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Abstract 
Uncertainties in regulation could affect the decision to invest in irreversible 
capital projects. We use the geometric Brownian motion to analyze the effect 
of a stochastic carbon tax on the cash flows expected from investments and 
the value of the investments. Successful legislation on carbon tax may trigger 
changes in technology. Our results show that carbon tax accompanied by the 
adoption of a new technology could affect the value of an irreversible invest-
ment. Also the decision to invest depends on whether the cash flows exceed a 
pre-determined critical cash flow. 
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1. Introduction 

There is a growing body of economic research on real option-based models on 
investment decisions under uncertainty and irreversibility [1] [2] [3] [4]. In-
vestment decisions could be uncertain due to rapidly changing conditions in the 
global economy. In this research paper, we analyze how uncertainties in carbon 
taxation and the expected changes in technology could impact the decision to 
invest in irreversible capital investments. 

Following Alm (1988) [5], an uncertain tax policy would increase the riskiness 
of an investment and ignoring uncertainty in carbon taxation on irreversible in-
vestments could lead to inappropriate investment decisions. Carbon tax is the 
tax levied on carbon present in hydrocarbon fuel such as petroleum, natural gas 
and coal. When hydrocarbon fuels are burnt, carbon dioxide (CO2) is emitted in 
contrast to the non-combustion energy sources: wind, sunlight, hydropower and 
nuclear (see Yohe et al. 2007) [6]. This paper posits that a carbon tax on hydro-
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carbon fuels could be the theoretically ideal regulatory instrument for the ab-
atement of carbon dioxide emissions and we argue that substitution effects be-
tween different sources of energy could be realized through innovation in 
technology. We extend the results of Dixit and Pindyck (1994) [7] and show that 
the imposition of carbon tax could delay or postpone the implementation of an 
investment even when the investment cash flows π  are greater than its critical 
value, *π ; that is *π π> . Further, we also show using a technology threshold 
model, ( )K t K≡  that the value of an investment could decrease in time in 
spite of the adoption of a new technology because investors prefer a higher rate 
of increase in cash flows at the early stages of the lifecycle of the investment. 
Therefore, we analyze how the expected cash flows of an irreversible investment 
could be affected if the investment warrants the imposition of carbon tax and 
simultaneously analyze how the adoption of a new technology could affect the 
value of the irreversible investment.  

Background and Literature Review 

Niemann 2011 [2] and Niemann and Sureth, 2005 [3], most environmentally re-
lated taxes in the Organization of Economic Co-operation and Development 
(OECD) countries are levied on energy products and motor vehicles rather than 
on CO2 emissions. As such, the economic impact of carbon tax is a well-researched 
topic internationally.  

There is increased attention to green products because they are environmen-
tally friendly and as a result, a number of firms are investing in green products. 
For instance, PepsiCo and Coca Cola have developed recyclable PET plastic soft 
drink bottles instead of corrugated materials in order to reduce the impact of 
their products to the environment (see Hong et al. 2018) [8]. In Zhang et al. 
(2018) [9], they reported that some large food companies have adopted new tech-
nologies to reduce pollution. Using an environmentally extended micro-social ac-
counting matrix (SAM) and a computable general equilibrium model (CGE), 
Meng, Siriwardana and McNeill (2013) [10] reported that a carbon tax of A$23 
per tonne of CO2 emissions (imposed on the Australian economy with exemp-
tion to agricultural, land transport and household sectors) cut emissions signifi-
cantly but caused a mild economic contraction as measured by real gross do-
mestic product (GDP) and real gross national product (GNP). Meng et al. [10] 
also found that when the revenue from carbon tax is fully and equally trans-
ferred to households, the effect of the compensation plan on CO2 emission was 
minimal. Effort to reduce carbon emission is widely observed in several indus-
tries including food and beverage, apparel, electronics and automobile indus-
tries. Wright, Hawkins, Orozco and Mabey (2018) [11] argued that shadow car-
bon pricing would encourage low carbon investment because it is used internally 
within financial appraisals to de-prioritize high emission projects and also be-
cause it did not incur actual costs unlike other carbon pricing policies like car-
bon taxes. They also argued that if shadow carbon pricing is set at the correct 
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level, only projects compatible with low carbon emissions would be accepted and 
they suggested an adoption of a wider range of instruments since shadow carbon 
pricing cannot be used as an isolated tool for initiating a transformation. Fur-
ther, Wright et al. (2018) [11] reported that the High-Level Commission on 
Carbon Prices (HLCCP, a World Bank initiative), carbon prices of $40-$80 per 
tonne of CO2 by 2020 and $50-$100 per tonne by 2030 would be required to 
keep global warming below 2˚C. In May 2017 PEMBINA Institute report, Mac-
Nab, Flanagan, Kniewasser and Hastings-Simon [12] reiterated the federal 
benchmark of the government of Canadian on carbon pollution and reported a 
guidance on treatment of the energy-intensive and trade-exposed industries 
(EITE) sectors and the protection of vulnerable Canadians. Niu, Chen and 
Zhang, 2017 [13] reported that Patagonia, an apparel company in the USA has 
made sustainable efforts to cut down the amount of carbon emission in its 
products. Ghosh and Shah, 2012 [14], posited that Adidas reduced the amount 
of hazardous material used in its manufacturing process and the amount of 
waste in its packaging. It is reported that from 2007 to 2015, Dell-EMC reduced 
its hazardous emission by an absolute 40% (see Ghosh and Shah, 2015) [15]. Ko-
jima and Asakawa (2016) [16] discussed how carbon pricing could facilitate a 
low-carbon transition or a net zero carbon transition and they also reported that 
the expected benefits of carbon pricing that combines the introduction of carbon 
tax and reduction of other taxes, such as income taxes, is expected to achieve 
both environmental and socio-economic benefits. 

