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Abstract 
The purpose of this work was to develop a Screened Hydrogenic Model (SHM) 
to accurately calculate the electron energies for light atoms and ions with up 
to ten electrons for atomic numbers up to 18. The total energy of an atom or 
ion was calculated with effective nuclear charges and screening parameters 
for each electron type (1s, 2s and 2p) within a specific electron configuration. 
Multiple energy states, centered at the total energy, were calculated for elec-
tron configurations that have Russell-Saunders coupling. The energy of each 
electron included its relativistic energy, EREL, but close overall agreement be-
tween the calculated and experimental energies of multi-electron configura-
tions required that the one-electron expression for EREL be modified in a sim-
ple manner. In the present work, 98% of the 587 calculated energies for light 
atoms/ions have a relative error within ±0.1% of the corresponding experi-
mental energies. The effective nuclear charges described in this work allow 
hydrogen-like wave functions to be defined for the electrons within a mul-
ti-electron configuration. The SHM, described in this work, is available for 
future calculations involving light atoms and ions. 
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1. Introduction 

It is well known that the energy levels of a one-electron atom or ion have been 
determined by solving the Schrӧdinger equation. The energy of a multi-electron 
atom or ion is significantly more difficult to calculate with a modified Schrӧdinger 
equation because the electrons repel one another as they orbit the nucleus. One 
theoretical approach for determining the energy of complex atoms and ions is 
the self-consistent field (SCF) method. This approach starts with a modified 
Schrӧdinger equation, calculates the energy with a basis set of atomic functions, 
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modifies the potential-energy term, and iteratively repeats this process by com-
puter while solving for minimum total energy. This process is repeated until the 
potential energy values for the electrons are the same as the potential energies 
that were used to calculate them. This approach, which can also be applied to 
molecular calculations, gives increasingly better agreement as the basis set is ex-
panded and the complexity of the calculation is increased. 

The Screened Hydrogenic Model (SHM) is an alternative approach that uses 
the one-electron wavefunctions of the hydrogen atom for each electron of a mul-
ti-electron atom by substituting an effective nuclear charge Zi for the value of Z. 
Agreement with experimental energies can be obtained by varying Zi with screen-
ing parameters. The SHM provides a starting point for semi-empirical calcula-
tions involving complex atomic or molecular systems. 

The SHM was first used by Slater [1] [2] who approximated the energies of 
electrons in 1s and 2s/2p orbitals as ( )2 22i iE Z n= −  in hartree atomic units 
(a.u.). Z1S (with ni = 1) equals Z − 0.30 when two 1s electrons were present and 
both Z2S and Z2P (with ni = 2) equals Z − 1.70 − 0.35 (N2S +N2P − 1) when two 1s 
electrons were present. The Slater 1s wave function was the same as the hydro-
gen 1s wave function with Z1S substituted for Z. The Slater 2s and 2p wave func-
tions both had the same value of Z2S = Z2P substituted for Z and the same radial 
part of the hydrogen-like 2p wave function but with 2s or 2p angular parts. Nu-
merous molecular orbital calculations were based on Slater wave functions. 
Layzer [3] [4] [5] and Kregar [6] [7] each calculated screening parameters and 
electron energies with series functions in powers of Z. 

The calculation of the properties of dense plasmas at high temperatures 
[8]-[14] is an important application of the SHM that involves the determination 
of the energies of atoms and ions across the periodic table. The Dirac equation, 
which will be discussed in the next section, is an alternative form of the SHM 
that includes relativistic corrections for each electron. A closer agreement be-
tween experimental and calculated electron energies is expected to lead to im-
proved predictions of plasma properties. 

In the present work, the SHM will be used for atoms and ions with up to 10 
(1s, 2s and 2p) electrons with Z up to 18 to obtain close agreement between cal-
culated and experimental energies. The effective nuclear charges will be calcu-
lated for individual configurations. The effective nuclear charges for 2s orbitals 
will be treated separately from those of 2p orbitals. Values of the screening pa-
rameters will be determined by the criterion of the lowest sum-squared error 
between the calculated energies and the corresponding 587 experimental elec-
tron energies of light atoms. Relativistic corrections will be made for each elec-
tron with a modified parameter to be described. Hydrogen-like wave functions, 
which can be written straightforwardly for these electrons, will be available for 
future calculations. 

