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ABSTRACT 
Honey bees are an established animal model for studying learning and memory related be-
haviors. In recent years, honey bees have become more common as a model for investiga-
tions of molecular biology, including gene expression. Honey bees have been used to extra-
polate genetic functions found in other invertebrates, such as Drosophila melanogaster. The 
honey bee model has also provided a means for isolating novel genes, including non-coding 
microRNA fragments. Integrating the study of learning and memory with molecular genet-
ics, the present work examines the effect of learning acquisition and memory consolidation 
in free-choice paradigms on the expression of a suite of genes of interest. Results suggest 
that short-term learning acquisition causes differential expression of microRNA fragments, 
while memory consolidation differentially affects the expression of the serine/threonine pro-
tein kinase gene in honey bees. These results corroborate previous findings suggesting the 
importance of protein kinases in the formation of long term memory, and suggest that mi-
croRNA may play a large role in regulation of cytoskeletal scaffolding proteins.  

 

1. INTRODUCTION 
The purpose of this work is to examine the effect of free-choice learning on a suite of genes in honey 

bees (Apis mellifera). The honey bee genome was sequenced nearly twenty years ago [1]. Since then, com-
parative analyses and bioinformatics have identified homologs and orthologues between the Apis genus 
and other insect models. In addition to the shared similarities between Apis and Drosophila, there are 
marked differences. Two of the most notable differences being honey bees’ unique genes associated with 
caste determination and labor division and increased similarity to vertebrate genomes compared to Dro-
sophila [2].  

Before genome sequencing, the honey bee was a well-established model for behavioral measures of 
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learning [3-5]. Earlier research concentrated on the physiology of learning, focusing on mushroom bodies 
and the structure of memory systems [6, 7]. Now honey bees are an emerging model organism for the ex-
ploration of genetics [1, 8]. Comprehensive research into the differential gene expression profiles between 
the brains of individuals from different castes (e.g., nurse bees versus foragers) has been published [9]. 
Aspects of learning have been shown to alter the expression of associated genes within this species [10], 
making them an ideal choice for examining the effects of free choice on learning and memory-based gene 
expression. In this current research, we add to the literature and expand our understanding of the me-
chanisms of honey bee learning and memory using genetic tools.  

1.1. Honey Bees as Learning Models 

Honey bees have provided a model of invertebrate learning in a wide variety of paradigms. As a mod-
el of invertebrate learning, honey bees show reliable classical conditioning of innate responses, such as the 
proboscis extension [11, 12] and sting extension responses [13]. Likewise, repeated studies have shown 
that honey bees can display learning in free-flight paradigms, such as geospatial learning tasks [14], and in 
modified foraging tasks [3, 14-16]. Honey bees have also been subject to a number of more restrictive 
choice paradigms including shuttlebox tasks [17, 18] and Y-maze tasks [19, 20]. The findings from these 
studies, which encompass a diverse set of tasks, demonstrate that honey bees are an ideal organism to ex-
amine the behavioral outcomes of a variety of learning paradigms. 

In addition to the previously mentioned tasks, honey bees have shown the ability to recall informa-
tion learned in previous experimental exposures. In the short term, studies have shown that honey bees 
will alter their behavior based on learning acquired in previous manipulations or environments [18, 21]. In 
many cases, the acquisition of these behavioral changes occurs quickly, with Wainselboim et al. [21] ob-
serving foraging behavior changes following a single return visit to the foraging patch, and Black et al. [18] 
observing changes in avoidance behavior up to several hours after a color preference manipulation was 
implemented.  

Like the number of learning paradigms used within the species, the duration of learning acquired in 
honey bees varies. Hammer and Menzel [22] noted that olfactory-based learning of the proboscis exten-
sion response is relatively short-lived, decaying after roughly 24 hours to pre-conditioning levels. Motor 
tasks and foraging tasks, however, appear to be more robust, with foraging studies often showing repeated 
visits to the same location over repeated days [23]. As such, when examining the effects of learning and 
memory, it is important to select behavioral outcomes representative of both acquisition and recollection.  