Given that climate change is now widely viewed as a threat to the environ-
ment, economic growth and social welfare, and that the EU committed to reduce 
its emissions of CO2 by 25 percent in 2020 relative to 1990 levels, Rozenberg et 
al. suggested that the climate change externality could be managed through car-
bon certificates [17]. They argued that the cost of capital of low-carbon projects 
could be cheaper than the cost of capital of high-carbon projects if carbon certif-
icates (instead of carbon tax) were created as part of a commercial bank’s legal 
reserves and distributed to capital investment with low-carbon content. They 
further argued that the framework of carbon certificates is politically easier to 
implement than the more efficient carbon tax method. Brauneis, Mestel and Pa-
lan (2012) [1], using the Monte Carlo model, investigated the effect of different 
carbon price cap designs on an individual firm’s choice of technology. 
Specifically they modeled the effect of a carbon price cap on the firm’s choice (of 
energy) between a pulverized coal combustion plant, a combined cycle gas tur-
bine plant, a hydropower plant, a solid biomass plant and an on-shore wind 
farm. They found that the level of the carbon price cap influenced the choice of 
technology and the timing of investments and that the adoption of a higher car-
bon price cap favored low technologies in general. Though there is anecdotal 
evidence that several manufacturers incur additional cost in an effort to reduce 
carbon emissions, Xiao et al. (2020) [18], investigated the optimal contract for 
sustainable supply chain participants by interactively analyzing the impact of re-
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tailers’ fairness concern and manufacturers’ overconfidence on carbon pricing, 
the cost of reducing carbon emission and the related profits to supply chain par-
ticipants. Xiao et al. concluded that intensity in fairness concern decreased the 
effort to reduce carbon emissions and the profitability of the supply chain par-
ticipants [18]. However, the simultaneous existence of fairness concern and 
manufacturers’ overconfidence showed that the cost sharing contract generated 
higher profits for the retailer when the intensity in fairness concern is high. Pan-
teghini and Scarpa (2003) [19] analyzed regulatory mechanism such as price 
caps or profit sharing and posited that regulatory risk may or may not affect 
investments decisions negatively. Hong, Wang and Yu (2018) [8], investigated 
the pricing of green products by taking into account consumer environmental 
awareness (CEA) and non-green product reference under three different scenarios; 
single-product-pricing, dual-product competition and asymmetric-information 
case and reported that the firm should adopt the distinguished pricing strategies 
in contrast to the asymmetric information. Zhang et al. (2018) [9] studied how 
the carbon cap and trade (CCT) mechanism affects competitive manufacturers’ 
product design and pricing strategies using the Nash and Stackelberg game 
models respectively. They also discussed the impacts of the CCT-mechanism, 
consumer environmental awareness (CEA) and the sensitivity of switchovers 
toward price on the optimal carbon emission reduction rates, retail prices and 
manufacturers’ profits. In its 2017 paper, the Union of Concerned Scientists [20] 
reported that California’s Low Carbon Fuel Standard and Cap-and-Trade pro-
gram played a major role in cutting global warming emissions from the state’s 
transportation sector. Rafaty and Grubb (2018) [21] reported improvement in 
economic efficiency and environmental effectiveness of carbon pricing schemes 
by ensuring that the costs of CO2 emissions associated with production are fully 
passed through the value system. Further, Rafaty and Grubb (2018) [21] stated 
that a price on carbon consumption eliminated the risk of cross border car-
bon-leakage by incorporating extra-territorial emissions and treated producers 
on a level playing field regardless of their jurisdiction of origin. Mann (2009) 
[22] reported that both cap-and-trade system and carbon taxes are market me-
chanisms that reduce demand for carbon-intensive goods by increasing their 
costs.  