2. Equations for the Electron Energies 

The Dirac fine-structure equation (see Bethe [15]: Eqn. 17.1) gives the exact 
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binding energy of a single electron in a hydrogen-like atom or ion (in hartree 
atomic units): 

( ) ( ) ( )
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     (1)   

In this equation, Z is the atomic number, ni is the principle quantum number, 
α is the hyperfine constant, and j is the total angular momentum quantum 
number equal to S + L. The relativistic energy, 2

o eE m c= , of the rest mass me of 
the electron has been subtracted. One hartree (atomic unit) equals α2mec2, where 
α2 = 5.3251 × 10−5. This equation can be expanded in powers of (αZ)2 (see Mi-
zushima [16], Eqn. 7-87) to give the following equation (in a.u.): 

( ) ( ) ( ) ( )2 2 2 4 3 1
2

1-electron 2 2 1 3 4i i iZ n Z n nE jα   − − − + 
 = +     

�  (2) 

In Equation (2), the first term ( )2 22 iZ n−  equals the energy of the Schrӧdinger 
equation and the second term is the relativistic correction EREL in atomic units.  

The total energy for a multi-electron configuration, 1 2 21s 2s 2pS S PN N N , of the 
Screened Hydrogenic Model (SHM) is the following summation of one-electron 
energies where Zi is the effective nuclear charge calculated with screening para-
meters that are specific to the number, Ni , of electrons in different orbitals (in a.u.):  

( )1 2 2

2 2
, , , REL2

S S PZ N N N i i iE N Z n E= −  + ∑ .               (3)    

An alternative to Equation (3) is the summation of the total energy for the 
electrons with Equation (1) modified with Zi for multi-electron configurations.  

Snyder [17] [18] proposed the following equation for EREL for the electrons of 
multi-electron configurations, where Zi has been substituted in Equation (2) for 
Z (in a.u.): 

( ) ( )2 4 3
REL

1
2

2 1 3 4i i i iE jN Z n nα  = − + 


 
  −    

∑ .         (4)  

In the present work, poor overall results were observed when j was set equal to 
S + L in Equation (4) to calculate EREL and 

1 2 2, , ,S S PZ N N NE  in Equation (3) as the 
sum over multiple electrons in atoms and ions. However, when j of Equation (4) 
was empirically set to a constant value of 1/2, the resulting Equation (5) gave 
good overall agreement between calculated and experimental energies for con-
figurations with 1s, 2s and 2p electrons. The constant value of j = 1/2 is consis-
tent with EREL being determined by the intrinsic electron spin, s = 1/2, of each 
electron in the summation rather than by j = S + L of the atomic state(s) of the 
multi-electron configuration. 

 ( ) ( ){ }2 4 3
REL ,1 3 4 2i i i i i ZnE N Z nα= −   − −Λ  ∑            (5) 
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The Retherford-Lamb correction, Λi,Z , has been added to Equation (5) but 
only the 1s electrons will be included in the present work. When there is one 
electron in the 1s orbital, values of Λ1S,Z were calculated from Kabir ([19]: Eqn. 
4); see also Garcia [20]). Values in units of Rydbergs were divided by two to 
convert them to a.u. When there are two electrons in the 1s orbital, the values of 
Λ1S,Z (in a.u.) were calculated together for both electrons from Kabir ([19]: Eqn. 
5). A value of Λ1S,Z shown in Equation (5) is the correction per 1s electron. 
Hartmann ([21]: Table V) lists these values for Z from 2 to 36. These calcula-
tions of Λ1S,Z follow the notation of Kabir [19] that uses Z rather than Zi . 

3. Parameters for the Screened Hydrogenic Model 

In the following equations, Zi is the effective nuclear charge for orbital “i” and Ni 
is the number of electrons in each orbital type (1s, 2s and 2p) of a given confi-
guration. The numbers shown in square brackets and the numerical values of 
parameters, C1 through C9, will be described later.  