1.2. Genetic Expression 

In addition to their role as a behavioral model organism, honey bees are rapidly becoming a model 
for genetic explorations [1]. A vast majority of genetic analyses in insects are conducted in the well-known 
model organism Drosophila melanogaster. Studies show that honey bees show remarkable genetic similar-
ity to Drosophila [8]. This makes honey bees a logical step for extrapolating genetic results seen in a model 
organism to additional species. In addition to their sequenced genome [1] and similarity to Drosophila [8], 
honey bees have been used as a model of gene expression in a variety of inquiries. These include the ex-
pression of learning-based genes [10], physiological stress [10, 24, 25], and foraging tasks [26].  

Four genes were selected for their functions related to learning and memory formation in honey bees 
and related insects. These genes of interest include coding genes, which produce mRNA for protein trans-
lation, and genes that produce non-coding microRNA. The genes consist of the actin-related protein 1 
(ARP1), the Serine/Threonine Protein Kinase (S/T), and the microRNA fragments 210 and 932 (mir210; 
932). While many of these genes have been linked to functions of neural plasticity or synaptic transmis-
sion, few have been examined in terms of expression following behavioral performance within honey bees. 
As such, this work presents a preliminary analysis of gene expression based on learning performance.  

1.2.1. Protein Coding Genes 
The actin gene and actin-related proteins (ARPs) originated from a shared common ancestor [27, 28]. 
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ARPs are known to be conserved as highly as histone during the evolution of eukaryotes [29]. ARPs are 
present in all eukaryotes as well as numerous species of bacteria and archaea [30]. Actin is involved in fi-
lament formation in the cytoskeleton, but also plays an important role in many cellular functions and bi-
ochemical activities ranging from motility and muscle contraction to cell division and signaling. Actin has 
been identified as a major cytoskeletal scaffold protein within honey bee brains and is linked to extensive 
neural plasticity systems within honey bees [31]. Actin-related proteins share modest sequence similarity 
to actin isoforms and are characterized by their degree of similarity to actin. The ARP family comprises 
ten members, of which, ARP1 is the most similar to actin [32].  

Cristino et al. [33] documented a change in the expression of the ARP1 gene corresponded to mole-
cular changes in the brain of honey bees during memory formation in an associative olfactory learning 
paradigm. Based on this finding, ARP1 expression has functions that potentially affect learning and mem-
ory and activity-dependent neuronal plasticity in honey bees. This is not surprising, as the actin cytoskele-
ton has been identified as a key mediator in receptor activation during learning and cellular changes in 
long-term memory in the amygdala [34].  

Serine/threonine protein kinase (S/T) was the second gene of interest in the current investigation. 
Many protein kinases are involved in higher-order functions of the central nervous system, including 
synaptic plasticity, which is required for learning and memory performance [35, 36]. Tejedor et al. [37] 
indicated that protein kinases play critical roles in growth, differentiation, and brain development and 
function. Protein kinases related to learning and memory affect synaptic transmission or ion channel den-
sity, often regulating gene expression and protein synthesis, which can stimulate neurogenesis [38].  

A novel serine/threonine protein kinase was isolated in mice [39]. Expression thereof was shown to 
transiently increase during the consolidation of Pavlovian fear memory [40]. S/T is also reportedly in-
volved in memory formation in Drosophila, where S/T and the cAMP-dependent protein kinase A boost 
long-term memory (LTM) involved in the maintenance of anesthesia-sensitive memory (ASM), which in-
cludes short-term memory (STM) and middle-term memory (MTM) [41]. 

1.2.2. MicroRNA 
MicroRNA (miRNA) are classified as short non-coding or non-messenger RNAs [42]. The role of 

miRNAs has become an area of major interest in the regulation of phenotypic and developmental plastici-
ty. These miRNA are known to be modifiers in learning and memory processes in both vertebrates and 
invertebrates [43-46]. Preliminary studies on the spatiotemporal patterning of miRNA expression in adult 
honey bees suggested that the miRNA landscape changes during the age-dependent switch in labor divi-
sion from nurse to forager in female workers [31, 47-52]. 

The miR-210 gene was selected based upon prior implication in learning and memory in honey bees. 
It was previously reported that honey bees’ miR-210 was differentially expressed when performing differ-
ent behavioral duties (e.g., brood care and foraging) [47] A contribution of miR-210 to impair the cogni-
tion of rats was detected by Ren et al. [53] in addition to Cristino et al. [33] predicting the presence of 
eight mRNA targets for miR-210 in honey bees. 