Other research papers that analyzed the impact of regulatory mechanisms on 
capital investments include Niemann (2011) [2] research where he stated that a 
higher expected tax payment could delay capital investments. Niemann also 
found that pre-tax cash flows and tax payments are positively correlated; in oth-
er words, an increase in pre-tax cash flows will increase the amount of taxes to 
be paid by the investor. In addition, in market economies where tax uncertainty 
is low, an increase in tax uncertainty is likely to increase the rate and level of 
capital investment. However, Niemann argued that the effect of a higher after 
tax discount rate on the timing of capital investment is ambiguous. Schneider 
and Sureth (2010) [23] study on capital investments which examined managerial 
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options to invest or divest showed that increasing the tax rate on cash flows 
could increase the investor’s willingness to invest. Though Schneider and Sureth 
[23] results seem contrary to the effect of taxes on capital investments, it does 
imply that an investor may increase the rate of capital investment in order to 
absorb the increase in the tax rate.  

This paper contributes to the existing literature because we analyze how the 
imposition of unexpected carbon tax could affect expected cash flows and si-
multaneously, how the anticipated technological changes could affect the deci-
sion of investors to invest in irreversible projects in a real options model. 
Though research studies on option pricing models in financial investments and 
natural resources abound, there is no research which analyzes the joint impact of 
uncertainties in technology and carbon tax on investment behavior and this pa-
per makes that contribution. Theoretically, the real options model show that 
when returns are uncertain (that is, returns exhibit some random walk compo-
nent) and costs are sunk and irreversible, that the required returns of invest-
ments are expected to be significantly higher than in standard expected net 
present value (E(NPV)) models (Dixit and Pindyck, 1994) [7]. Thus the real op-
tions model provides a reasonable explanation of the friction in investments de-
cisions and uncertainties in regulation and technology.  

Under the standard expected net present value approach, managers invest 
when the present value of the discounted incremental stream of free cash flows 
from the capital invest exceeds the investment’s weighted average cost of capital. 
With the real options approach, investment decisions are contingent upon ob-
taining more information about potential changes in regulation, technology and 
capital markets and the effects of these factors on future cash flows before mak-
ing the irreversible investment decision.  

The literature on stochastic investing decisions began in the 1980s with papers 
such as Malliaris and Brock (1982) [24], Miller and Voltaire (1983) [25] and 
Brock and Rothschild (1984) [26]. These research studies developed models that 
showed how investment rules and asset values can be determined when the ex-
pected cash flows generated by the investment follows a geometric Brownian 
motion (GBM) process expressed as 

d d dt zπ α σ
π

= +  

where π  refers to after tax cash flows expected from a capital investment, α  
is the constant drift rate, σ  the constant variance, dz  is the increment of a 
standard Wiener process, i.e., d tz tε=  and tε  is ( )0,1N  and  
( ), 0t sE ε ε =  for t s≠ . 
The Black-Scholes (1973) [27] option pricing model is a classic example of a 

model based on a geometric Brownian motion. By definition, however, the GBM 
is restricted to only positive values. In real option theory, it is plausible that cap-
ital investments may yield both positive and negative incremental after tax cash 
flows. As a result of the restriction [2] suggested that the arithmetic Brownian 
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motion should be the preferred approach used in modelling stochastic invest-
ment decisions. In general, cash flows are the difference between expected earn-
ings and expected expenditures and both earnings and expenses can be modelled 
as separate geometric Brownian motions. However, the mathematical properties 
of the differences of the two separate GBMs are inconvenient. An alternate sto-
chastic model is the Poisson or Jump processes characterized by infrequent dis-
crete jumps rather than continuous time albeit with small variations. Because 
cash flows of large capital projects are affected by several random economic va-
riables, variations of these economic variables cannot be modelled as “Jump” 
events. Therefore, a stochastic process with continuous variation is preferred to 
the Jump processes. 

For ease of analysis, our model assumes that unanticipated changes in legisla-
tion on carbon tax may trigger changes in technology; howbeit, the speed at 
which a new technology would be adopted by an investor is beyond the scope of 
this paper. If the legislation on carbon tax is muted and stochastic cash flows 
follow GBM, the NPV rule and an analytical solution are feasible. The invest-
ment decision would be akin to a real option analysis similar to an American call 
option.  

Microeconomic reasoning suggests that if the expected cash flow is high, other 
investors will enter the market putting downward pressure on expected cash 
flow and vice versa. Also, under the GBM process, if expected cash flow is zero, 
it will remain at zero against standard expectation. This characteristic of the 
GBM would affect the value of the option at lower levels of cash flows suggesting 
that the estimated value of the option may be inaccurate.  

The rest of the paper is organized as follows. Section 2, discusses the economic 
theory of carbon tax including the social cost of carbon emissions followed by 
the structural model in Section 3 where we mathematically analyze the effect of 
carbon tax on expected cash flows and the resulting technological innovation 
and how both factors could impact the value of irreversible capital investments. 
In Section 4, we explain the geometric Brownian motion as a binomial process 
and in Section 5 we use the continuous time finite-horizon dynamic program-
ming to analyze the effect of carbon tax on cash flows and the related technolo-
gical changes in irreversible capital investments, concluding remarks in Section 
6, references in Section 7 and appendix in Section 8.  