 ( )2
1 1 1 2 2 20.3125 0.030 0.006 1S S S PZ Z Z Z N C N C N = − − − − − −     (6) 

 ( )2 3 1 4 2 5 21S S S PZ Z C N C N C N= − − − −                (7) 

 [ ]( )2 6 1 7 2 8 9 2 1P S S PZ Z C N C N C C Z N= − − − − −            (8) 

The (Ni − 1) factors for each orbital type are needed to exclude self-screening 
by a single electron of the same orbital type. For example, the 1s electron of the 
hydrogen atom does not screen itself from the nucleus. 

In some configurations, the electron energy is split into 2, 3, 4 or 6 states by 
Russell-Saunders coupling. The notation of Slater ([2]: p. 343), shown in Table 1 
for those configurations, is used to calculate the energies of the individual levels 
centered at Eav that equals 

1 2 2, , ,S S PZ N N NE  of Equation (3). Eav is the weighted- av-
erage energy of multiple states of a configuration where the weighting factor for 
each state is ( )( )2 1 2 1S L+ + . For example, a 4P state has a weighting factor 
 
Table 1. Energies of multiplets of certain configurations with s and p electrons from [2]. 

sp or sp5 sp2 or sp4 

3Po: Eav − 1/6G 1(sp) 
1Po : Eav + 1/2G 1(sp) 

4P: Eav − 3/25F 2(pp) − 1/3 G 1(sp) 
2P: Eav − 3/25F 2(pp) + 2/3 G 1(sp) 

2D: Eav + 3/25F 2(pp) 
2S: Eav + 12/25F 2(pp) 

p2 or s2p2 or p4 or s2p4 

3P: Eav − 3/25F 2(pp) 
1D: Eav + 3/25F 2(pp) 
1S: Eav + 12/25F 2(pp) 

sp3 

5So: Eav − 9/25F 2(pp) − 1/2G 1(sp) 
3So: Eav − 9/25F 2(pp) + 5/6G 1(sp) 

3Do: Eav − 1/6 G 1(sp) 
1Do: Eav + 1/2 G 1(sp) 

3Po: Eav + 6/25F 2(pp) − 1/6 G 1(sp) 
1Po: Eav + 6/25F 2(pp) +1/2 G 1(sp) 

p3 or s2p3 

4So: Eav − 9/25F 2(pp) 
2Do: Eav 

2Po: Eav + 6/25F 2(pp) 
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of 4 × 3. The calculation of the energies of the states may involve couplings, G 1 

(1s, 2p), F 2(2p, 2p), and/or G 1(2s, 2p).  
In this work, the G 1 and F 2 couplings will be estimated by the following equa-

tions (in a.u.). The numerical values of parameters, C10 through C15, will be de-
scribed later.  

 ( )1
10 2 111s, 2p PG C Z C= −                        (9) 

 ( )
12 2 2

2
13 2 2

14 2 2

if 0
2p,2p if 1

if 2

P S

P S

P S

C Z N
F C Z N

C Z N

=
= =
 =

                  (10) 

 ( )1
15 22s, 2p PG C Z= .                       (11)  

4. Treatment of Experimental Energies 

The energies for each element and configuration 
1 2 2, , ,S S PZ N N NE  are computed by 

adding the energies from spectroscopic data [22] [23] that are required to re-
move electrons from the atom or ion, starting with the ionization potential of 
the 1-electron ion for each element. The calculated values of the energies of the 
1-electron ions were corrected for the reduced mass of the electron. The subse-
quent ionization potentials and transitions in wave numbers were divided by 
−219,474.62 cm−1 per hartree to convert them into a negative energy in a.u. For 
example, the energy of the 1s22s1 ground state of lithium involves the sum of the 
three ionization potentials of lithium. The energy of the excited state of lithium 
in the 1s22p1 configuration equals the same sum of the three ionization poten-
tials minus the transition energy from the ground state of lithium to its 1s22p1 
excited state, resulting in a total energy that is less negative than the ground 
state.  

For certain P and D states, fine structure due to j coupling in the form of 
doublets, triplets, etc. has been tabulated in the literature [22] [23] with their as-
signed values of j. In these cases, an average experimental energy, weighted by 
(2j + 1), has been calculated for use in the present work. The configuration, 
1s12s1, has ortho and para terms, 3S and 1S with nearly the same energy. When 
these terms were listed separately, a three-to-one weighted average was used to 
calculate the average experimental energy of the configuration. 