MiR-932 to date has only been isolated in insects such as honey bees [54] and Drosophila [55]. It was 
shown that miR-932 regulates Act5C in laboratory fruit flies and honey bees, therefore miR-932 has a di-
rect effect on the actin-related plasticity mechanism [56, 57]. Cristino et al. [33] reported that high expres-
sion of miRNAs, including miR-932, in honey bees aids to boost the stability of memory by managing the 
dynamics of actin polymerization. In this regard, the decreased levels of miR-932 have a significant effect 
on olfactory LTM recall but not memory acquisition. 

1.3. The Present Work 

Given the varied nature of the learning ability and memory duration of honey bees and the known 
impacts of the genes of interest, the present work undertook two experiments. Both experiments were 
conducted to explore how learning acquisition and memory formation affects the expression of the genes 
of interest. Experiment 1 made use of a Y-Maze choice paradigm to assess changes in short-term learning 
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acquisition. Experiment 2 made use of a repeated exposure flying foraging task to assess memory forma-
tion. It was expected that the gene expression of the four genes of interest would differ between individuals 
displaying high performance on the learning tasks, and those that displayed poor learning. 

2. METHODS 
2.1. Subjects 

Subjects consisted of honey bees (Apis mellifera) from research hives maintained by the laboratory of 
Comparative Psychology and behavioral Biology at Oklahoma State University (Stillwater campus) near 
Stillwater, OK. All subjects were trained to a feeder containing a 1.5 M sucrose solution located roughly 20 
m away from the hives. Upon landing on the feeder, bees were collected individually in 15 mL falcon 
tubes. Collection of subjects in this manner was conducted, so that all subjects could safely be assumed to 
be foragers, and as such in the same and latest stage of the honey bee life cycle [58]. 

For Experiment 1, subjects (n = 56) were transported to a research laboratory and placed in a com-
munal wire mesh cage with a mixture of honey and sucrose as a food source. Experimental protocols were 
conducted within 24 hours of the subjects’ capture.  

In Experiment 2, subjects (n = 52) were captured using the same method and marked using TestorsTM 
enamel paints for identification. Marks were placed on either the abdomen or thorax of the individuals to 
avoid impeding locomotion once dried. Subjects were housed in a wire mesh cage with no access to food 
prior to experimental protocols, and were subject to experimentation within 1 hour of their capture. Upon 
completion, the subjects were placed back into the same cage with access to a sucrose and honey mixture 
as a food source. 

2.2. Experiment 1 

Experiment 1 made use of a Y-maze choice learning paradigm. In invertebrate systems, Y-mazes are 
frequently used to assess both spatial learning, and learning following classical conditioning [19, 59]. This 
method was selected to examine learning in the short-term. This methodology allowed subjects free mo-
bility and individual choice; whereas other measures of classical conditioning, like the proboscis extension 
response [60, 61], require restraining the individual, and may induce physiological stress-related gene ex-
pression.  

2.2.1. Apparatus 
The Y-maze apparatus consists of a three-armed maze 3D-printed using white acrylonitryle butadiene 

styrene (See Figure 1) [62]. Each arm has internal dimensions measuring 50 mm × 50 m × 100 mm posi-
tioned at an equidistant angle from the opposing two arms. Slots are positioned at the end of two arms to 
allow insertion of color stimuli, which consist of 53 mm × 55 mm × 2 mm 3D-printed acrylonitryle buta-
diene styrene plate painted with TestorsTM blue or yellow enamel paint. The surface of the apparatus was 
enclosed using a sheet of 2 mm plexiglass to ensure subjects remained in the apparatus during testing. 
Placed at the bottom of each color stimulus within the Y-maze was a well containing 40 mL of either a 1 M 
sucrose solution or a 1 M NaCl solution. 

The third arm ends in a docking slot, to allow for introduction of subjects from containment cham-
bers. Each containment chamber consists of a 3D-printed acrylonitryle butadiene styrene compartment 
with internal dimensions of 4 cm × 5 cm × 4 cm. On the portion of the containment chamber that is slot-
ted into the docking slot, a slot is present to allow for the opening and closing of a 45 mm × 45 mm × 2 
mm acrylonitryle butadiene styrene gate. This allows researchers to release subjects from the containment 
chamber into the docking arm of the Y-maze.  