Hypothesis: Would unexpected changes in regulation and technology nega-
tively or positively impact the expected cash flow and value of irreversible capital 
investments? 

2. The Economic Theory of Carbon Tax 

Carbon tax is a tax levied on the carbon content of fuels. It is a form of carbon 
pricing. Many scientists have argued that the global warming effects of green-
house gases (GHGs) released into the atmosphere are caused by the combustion 
of fossil fuels. These GHGs include pesticides, fertilizers, fuels and oils for trac-
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tors, equipment, trucking and shipping, electricity for lighting, cooling, heating, 
methane and nitrous oxide. Methane and nitrous oxide are respectively 21x and 
310x more damaging as GHGs than CO2 (Griffith et al., 2008) [28]. A tax on 
these emissions can be levied by taxing the carbon content of fossil fuels at any 
point in the product cycle of the fuel. 

While there is pressure on the government of the USA to curb the greed in 
Wall Street, banking, insurance and housing by enforcing the existing regula-
tions, industrial agriculture which is one of the largest producers of methane and 
nitrous oxide, and arguably one of the most polluting industries remains unre-
gulated for the last thirty years. The USA Environmental Protection Agency 
(EPA) estimated in 2007 that industrial agriculture was responsible for about 
18% of the carbon footprint in the United States (Allen and Pantzalis, 1996) [29]. 

A carbon tax as a form of pollution tax is often grouped with two other eco-
nomic policy instruments: tradable pollution permits or credits and subsidies. 
These three environmental economic policy instruments are governed on the 
principle of a command and control regulation. The difference is that classic 
command-penalty regulations stipulate, through performance and standards, 
what each polluter is expected to do in order to be in compliance with the regu-
lation. The difference between a tax and a command and control regulation de-
pends on whether the enacted legislation contains the word “tax”. 

A carbon tax is also a tax on a transaction, that is, a price paid for performing 
a specific transaction. It sets a price to be paid based on carbon dioxide emis-
sions from a transaction. Arthur Pigou (1920) [30] most enduring contribution 
was The Economics of Welfare, in which he introduced the concept of external-
ity and the idea that externality problems could be corrected by the imposition 
of a Pigovian tax (also spelled “Pigouvian tax”). In The Economics of Welfare 
(initially called Wealth and Welfare), Pigou developed Marshall’s concept of ex-
ternality, which is a cost imposed or benefit conferred on others that are not ac-
counted for by the person who creates these costs or benefits. Pigou argued that 
negative externalities (costs imposed) should be offset by a tax, while positive 
externalities should be offset by a subsidy. In the early 1960s Pigou’s analysis was 
criticized by Ronald Coase [31], who argued that taxes and subsidies are not ne-
cessary if the partners in the transaction can bargain over the transaction. The 
externality concept remains central to modern welfare economics and particu-
larly to environmental economics. The Pigou Club, named in his honor, is an 
association of modern economists who support the idea of a carbon tax to ad-
dress the problem of climate change. Thus, the economist Arthur Pigou pro-
posed taxing the goods (i.e., hydrocarbon fuels) which are the source of carbon 
dioxide emissions so as to accurately reflect the cost of carbon dioxide in emis-
sions to the society. A tax on a negative externality is called the Pigouvian tax 
and it should be equal to the marginal cost of the expected damage. The effect of 
carbon tax could significantly reduce the growth rate of capital investments. On 
the other hand, a carbon tax could accelerate the growth in technological inno-
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vation in non-combustible and renewable sources of energy such as wind, solar, 
ethanol and geothermal. 

The social cost of carbon (SCC) is the marginal cost of emitting one extra 
tonne of carbon dioxide (equal to 1000 kilograms or 1 megagram of CO2) at any 
point in time. In order to estimate the SCC, the atmospheric residence time of 
carbon dioxide must be estimated together with an estimate of its impacts of 
climate change. The effect of an extra tonne of carbon dioxide in the atmosphere 
must then be converted to equivalent impacts when the tonne of carbon dioxide 
is emitted. In economics and finance, comparing impacts over time require a 
discount rate which determines the weightings on the impacts occurring at dif-
ferent times. 

According to economic theory under perfect market conditions, carbon tax 
should be set equal to the SCC. Emission permits should also have a value equal 
to the SCC. However, markets are not perfect and estimates of SCC are highly 
uncertain with an average value of $43/tC (“tC” equals a tonne of carbon) and a 
standard deviation of $83/tC (see Yohe et al., 2007) [6]. The variability of esti-
mates is attributed to the uncertainties in the science of climate change, different 
assumptions on the appropriate discount rate and the resulting different valua-
tion of economic and non-economic impacts, the treatment of equity and how 
potential catastrophic impacts are estimated. Other estimates of SCC ranged less 
than $1/tC to over $1500/tC. The true SCC is expected to increase over time at a 
rate of two percent to four percent per year (Yohe et al., 2007) [6].  