The experimental energies, computed in this work from spectroscopic data for 
the neutral atoms of helium through neon, were compared to the corresponding 
experimental total energies listed by Veillard [24]. The energies of these nine 
atoms each agreed within ±0.001 a.u., except for oxygen that agreed within ±0.02 
a.u. (compared to its total experimental energy of −75.1101 a.u.).  

5. Computational Methods  

In the present work, 587 energy states in 293 different configurations of atoms 
and ions of helium through argon have been used to calculate fifteen parameters, 
C1 to C15. Configurations with up to a total of ten (1s, 2s and 2p) electrons of 
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atoms or ions and up to an atomic number of 18 have been included. The para-
meters were determined by the criterion of least-squares error by the use of al-
ternating cycles of computation. The algorithm involved a simple search that 
successively varied parameters C1 through C9 in step changes (−1 step, 0 step and 
+1 step) per parameter and the process was repeated until no further reduction 
in the calculated sum-squared error was observed for a given step size. The step 
size was then reduced in half (eventually down to 10−4) to find the values of the 
parameters that gave the lowest sum-squared error. The number of combina-
tions that were searched was 39 = ~20,000 per cycle. For each cycle, Equation (3) 
was used to vary and test parameters to find the lowest sum-squared error be-
tween calculated and experimental energies. 

Parameters C10 through C15 of Equations (9) through (11) were used to esti-
mate the values of G 1(1s, 2p), F 2(2p, 2p) and G 1(2s, 2p), which determine the 
energies of certain states centered at the average energy of a configuration with a 
multiplet. These six parameters were determined by a separate search of 36 = 729 
combinations per cycle. This faster cycle was repeated and optimized for a given 
step size before switching to the 9-parameter cycle. The six parameters could be 
optimized separately because they do not change the value of the average ener-
gies of the configuration, but change the spacing among states. Computations were 
made in double precision on a personal computer with a ~2000-line FORTRAN 
program. 

6. Results 

The sum-squared error between 587 experimental and calculated energies in this 
work was 0.58 (a.u.)2. The average deviation was ±0.023 a.u. and the standard 
deviation with the experimental energies with 15 degrees of freedom was 0.033 
a.u. In the present work, 98% of the calculated energy levels have a percent rela-
tive error within ±0.1% of the corresponding experimental value. Also, 49% of 
the energies have a percent relative error less than ±0.01% of the experimental 
energy. The 587 energy levels correspond to 293 different electron configura-
tions. 

Three experimental energies were rejected because they each had a deviation 
greater than 0.8 a.u. and two more experimental energies were rejected by the 
criterion of having a deviation greater than 0.16 a.u. with the calculated energy. 
Chauvenet’s criterion for rejecting data within a population of ~600 points is at 
3.3-sigma deviation, which corresponds to deviations greater than 0.11 a.u. 

The numerical values of the parameters determined by least-squares analysis 
are shown in Equations (12) through (17). The G 1 and F 2 values have units of a.u. 

( )2
1 1 2 20.3125 0.030 0.006 1 0.0221 0.0074S S S PZ Z Z Z N N N = − − − − − −   (12) 

 ( )2 1 2 20.6989 0.3008 1 0.2299S S S PZ Z N N N= − − − −            (13) 

 [ ]( )2 1 2 20.9270 0.3668 0.3526 0.1618 1P S S PZ Z N N Z N= − − − − −      (14) 

 ( )1
21s, 2p 0.039 0.028PG Z= −                     (15) 
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 ( ) ( )2
2 22p,2p 0.092 0.009 S PF N Z= −                   (16) 

 ( )1
22s, 2p 0.092 PG Z=                        (17)  

The values of the screening parameters given in Equations (12) through (14) 
are similar to those of other researchers [5] [7]. In Equation (12), the expression 
multiplying (N1S − 1) was obtained in this work by fitting three terms to the 
highly accurate solutions of the Schrӧdinger equation for 2-electron energies 
from Nakashima [25] where E(1s2) equals 2