2.2.2. Behavioral Protocol 
For all subjects, behavioral protocol was comprised of a training phase and a test phase. Within the 

training phase, there were six five-minute trials offset by five-minute rest periods. For each subject, sucrose  
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Figure 1. Y-Maze apparatus Located at the top of the apparatus are the two choice arms with visual 
stimuli. Located at the bottom is the containment chamber with removable gate to allow for release 
and recapture of the experimental subject. Internal dimensions of the apparatus measure 50 mm × 
50 m × 100 mm within each arm. 
 
and NaCl solutions are paired with one of the two stimulus colors (blue or yellow). Location of the col-
or/solution pair was counterbalanced between trials to control for positional biases. The number of visits 
to correct and incorrect wells were recorded to determine overall individual performance. 

Following the successful completion of the training phase, individuals were subject to the test phase. 
In test phase trials, solution wells were replaced with empty wells, and individuals were introduced to the 
apparatus as before. Individuals were then subjected to six additional five-minute trials offset by five- 
minute rest periods. For these trials, the color corresponding initial choice was recorded, and the subject 
was removed from the apparatus for the remainder of the trial. The initial choice was defined as the first 
occurrence of the subject interacting with and searching the empty well. Visits to the correct (color paired 
with sucrose) and incorrect (color paired with NaCl) wells were recorded to determine overall individual 
performance. 

Individuals were removed from the experiment (n = 20) if they met any of the following conditions: 
failed to interact with either well in the training phase for three complete five-minute trials, failed to inte-
ract with either well in the test phase for three complete five-minute trials, or perished during experimen-
tal protocols. Following successful completion of the behavioral protocol, subjects were removed from the 
apparatus and placed into a 15 mL falcon tube. Falcon tubes were subsequently submerged in liquid nitro-
gen to cease metabolic activity and preserve samples for genetic analysis. Samples were stored in a -80˚C 
freezer until RNA extraction. 

2.3. Experiment 2 

Experiment 2 made use of a modified version of the artificial flower patch experiment by Wells et al. 
[63]. This experiment made use of repeated exposure to the same flower patch to assess memory forma-
tion following previous exposure in a contained free-flight design. This was selected in order to minimize 
experimenter handling, as well as allow individual free choice.  

2.3.1. Apparatus 
The flower patch used in this experiment consisted of a 1 m × 1 m × 2 mm plexiglass sheet. The sheet 

was backed with black paper, and included a grid of 64 colored circles (blue and yellow) each 8 cm in di-
ameter, and distributed in the pattern seen in Figure 2. The flower patch was then housed in a 1 m × 1 m  
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Figure 2. Diagrammatic view from above of flight arena with 64 artificial flowers arranged in four 
squares. The grid overall consisted of a 1 m × 1 m surface, with each colored circle being 8 cm in 
diameter. 
 
× 50 cm mesh enclosure. The flower patch enclosure was used to prevent external influences from inter-
fering with research subjects, or external subjects interacting with the flower patch. 

2.3.2. Behavioral Protocol 
As with Experiment 1, Experiment 2 consisted of both a training phase and a trial phase. In the train-

ing phase, a well containing 40 mL of either a 1 M sucrose or 1 M NaCl solution was placed at the center of 
each colored circle. Solutions were paired with a color stimulus, and counterbalanced between subject 
groups to account for any color biases. Groups of six to eight individuals were introduced to the flower 
patch simultaneously, and observed for a period of two hours.  

Following the two-hour observation period, subjects were removed from the flower patch and placed 
into a communal wire mesh cage containing a sucrose/honey mixture as a food source. Subjects were 
housed in this manner overnight in a low-light environment at 24˚C. The following day, 24 hours past 
their initial introduction to the flower patch, subjects were reintroduced to the apparatus for the test 
phase. 

Prior to reintroduction to the flower patch, empty wells were placed in the center of each colored cir-
cle. Test phases consisted of a secondary one-hour observation phase in which the number and color of 
well interactions were recorded for each individual. Interaction was defined by an individual searching a 
well or inserting its head into the well.  