It is also important to discuss the effect of carbon leakage; that is the effect 
that regulation of emissions in one country/sector has on the emissions in other 
countries/sectors that are not subject to the same regulation. Baker et al. (2007) 
[32] posited that leakage effects can be positive or negative. The leakage effect 
can be positive if it reduces the effectiveness of reducing overall emissions and 
negative if it increases the effectiveness of reducing overall emissions. A desira-
ble negative leakage would occur due to a reduction in the demand for coal, oil 
and gas from the developed countries and the result would be a lowering of 
world prices of these hydrocarbon fuels. This will lead to developing countries 
being able to substitute oil for gas, or gas for coal (and vice versa) at reduced 
prices which effectively will reduce national emissions. However, if the transfer 
of less polluting technologies is delayed, this substitution effect will have no long 
term benefits. 

Regulatory policies such as border tax adjustments, trade tariffs and trade 
bans have been suggested to address issues over competitive losses when one 
country imposes a carbon tax and the other country does not (see Gupta, S. et al. 
2007) [33]. Border tax adjustments account for emissions attributed to imports 
from countries without a carbon price. The alternative involves trade bans 
and/or tariffs applied to non-carbon taxing countries. Gupta et al. (2007) [33] 
further argued that such approaches could be disadvantageous to a target coun-
try as a trade measure. To date, the World Trade Organization (WTO) case law 
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has not provided specific rulings on climate-related taxes. 

3. Modeling the Option to Invest in Irreversible Investments 

The decision to invest now or postpone investing to a later period is modeled 
from the perspective of an environmentally-sensitive-investor. The investment 
time frame is restricted to one-period investment. The numerical method used 
could be extended to a sequential investment case; however the solution to a se-
quential investment problem will involve a two-dimensional degenerate para-
bolic partial differential inequality which is beyond the scope of this paper.  

A capital investment is expected to generate incremental revenues as well as 
incur incremental (explicit and implicit) operating costs. The result is a forecast 
of after tax incremental cash flows from the capital investment. This paper ana-
lyzes the effect of regulatory uncertainty (such as the imposition of carbon tax 
on cash flows from an investment, as an additional tax) and a related change in 
technology on the decision to invest in an irreversible capital project. We begin 
by assuming that the after tax cash flows (before the additional tax on carbon is 
imposed) follow some known stochastic process expressed as:  

d d dt zπ α σ
π

= +  

where π  refers to incremental after tax cash flows expected from a capital in-
vestment (before carbon tax), α  is the constant drift rate, σ  the constant va-
riance, dz  is the increment of a standard one dimensional stochastic Wiener 
process, also called a Brownian motion, i.e., d tz tε=  and tε  is ( )0,1N  
and ( ), 0t sE ε ε =  for t s≠ . 

An irreversible investment means that the investment cannot be abandoned 
during its economic life ending at time T; T may be finite or infinite. We assume 
that the capital investment does not include any additional flexibility or exter-
nality, so the only benefit is the expected net cash flow from the capital invest-
ment. We also assume that the after-tax cash flows, tπ , and carbon tax are sto-
chastic. This special case is frequently used in the literature because it permits an 
analytical solution.  

We adapt the dynamic programming model to determine the optimal timing 
of the investment that would maximize the investment’s cash flows and the value 
of the irreversible capital investment again assuming that an additional tax could 
be imposed (on the after tax cash flow of the investment) as a result of the car-
bon content of the investment and the potential exits that there will be new 
technology adapted to minimize the carbon content of the irreversible capital 
investment.  

A celebrated application of Richard Bellman’s dynamic programming equa-
tion of 1940 can be found in Robert C. Merton’s seminal 1973 [34] article on the 
inter-temporal capital asset pricing model. Dynamic programming method was 
originally developed and used by Richard Bellman in the 1940s to derive the op-
timum solution of time-varying investments. Since then, dynamic programing 
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has been used to derive solutions to problems exhibiting properties of overlap-
ping sub-problems. Therefore, it is a convenient method used for solving com-
plex problems because dynamic programming breaks down the problem into 
simpler sub-problems. Another method used in analyzing time-varying invest-
ments is the “greedy” algorithm which picks the best possible solution “at any 
possible branches in the road”. Though the greedy algorithm may provide a 
faster solution to a time varying investment, it does not guarantee the optimal 
solution.  