12 2SZ− , which gave  

( )2
1 0.3125 0.30 0.006SZ Z Z Z= − − − , for Z equal to 2 through 10. (The ener-

gies of that work did not include EREL.) The value 0.3125 is a theoretical value [5] 
[7] that can be calculated for the screening between two 1s electrons. The terms 
that are divided by Z and Z 2 correct for the Z-dependence of the screening. The 
factors, −0.0221 and −0.0074, in Equation (12), which account for 1s screening 
by 2s and 2p electrons, are significant to the computations. The screening para-
meter between 2s electrons has a theoretical value [5] [7] of 0.3008, which matches 
the value shown in Equation (13). Layzer [5] calculated the screening parameter 
between 2p electrons to be 0.3492. The parameter shown in Equation (14) is 0.3526 
with the term −0.1616/Z to correct for a Z dependence of the screening of Z2P by 
2p electrons. 

Estimates of G 1(1s, 2p), F 2(2p, 2p) and G 1(2s, 2p) from Equations (15) 
through (17) have enabled the calculation of energies to proceed smoothly. G 1 
(1s, 2p) has been calculated by Golden [26] to be 0.0512 Z2P and is shown in Eq-
uation (15) to be 0.039Z2P − 0.028 where the negative term has been introduced 
empirically in this work. Both F 2(2p, 2p) and G 1(2s, 2p) have been calculated 
with Slater wave functions by Golden [26] to be 0.0879Z2P . F 2(2p, 2p) is shown 
in Equation (16) to equal 0.092Z2P , or 0.083Z2P , or 0.074 Z2P for configurations 
in which N2S is 0, 1, or 2, respectively; whereas, G 1(2s, 2p) is shown in Equation 
(17) to be 0.092Z2P .  

Experimental values of G 1(1s, 2p), F 2(2p, 2p) and G 1(2s, 2p) were determined 
by a least-squares fit of the experimental energies of the corresponding states 
listed in Table 1. Slater (see [2]: p. 344) stated that the experimental data de-
viated from the equations due to configuration interaction that sometimes lowered 
the least-negative state of a given configuration. Figures 1-3 show the compari-
sons between G 1(1s, 2p), F 2(2p, 2p) and G 1(2s, 2p) values calculated from expe-
rimental energies with the equations shown in Table 1 and calculated with Equ-
ations (15) through (17), respectively. The twelve red points in Figure 2, which 
have a different slope, correspond to configurations 1s22s02p2 and 1s22s02p4. 

The relativistic energies, EREL, were easily calculated for all electron configura-
tions by Equation (5). EREL for configurations with two, four or ten electrons in 
closed subshells are compared in Table 2 to values derived from perturbation 
methods by Hartmann ([21]: Table IV) who used Hartree-Fock functions for 
atoms and ions up to Z = 36 and ions with up to eighteen electrons. The Rether-
ford-Lamb correction for 1s electrons and the Breit interaction were included by  
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Figure 1. Plot of experimental versus calculated values of G 1(1s, 2p) in a.u. 

 

 
Figure 2. Plot of experimental versus calculated values of F 2(2p, 2p) in a.u. The red 
points correspond to twelve values for configurations 1s22s02p2 and 1s22s02p4.  
 

 
Figure 3. Plot of Experimental versus calculated values of G 1(2s, 2p) in a.u. 
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Table 2. EREL (in a.u.), calculated by Equation (5) for 1So states of 2-, 4-, and 10-electron 
atoms/ions, compared to the corresponding values of Hartmann [21]. 

2 Electrons 4 Electrons 10 Electrons 

Z Eqn (5) Ref [21] Diff Eqn (5) Ref [21] Diff Eqn (5) Ref [21] Diff 

2 −0.00009 −0.00007 ---       

3 −0.00060 −0.00054 ---       

4 −0.0022 −0.0021 −5% −0.0022 −0.0022 0%    

5 −0.0057 −0.0057 0% −0.0060 −0.0062 3%    

6 −0.0125 −0.0125 0% −0.0135 −0.0141 4%    

7 −0.0242 −0.0243 0% −0.0268 −0.0280 4%    

8 −0.0426 −0.0429 1% −0.0481 −0.0503 4%    

9 −0.0699 −0.0706 1% −0.0802 −0.0839 4%    

10 −0.1088 −0.1099 1% −0.1264 −0.1320 4% −0.1276 −0.1313 3% 

11 −0.1620 −0.1637 1% −0.1903 −0.1983 4% −0.1982 −0.2007 1% 

12 −0.2328 −0.2352 1% −0.2759 −0.2869 4% −0.2960 −0.2951 0% 

13 −0.3248 −0.3279 1% −0.3878 −0.4022 4% −0.4274 −0.4200 −2% 

14 −0.4417 −0.4457 1% −0.5309 −0.5493 3% −0.5997 −0.5815 −3% 

15 −0.5878 −0.5927 1% −0.7106 −0.7334 3% −0.8208 −0.7862 −4% 

16 −0.7676 −0.7735 1% −0.9326 −0.9603 3% −1.0994 −1.0413 −6% 

17 −0.9860 −0.9928 1% −1.2032 −1.2363 3% −1.4450 −1.3544 −7% 

18 −1.2483 −1.2557 1% −1.5291 −1.5679 2% −1.8676 −1.7339 −8% 

 
Hartmann [21]. In the present work, the Lamb correction was included in Equa-
tion (5) for the 1s electrons, but the Breit interaction was not included. The agree-
ment between the sets of values for EREL shown in Table 2 is approximately ±5%. 
Similar values of EREL for systems with two, four or ten electrons are given by 
Veillard [24] and Anno ([27]: Tables II and III; [28]).  

Equation (4) for EREL can be compared to Equation (5). The closed subshell 
systems shown in Table 2 with two, four or ten electrons each have the term 1S0, 
where the subscript zero is the value of j. If Equation (4) had been used for con-
figurations containing two 1s electrons, then the factor ( ) ( )1 3 41 2 ij n + −   
would equal 5/4 for ni = 1 with j = 0, which is a five-times higher factor than 

( )1 3 4 1 4in − =   of Equation (5). The smaller term Λi,Z of Equation (5) has 
been ignored in this comparison. For 2s and 2p electrons, the factor  

( ) ( )1 3 41 2 ij n + −   would equal 13/8 for ni = 2 with j = 0, which is 2.6-times 
larger than ( )1 3 4 5 8in − =   of Equation (5). Therefore, if Equation (4) had 
been used in the present work, the values of EREL for the 2-electron system 
would have increased in magnitude by a factor of five and the values of the 4- 
and 10-electron systems, which have a major contribution from the 1s electrons, 
would have increased in magnitude by a factor of ~4 or more compared to the 
values of EREL shown in Table 2. 
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EREL was also calculated for 2, 4, and 10 electrons for values of Z from 19 to 36 
with Equation (5) and Equations (12) through (14) and with the Lamb correc-
tions for two 1s electrons, as previously described. These values were compared 
to the corresponding values of EREL given by Hartmann ([21]: Table IV). The 
values of EREL for 2-electron and 4-electron atoms and ions for values of Z up to 
36 agreed within ~1%. The values of EREL for the 10-electron atoms and ions for 
values of Z up to 36 were more negative by ~8% at a Z of 18 and by ~20% for a Z 
of 36. Since value of EREL of the 10-electron atom and ions involved the addition 
of six 2p electrons, an empirical change of j = 1/2 to j = ~(1/2 + ℓ/4), where ℓ = 0 
for s orbitals and ℓ = 1 for p orbitals, might improve the agreement of the calcu-
lation of EREL to that of Hartmann [21], especially at higher values of Z. 

Good overall agreement between the calculated and observed energies was 
obtained with a constant value of j = 1/2 used in Equation (5). Also, the Dirac 
relationship, shown in Equation (1), gave similar agreement between the 587 
calculated and observed energies when it was modified to sum electron energies 
with a constant value of j = 1/2, with Zi substituted for Z, and with −Λi,Z (for the 
number of 1s electrons that were present). After the parameters were allowed to 
vary, the calculation with the modified Equation (1) gave similar parameters to 
those of Equation (3) with EREL calculated by Equation (5). The sum-squared er-
ror was 0.60, compared to 0.58 (a.u.)2 for the agreement with Equation (3). 

When j was set to S + L, the agreement between calculated and experimental 
electron energies was poor. However, when j was set to 1/2, the overall agree-
ment was favorable, the calculations were simplified for all of the multi-electron 
configurations and the values of EREL agreed well with those given in Table 2 and 
with additional values of Hartmann [21] for values of EREL for Z up to 36. 

7. Hydrogen-Like Wave Functions Associated with Z1S, Z2S  
and Z2P 

The individual energies Ei of the 1s, 2s and 2p electrons within multi-electron 
configurations equal ( )2 22i iZ n−  plus EREL in a.u., where Z1S , Z2S and Z2P are 
the effective nuclear charges of hydrogen-like wave functions. (Slater 1s and 2p 
wave functions each correspond to hydrogen-like 1s and 2p wave functions, but 
the node-less Slater 2s wave function does not correspond to the hydrogen-like 
2s wave function.) When Z1S and Z2S are unequal, the 1s and 2s hydrogen-like 
wave functions are not orthogonal. However, the modified wave function 
Φ2S,SCHMIDT has been made orthogonal to Φ1S by the Gray-Schmidt method: 

 ( ) ( )2
2 ,SCHMIDT 2 1

1 2
1S S SS SΦ = Φ − Φ −                (18) 

where Φ1S and Φ2S are normalized hydrogen-like wave functions. The overlap 
integral S between Φ1S and Φ2S with 1 2S SZ Z≠  equals the following: 

 ( ) ( )43 2 3 2
1 2 1 2 1

2
2 1 2

1  8 0.5S S S S S S S SS Z Z Z Z Z Zτ= Φ Φ ∂ = − +∫ .      (19) 

One can substitute Φ2S,SCHMIDT from Equation (18) into the expression below, 
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where 1 1 1
ˆ

S S SH EΦ = Φ  and 2 2 2
ˆ

S S SH EΦ = Φ , to demonstrate that E2S,SCHMIDT 
equals E2S.  

 2 ,SCHMIDT 2 ,SCHMIDT 2 ,SCHMIDT 2
ˆ  S S S SE H Eτ= Φ Φ ∂ =∫           (20)  

In addition to enabling the calculation of the energies of numerous configura-
tions of light atoms and ions with up to 10 electrons for Z up to 18, the values of 
Z1S , Z2S and Z2P , given in Equations (12) through (14), can be used to form wave 
functions for future calculations. The energy of a given hydrogen-like wave func-
tion corresponds closely to the average experimental energy of its electron con-
figuration. 

8. Conclusions 

The Screened Hydrogenic Model (SHM) has been used to calculate energies that 
closely match the experimental energies of light atoms and ions with 1s, 2s and 
2p electrons for up to 10 total electrons and for atomic numbers up to 18. The 
total experimental energies for the atoms with Z = 1 through 10 each agreed 
within ±0.001 a.u. to those tabulated by Veillard [24], except for oxygen (Z = 8) 
that agreed within ±0.02 a.u. (compared to its total energy of −75.1101 a.u.). 

The standard deviation for the 587 energies was 0.033 a.u. Also, 98% of the 
calculated energies had a percent error of ±0.1% relative to the corresponding 
experimental energy and 49% of the calculated energies had a percent error of 
±0.01% relative to the corresponding experimental energies. Only five data points 
were rejected from the original set of experimental energies. Nine parameters 
were used to account for the screening of electrons among the electrons in the 1s, 
2s, and 2p orbitals. Multiplets due to Russell-Saunders coupling were calculated 
with G 1(1s, 2s), F 2(2p, 2p) and G 1(2s, 2p) obtained with six additional parame-
ters. 

Equation (5) with a constant value of j = 1/2 has been proposed for the calcu-
lation of EREL for all multi-electron configurations in order to achieve favorable 
overall agreement. As shown in Table 2, the values of EREL calculated with Equa-
tion (5) for configurations with two, four, and ten electrons agree well with those 
calculated by past researchers.  

In the future, these calculations could be expanded to include electrons in high-
er shells with additional screening parameters. The Retherford-Lamb corrections 
could be added for more electrons. The Breit interaction and other refinements 
might also be included. 
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