Individuals were removed from the experiment (n = 17) if they met one of the following exclusion 
criteria: failure to interact with a well during either training or test phases, death during training or test 
phases, or death during the overnight housing period. Overall, 52 individuals successfully completed the 
behavioral protocol. 

Following successful completion of the behavioral protocol, subjects were transferred to individual 15 
mL falcon tubes. Tubes were then submerged in liquid nitrogen to cease molecular activity and preserve 
samples for RNA extraction. Samples were stored at −80˚C until tissue and RNA extraction. 

2.4. Sample Selection 

In Experiment 1, individuals were separated into two groups (high and low performance) and a sub-
sample of each group was selected for RNA extraction. For Experiment 1, the proportion of visits to cor-
rect wells during the test trial was used to differentiate between high-performing and low-performing in-
dividuals. As such, those with 100% correct visitation in the test trial were considered the highest per-
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forming, and those with 0% correct visitation in the test trial were considered the lowest performing. In 
the event of similar correct visitation, the number of overall correct visits in the training phase was used to 
determine subsequent ranking. 15 individuals representing high performance and 15 individuals repre- 
senting low performance were selected.  

A similar classification system was used for Experiment 2. The proportion of correct color visitation 
in the test phase determined high performing and low performing individuals. As such, individuals with 
100% correct visitation were considered high-performance individuals, while those with 0% correct visita-
tion were considered low performance. As with Experiment 1, in the event of similarly classified individu-
als, training phase performance was used to determine subsequent ranking. For this experiment, 10 indi-
viduals were selected to represent high performance, and another 10 to represent low performance.  

2.5. RNA Extraction and Quantification 

Following each behavioral experiment, subjects were frozen in liquid nitrogen to preserve tissue, and 
halt cellular processes. Subjects were removed from liquid nitrogen and stored in a freezer at −80˚C until 
dissection. Sample dissection consisted of the removal of brain tissue on a bed of solid CO2 to prevent the 
tissue from thawing. Dissections involved the removal of cuticle tissue from the top of the subject’s head, 
followed by the removal of ocular and hypopharyngeal tissues. Brains were returned to the −80˚C freezer 
until RNA and DNA extraction. 

Genetic material was collected from samples using a GenElute FFPE RNA/DNA purification kit 
(Sigma-Aldrich, St. Louis, MO), allowing the collection of both DNA and RNA. The presence of genetic 
material in each sample was confirmed and quantified using a NanoDrop (ND-1000, NanoDrop Technol-
ogies, Inc., Wilmington, DE, USA). RNA samples were diluted with nuclease-free water to a consistent 
concentration of 40 ng/µL to normalize analyses.  

To quantify relative genetic expression, reverse transcriptase quantitative polymerase chain reaction 
(RT-qPCR) was conducted on the RNA samples, using a BioRad iTaq Universal qPCR kit (Bio-Rad La-
boratories, Hercules, CA, USA). For each gene of interest, a master mix was created containing 300 µL 
SYBR Green, 7.5 µL reverse transcriptase, 1.8 µL reconstituted forward primers, 1.8 µL reconstituted re-
verse primers, and 288.9 µL nuclease-free water. Master mixes were distributed in 8 µL aliquots, with 2 µL 
aliquots of the respective diluted sample. Each sample was replicated in triplicate for experimental control. 

Samples were analyzed using a Bio-Rad CFX Connect Real-Time PCR system (Bio-Rad Laboratories, 
Hercules, CA, USA). Analyses consisted of a 10-minute reverse transcription phase at 50˚C, followed by a 
1-minute enzymatic activation phase at 95˚C, and thirty-nine cycles of denaturation, annealing, and ex-
tension. Cycle thresholds (CT) were recorded for each sample.  

3. RESULTS 
Data for technical replicates of each sample were averaged to generate a representative cycle threshold 

for the organism. Data were analyzed using IBM SPSS version 24 (IBM, Armonk, NY). Comparison of 
each gene between high performing and poor performing subjects were conducted using independent 
samples t-tests with a Bonferroni correction for α-inflation. The corrected α-value was 0.0125. Assump-
tions of Normality were assessed using a Levene’s Test for equality of variance. 