Because economic applications of dynamic programming usually result in a 
Bellman equation which is a differential equation, economists refer to dynamic 
programming as a “recursive method” used in solving a wide range of problems 
in economics and finance including business valuation, asset pricing, princip-
al-agent problems, monetary and fiscal policy, labor economics, public finance 
and capital budgeting. 

To formalize our dynamic programming model, we assume that the after tax 
cash flow at time t be tπ ; so the initial after tax cash flow at time, 0, is 0π . We 
assume that the after tax cash flow will change from 0π  to a new state , tπ∆  
when a new action, e.g., carbon tax, τ  is imposed. We also assume that the re-
sponse to the imposition of carbon tax could be the adoption of a new technolo-
gy, ( )K t  designed to minimize the impact of carbon tax, and at the terminal 
condition, ( ) 0K t t+ ∆ = . We also refer to δ  as the instantaneous and unob-
servable discount rate which could complicate the analytical solution. In The 
Stern Review on the Economics of Climate Change, Weitzman (2007) [35] re-
ported that though the Stern Review called for “immediate decisive action to 
stabilize greenhouse gases because the benefits of strong early action on climate 
change outweighs the costs” by adopting a very low discount rate for invest-
ments on climate change and secondly that it might be important to avoid large 
uncertainties that are difficult to quantify, Weitzman argued “that spending 
money to slow global warming should perhaps not be conceptualized primarily 
as being about consumption smoothing as much as being about how much in-
surance to buy to offset the small change of a ruinous catastrophe that is difficult 
to compensate by ordinary savings” [35]. 

The Bellman equation is given as follows (see Merton, 1973 [34]): 

( ) ( ) ( ) ( ){ }1, max , 1 ,t t tV t K t t t E V t tπ π τ δ π π−  = − ∆ + + ∆ + ∆ + ∆      (1) 

Following Dixit and Pindyck (1994) [7] for each time period t, a critical value 
of *

tπ  exists such that investing is optimal when *
t tπ π>  and vice versa. Thus 

the solution to the investment problem involves finding the free boundary when, 
*

t tπ π= .  
Equation (1) is a differential equation and is a time-dependent function of a 

stochastic process. Applying Ito’s Lemma and assuming in the limit that, 
0t∆ → , we derive a partial differential equation which satisfies the value func-

tion, ( ),tV tδ π  in the continuation region: 
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( ) ( ) 21,
2tV t K t V V Vπ ππδ π α σ= + + +                  (2) 

Similar to Insley (2002) [36], our optimal investment problem can now be 
formulated as a linear complementarity problem, denoting the time remaining 
(i.e., the continuation region which keeps the option alive) as s T t= −  as: 

( ) ( )21,
2sRV V s V V V K T sπ ππδ π α σ≡ + − − − −             (3) 

The linear complementarity problem can be specified as: 
(i) 0RV ≥  

(ii) ( ) ( ), 0V sπ π τ− − ≥                                          (4) 

(iii) ( ) ( ), 0RV V sπ π τ− − =    
Part (i) of the linear complementarity problem specifies that the expected val-

ue of the investment, Vδ  must exceed its current value in order to exercise the 
option to justify delaying the investment pending carbon tax or no carbon tax. 
In other words, the holding value, RV must be greater or equal to zero. When

0RV = , the option to invest is “at-the-money” and investor is better-off holding 
unto the option. When 0RV > , the option to invest is “in-the-money” and 
investor is better-off exercising the option; and when 0RV < , the option to in-
vest is “out-of-the-money” and this outcome is not expected to persist in a com-
petitive market environment in the long term.  

Part (ii) of the linear complementarity problem states that the value of the op-
tion to delay investing while in the continuation region, ( ),V sπ , should always 
exceed the value of the payout in the event of a carbon tax, ( )V π τ− . This 
finding is consistent with the behavior of a rational investor holding an Ameri-
can-type call option. The option can be exercised at any time in the continuation 
region, s, if the value of the option post carbon tax is greater than zero; and the 
option would be exercised immediately if the value of option decreases to the 
level of the payout.  

Part (iii) of the linear complementarity problem states that part (i) or (ii) or 
both could hold as a strict equality. If 0RV =  and ( ) ( ), 0V sπ π τ− − = , then 
the value of investing now is equal to the value of waiting; therefore the investor 
will be indifferent.  

To obtain a numerical solution of Equation (4), we need to specify the follow-
ing boundary conditions.  

Boundary Condition I. 
We assume that carbon tax rate may negatively affect expected cash flows and 

as a result, the value of the investment will be negatively impacted such that, 
( )

0
lim ,V s
π

π τ
→

= − .  
Thus, Equation (3) can be rewritten as: 

( ) ( ), , 0sRV V s V V K T sπδ π α π≡ + − − − →               (5) 

Noting that part (iii) of Equation (4) suggests that both 0RV =  and  
( ) ( ), 0V sπ π τ− − = , by substitution Equation (5) above becomes 
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( ) ( ), , 0RV V V s K T sπα δ π π= − + − →                 (6) 

Equation (6) states that the value of the investment could depend on the 
adoption of a new technology as a response to the imposition of carbon tax. 
Again, the path and timing of such technological adoption are beyond the scope 
of this paper.  

At the optimal investment stage, part (ii) of Equation (4) becomes an equality. 
At that stage, the value of the option will be equal to the payout. This result 
again supports the argument that carbon tax has negative effect on capital in-
vestments. 

Boundary Condition II. 
When the after-tax cash flow gets larger, ( )lim ,V s

π
π τ

→∞
= , the value of the op-

tion to invest becomes a function of timing and flexibility of the investment’s 
landscape.  

Thus ( ) ( ),V s sπ γ π=  and ( )V sπ γ=  represents timing and flexibility. As 
π →∞  the upside potential for the option is limited and compressed. The value 
of option at this stage is proportional to the investment’s cash flows, π  imply-
ing that the value of the investment is a function of timing and the decision of 
the investor; thus ( )V sπ γ=  and 0Vππ = . Substituting this result into Equation 
(3), we obtain 

( ) ( ) ( ), , ,sRV V s V V s K T sδ π α π π≡ + − − − →∞             (7) 

If the option to invest stays in the continuation region, then 0RV =  and 
Equation (7) can now be expressed as 

( ) ( ) ( ), , ,sV V s V s K T sα π δ π π= − + − →∞              (8) 

( )[ ] ( ),sV V s K T sπ α δ= − + −  

However, if 0RV >  indicating that investing is optimal, then part (ii) of the 
linear complementarity formulation is confirmed. Ignoring any further technolo-
gical improvements given that after-tax cash flows are sufficiently large, we obtain 

( ), 0V sπ π− =  

( )( ) ( )1 0, 1s sγ π γ− = →                    (9) 

And, as the investment cash flow increases, 1.0γ =  
In the numerical solution section of this paper, that is Section 5, we choose an 

arbitrarily value for cash flow and the result shows that increasing the size of the 
cash flow does not change the results significantly and the effect of carbon tax is 
ambiguous, that is, when the after-tax cash flow increases, the value of the in-
vestment does not change significantly even after the imposition of carbon tax; 
secondly, the effect of any technological change is mute (see Table 1 and Figure 
1 in the Appendix). 

Boundary Condition III the terminal boundary. 
As 0T → , ( ) [ ]

0
lim , max ,0
s

V sπ π τ
→

= −  the value of the investment is ex-
pected to depend on the investment’s after tax cash flows following the adoption 
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of a new technological.  
As control, we show that the value of the investment will depend on the in-

vestment’s after-tax cash flows with no carbon tax imposed and no technological 
improvement whichever is larger. Thus, 

( ) [ ], 0 max ,0V sπ π τ= = −                      (10) 

The numerical approach used to determine the value of the option is a finite 
difference method which involves the reduction of a continuous partial differen-
tial equation into a discrete set of finite difference equations. The choice of a 
discretization approach should recognize the properties of stability and conver-
gence; stability to minimize small errors arising from finite computer arithmetic 
and convergence as the solutions to the results do not change significantly if the 
after tax cash flows get larger. The linear complementarity formulation of the 
analysis makes it feasible for us to analyze the investment decision at each time 
(i.e., node) using the penalty method (Zvan, R., Forsyth, P.A., and K.R. Vetzal, 
1998) [37]. The Zvan et al. [37] approach is an improvement over the traditional 
Crank-Nicholson method of successive over relaxation (SOR) approach dis-
cussed in Paul Wilmott (1998) [38], “Derivatives: The theory and practice of fi-
nancial engineering”. The penalty method is an efficient means of imposing the 
condition that the value of the option to wait cannot be less than the payout, that 
is ( ) ( ), 0tV sπ π τ− − ≥ . 

The Investment Decision under Gbm 

In this section we show that the timing of an irreversible capital investment is 
independent of the investment’s expected after-tax cash flows especially when 
carbon taxes and the adoption of new technological are ignored. This finding is 
analogous with the findings of Reed and Clarke, 1990 [39]; Insley 2002 [36]. The 
parameters of the generalized stochastic process under GBM are specified as: 

d d dt zπ
π α σ
π

= + ; α  and σ  represent the drift rate and variance respective-

ly. 
Equation (3) can be restated as: 

( ) ( )2 21,
2sRV V s V V V V K T sπ ππ πδ π α σ π απ≡ + − − − − −        (11) 

To determine the numerical solution we specify the value of the option when 
the time remaining in the life of the option, s, equals zero. Working backward 
from that point, the value of the option is determined at each node back to the 
present period.  

When 0s = , the terminal condition states that the value of the option is just 
the maximum of the payoff [ ]tπ τ−  or 0.  

( ) [ ], 0 max ,0V sπ π τ= = −                      (12) 

In other words, the value of option in the terminal period is equal to the in-
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vestment’s cash flow less carbon tax. At this stage, part (ii) of the linear comple-
mentarity problem holds as a strict equality and 0RV ≥ . With 1Vπ =  and 

0Vππ =  substituted into Equation (4) and Equation (11), sV  at 0s =  be-
comes: 

( )max 0,sV Kπ α δ δτ≥ − + +                     (13) 

By inference sV  cannot be negative at the terminal period because value is at its 
minimum pending if carbon tax will be imposed, i.e., ( ) [ ], 0 maxV sπ π τ= = − . 
However, sV  will be greater than zero if the second term, ( )tπ α δ−  is posi-
tive. In addition, if the tax rate, τ π  is zero, then we need only to be concerned 
with the sign of the second expression because there will be no justification for 
the adoption of a new technology and 0K = .  

In practice, investors prefer the rate of increase in sπ  to be larger at the early 
stages and monotonically decline over time as 0s = . As s increases (moving 
backward in time) both the drift rate and after-tax cash flows will also increase. 
The optimal investment time is therefore at the point where sV  becomes posi-
tive, moving backward in time.  

Special case 1: when τ  is zero. 
The optimal investing time depends on the drift rate and is independent of the 

level of the after tax cash flows, sπ . Based on these findings, the cost of de-
laying the investment is equivalent to the delay in generating sπ , measured 
by δ  the instantaneous discount rate; while the benefits of delaying investing 
include the increase in sπ  due to the expected increase in the drift rate. 

Special case 2: when τ  is not zero.  
If the tax rate, τ π  is not zero, then the sign for sV  cannot be determined 

in advance and the timing of investment will depend on the stochastic variable 

sπ . However, if carbon tax, τ  is small, then ignoring both τ π  and π  
would not significantly impact the timing of the optimal investment decision.  

Re-stating our model, we make the following assumptions that regulatory un-
certainty means carbon tax levied on capital investments and such taxes will 
impact expected cash flows from the project. The response or reaction by inves-
tors could be either change and adopt a new technology or do nothing and stay 
the course (see Table 2, Figure 2, and Table 3, Figure 3). 

By notation, tπ  refers to after tax cash flow and follows GBM,  
d d dt zπ α σ
π

= + ; tK  represents new technology (to minimize the impact of  

Carbon tax). The Bellman equation is given as follows. 

( ) ( ) ( ) ( ){ }1, max , 1 ,t t tV t K t t t E V t tπ π τ δ π π−  = − ∆ + + ∆ + ∆ + ∆     (14) 

where δ  is the instantaneous discount factor.  
Thus, we re-affirm Dixit and Pindyck (1994) [7] by stating 
Lemma 1: For every t, there exists a threshold *

tπ  such that 
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( ) ( ) ( ) ( )1 *, 1 , for everyt tV t K t t t E V t tπ δ π π π π−  = ∆ + + ∆ + ∆ + ∆ ≤   

( ) *, for every tV tπ π τ π π= − ≥  

And the boundary conditions are: 
(i) ( ),V tπ π τ= −  for all *

tπ π≥  
(ii) ( ), 0V sπ π− =  
(iii) ( ) [ ], 0 max ,0V π τ π τ= = −  
Next, we illustrate how the adoption of a new technology over time could im-

pact the value of an irreversible capital investment, first by assuming that change 
in technology follows a path whereby ( )K t K≡ . As such, we propose Lemma 2: 

Proposition I of Lemma 2: ( ),V tπ  is decreasing in time, t.  
Proof: 
We set the boundary condition ( ) [ ], max ,0V Tπ π τ= −  for all π  

( ) ( ) ( ){ }1, max , 1 ,0V T t K t t E Vπ π τ δ π π−− ∆ = − ∆ + + ∆ + ∆    

( ) [ ] ( ), max ,0 ,V T t V Tπ π τ π− ∆ ≥ − =  

By inference, we show that the value of an investment is decreasing in time. 
Further we assume for all t t′≥  and π  there exists ( ) ( ), ,V t V t tπ π≥ + ∆ .  

Next, we show that for t t t′= − ∆ , it is true that ( ) ( ), ,V t t V tπ π′ ′− ∆ ≥ . 
Based on these two functions; 

( ) ( ) ( ){ }1, max , 1 ,V t K t t E V t tπ π τ δ π π−′ ′= − ∆ + + ∆ + ∆ + ∆    

( ) ( ) ( ){ }1, max , 1 ,V t t K t t E V tπ π τ δ π π−′ ′− ∆ = − ∆ + + ∆ + ∆    

Combining the 2 functions above with the assumption that  
( ) ( ), ,V t V t tπ π π π′ ′+ ∆ ≤ + ∆ + ∆  we obtain 

( ) ( ), , .V t t V tπ π′ ′− ∆ ