , n^m) is not available in closed form in standard and advanced textbooks [2–6] we found it worthwhile to derive this number from (1). In this article we prove that

$$\gamma(C_N, n^m) = \frac{1}{N} \sum_{d \mid \Delta} \phi(d) P(k^m),$$
where $P(k^m) = \frac{(k_1 + \ldots + k_m)!}{\prod_{j=1}^m k_j!}, \quad k_j = \frac{n_j}{d},$ (2)

and Δ denotes a great common divisor gcd n^m of the tuple n^m . We denote also $k^m = (k_1, ..., k_m)$.

Note that the term $x_1^{n_1} \cdot \dots \cdot x_m^{n_m}$ does appear only once in the multinomial series expansion (MSE) of (1)

with a weight $P(n^m)$ when g = 1,

$$X_1^N \to P(n^m)x_1^{n_1} \cdot \dots \cdot x_m^{n_m}$$
,
where $N = n_1 + \dots + n_m$. (3)

Show that for g > 1 the polynomial $Z_{C_N}(x_i)$ contributes in γ (C_N , n^m) if and only if $\Delta > 1$. We prove that if N is divisible by g and Δ is not divisible by g then the term $x_1^{n_1} \cdot \ldots \cdot x_m^{n_m}$ does not appear in MSE of (1).

Denote N/g = L, 1 < L < N and consider MSE of (1)

$$X_g^L = \sum_{l_i \ge 0}^{l_1 + \dots + l_m = L} P(l^m) x_1^{gl_1} \cdot \dots \cdot x_m^{gl_m} , \qquad (4)$$

where l^m denotes a tuple $(l_1,...,l_m)$. However MSE in (4) does not contribute in γ (C_N , n^m) since Δ is not divisible by g, i.e. we cannot provide such g that $gl_i = n_i$ holds for all i = 1,...,m. Thus, we have reduced expression (1) by summing only over the divisors d of Δ ,

$$Z_{C_N}(x_i) = \frac{1}{N} \sum_{d|\Lambda} \phi(d) X_d^{N/d}$$
 (5)

Denoting $k_j = n_j/d$, $N/d = K = k_1 + ... + k_m$, and considering MSE of (5) we obtain

$$X_d^K \to P(k^m) x_1^{dk_1} \cdot \dots \cdot x_m^{dk_m} = P(k^m) x_1^{n_1} \cdot \dots \cdot x_m^{n_m}$$
 (6)

Combining (5) and (6) we arrive at (2).

It is easy to extend the explicit Formula (2) to the case of *dihedral necklaces* where two colorings are equivalent if one can be obtained from the other by a dihedral symmetry D_N , e.g. colored beads are placed on a circle, and the circle may be rotated and reflected. Start with the cycle indices [5]

Copyright © 2009 SciRes

L. G. FEL 173

$$2Z_{D_N}(x_i)$$

$$= Z_{C_N}(x_i) + \begin{cases} X_1 X_2^L, & \text{if } N = 2L + 1, \\ \frac{1}{2} (X_1^2 X_2^{L-1} + X_2^L), & \text{if } N = 2L \end{cases}$$
(7)

If N = 2L + 1 we have to distinguish two different cases.

1) There is one odd integer $n_j = 2a_j + 1 \in n^m$, while the rest of n_i are even, $n_i = 2a_i$, $L = \sum_{i=1}^m a_i$,

$$\gamma(D_N, n^m) = \frac{1}{2} \left[P(n^m) + P(a^m) \right],$$
where $a^m = (a_1, \dots, a_i, \dots, a_m)$. (8)

2) There is more than one odd integer $n_j = 2a_j + 1 \in n^m$, $1 \le j \le m$,

$$\gamma(D_N, n^m) = \frac{1}{2}\gamma(C_N, n^m). \tag{9}$$

If N = 2L we have to distinguish three different cases.

1) All integers $n_j \in n^m$, j < m are even, $n_j = 2b_j$, and $L = \sum_{i=1}^m b_i$, $b^m = (b_1, ..., b_m)$, $\gamma(D_N, n^m) =$

$$b_1^m = (b_1 - 1, b_2, b_3, \dots, b_m), b_2^m = (b_1, b_2 - 1, b_3, \dots, b_m),$$

 $\dots, b_m^m = (b_1, b_2, b_3, \dots, b_m - 1).$

 $\frac{1}{2}\gamma(C_N, n^m) + \frac{1}{4}\sum_{q=1}^{m}P(b_q^m) + \frac{1}{4}P(b^m), \text{ where}$

2) There is one pair of odd integers, $n_{j_1,j_2} = 2c_{j_1,j_2} + 1 \in n^m$, while the rest of n_i are even, $n_i = 2c_i$,

$$\gamma (D_N, n^m) = \frac{1}{2} [P(n^m) + P(c^m)],
where $c^m = (c_1, ..., c_{j_1}, ..., c_{j_2}, ..., c_m),$
(11)$$

and $L = 1 + c_1 + ... + c_{j_1} + ... + c_{j_2} + ... + c_m$.

3) There is more than one pair of odd integers $n_{j_1,j_2} = 2c_{j_1,j_2} + 1 \in n^m$, $1 \le j_1, j_2 \le m$,

$$\gamma(D_N, n^m) = \frac{1}{2}\gamma(C_N, n^m). \tag{12}$$

This paper is dedicated to the memory of Yoram Zimmels. The research was partly supported by the Kamea Fellowship.

REFERENCES

- G. Pólya, "Kombinatorische anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen," Acta Math., Vol. 68, pp. 145–254, 1937.
- [2] F. Harary and E. M. Palmer, "Graphical enumeration," Academic Press, New York, 1973.
- [3] J. J. Rotman, "An introduction to the theory of groups," Boston, Mass., Allyn and Bacon, Chapter 3, 1984.
- [4] G. Polya and R. C. Read, "Combinatorial enumeration of groups, graphs, and chemical compounds," Springer, New York, 1987.
- [5] F. Harary, "Graph theory," Reading, Addison-Wesley, MA, 1994.
- [6] A. Kerber, "Applied finite group actions," 2nd Ed., Springer, Berlin, Chap. 3, 1999.