3.1. Experiment 1 

The Levene’s test for equality of variance was violated for the expression results of mir932 (F = 
10.291, p = 0.004). Significance was interpreted without the assumption of equivalent variance for this 
gene. All other genes did not violate the assumption. 

No statistically significant differences were observed in cycle threshold for mir210 (t(25) = −0.788, p 
= 0.438), ARP1 (t(23) = −1.336, p = 0.195), and S/T (t(25) = −1.320, p = 0.199). A significant difference 
was observed for mir932 (t(19.016) = −2.939, p = 0.008) with high performance individuals displaying 
lower cycle threshold values (M = 29.84, SD = 1.26) than low performance individuals (M = 30.86, SD = 
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0.049). It is important to note that cycle threshold corresponds to the number of replication cycles re-
quired to reach logarithmic RNA/DNA replication in PCR reactions. Lower cycle thresholds correspond to 
higher baseline RNA concentrations (See Figure 3). 

3.2. Experiment 2 

For experiment 2, the Levene’s test for equality of variance was violated in the cases of both ARP1 (F 
= 5.071, p = 0.046) and S/T (F = 4.634, p = 0.047). As such, results were analyzed without the assumption 
of equal variance. Results for mir210 and mir932 did not violate this assumption. 

Results for mir210 (t(14) = −2.526, p = 0.024), mir932 (t(16) = −2.249, p = 0.039), and ARP1 
(t(10.963) = 0.485, p = 0.637) showed no significant differences in cycle threshold between high perfor-
mance and low performance groups. Results in the expression of S/T did display a significant difference 
(t(10.228) = −3.508, p = 0.005), with high performance individuals displaying lower cycle thresholds (M = 
26.07, SD = 0.08) than low performance individuals (M = 26.33, SD = 0.21). These results suggest that high 
performance individuals had higher baseline expression of S/T than did low performance individuals (See 
Figure 4). 
 

 
Figure 3. Gene expression by cycle threshold for all genes of interest in the Y-Maze experiment. 
Presented as comparison between high performance and low performance individuals. Significant 
differences noted with an asterisk. 
 

 
Figure 4. Gene expression by cycle threshold for all genes of interest in the flower patch experiment. 
Presented as comparison between high performance and low performance individuals. Significant 
differences denoted with an asterisk. 
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4. DISCUSSION 
The purpose of this work was to provide a preliminary assessment of whether behavioral acquisition 

or memory consolidation affected the expression of four genes of interest within honey bees exposed to 
free-choice learning paradigms. Results from the first experiment suggest that expression of mir932 ap-
pears to be affected by behavioral acquisition. The results of the second experiment suggest the expression 
of the S/T gene appears to be affected by memory consolidation.  

Variation in the expression of mir932 in the Y-maze sample suggests that microRNA may serve as a 
more powerful neuromodulator in the short term than previously thought. The microRNA product of the 
mir932 gene has been linked to regulation of actin in honey bees [56]. Actin has been identified as a major 
cytoskeletal scaffold protein present in honey bee brains and is linked to systems of neural plasticity within 
honey bees [31]. Alterations in synaptic scaffolding as cellular systems reform following learning may re-
sult in increased expression of mir932, as systems require additional actin restructuring, suggesting that 
mir932 may be an adequate measure of both learning and cellular stress present in neural tissue. As such, 
expression of mir932 may be a result of learning acquisition promoting the restructuring of neural path-
ways or could potentially explain differential performance, with individuals innately expressing higher le-
vels of mir932 displaying higher learning potential as a result of the microRNA fragment’s presence. Fur-
ther research is necessary to determine the directional nature of this relationship. 

It is surprising then, given mir932’s relationship with actin and related protein families, that signifi-
cant results are not observed in the expression of ARP1. As noted by Li et al. [31] and Cristino et al. [33], 
actin and related proteins are necessary for the alteration of cytoskeletal scaffolding, and have been directly 
implicated in the onset of neuroplastic responses. The fact that we do not see a significant change in the 
expression of ARP1 in either experiment suggests that ARP1 in particular is likely not responsible for sig-
nificant neuroplastic changes in honey bees. It should be noted that ARP1 was investigated in these studies 
following hypotheses by both Poch and Windsor [32] and Cristino et al. [33] and based on the structural 
similarity of the protein product of ARP1 and actin itself. It is possible that post-transcriptional factors, 
rather than mRNA transcription itself, are more influential in the role of actin and related proteins on 
neuroplasticity. 

Additionally, it should be noted that this is the first study to link expression of a microRNA fragment 
directly to a behavioral intervention. Past studies, such as Cristino et al. [33] have previously only specu-
lated about the function of microRNA fragments, complete with hypothesized mechanism. While the 
present study does not illustrate a clear mechanism, it does suggest that there is a difference in expression 
between high performance and low performance individuals of learning acquisition. 

It is also possible that the expression difference observed in mir932 is linked to a behavioral pheno-
type, rather than a result of learning altering expression. Allelic differences in the individual may result in 
a preexisting difference in expression that allows for some individuals to perform better at short term 
learning acquisition. While the present study is insufficient to determining the causal relationship between 
behavior and expression, the potential for a high learning phenotype in honey bees is of great interest. 
Further studies are required in order to illustrate whether or not the difference in expression was a result 
of transcriptional or allelic differences. 

The differential expression of the S/T gene in Experiment 2, in the absence of differential expression 
in Experiment 1, corroborates the findings of Stork et al. [40], suggesting that the gene was implicated in 
the consolidation of memories. This differential expression, coupled with evidence that many such protein 
kinases are found primarily in situations of cellular growth and differentiation [37-39], suggests that 
memory consolidation in honey bees is likely linked to neurogenesis or collateral sprouting in these indi-
viduals, rather than synaptic plasticity. 

It is worth noting that previous inquiries in the expression of other protein kinase-related genes in 
honey bees have also returned null results. Black et al. [10] examined protein kinase A in an aversive con-
ditioning choice task, and noted no significant difference between experimental groups. These results are 
similar to those observed in Experiment 1, as both studies made use of a short-term learning task, rather 
than the development of long-term learning.  
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It is possible that the results seen in the present study may differ for ARP1 and S/T expression should 
these genes be analyzed at the protein level, rather than at the mRNA expression level. Many such proteins 
possess posttranscriptional effects that are also affected by the presence of behavioral phenomena that 
could further elevate the differences between groups. The present study made use of RNA transcription 
instead of protein formation in order to assess the effects of learning solely on gene expression. Results of 
S/T in particular do suggest that memory consolidation, rather than learning can increase the expression 
of the gene. Whether or not that increase of expression corresponds to increased protein formation should 
be assessed by subsequent research. 

Due to the results of S/T and mir932 showing differences in expression only based on one experiment 
each, it is possible that the type of learning is affecting expression. Experiment 2 made use of a significant-
ly longer term manipulation, allowing for expression based off of both learning acquisition and memory 
consolidation. Experiment 1 on the other hand allows for exploration of strictly short term learning acqui-
sition. The differences in these two genes of interest suggest that mir932 is affected by short term learning, 
while S/T is more likely affected by memory consolidation. This difference does suggest that the type of 
learning is potentially a factor in gene expression in this species.  

The present study does present some limitations, primarily that sample sizes were relatively small. 
The correspondingly reduced statistical power may prevent the detection of small effect sizes, and as such 
results must be interpreted with this in mind. This minimal sample size also prevents conclusions from 
being anything more than preliminary and speculative. To ensure that conclusions are supported, addi-
tional data is required. Subsequent replication and expansion of the work would illustrate more fully the 
relationship between learning outcomes and the expression of the genes of interest. The present data does 
suggest that subsequent work is likely to yield continuing interesting results. 

Likewise, it is worth noting that sample RNA concentrations for the genes of interest were low. For 
most genes of interest, cycle threshold values were consistently above 30, indicating very low concentra-
tions and binding efficiency with cDNA primers. This is likely due to the extraction method used, which 
was designed for the extraction of both RNA and DNA products, as well as the overall small size of the 
RNA fragments of interest. MicroRNA fragments, in particular, are generally only around 20 nucleotides 
in length [64]. As such, the high cycle thresholds must be interpreted with caution, but are likely still in-
dicative of appropriate expression. 
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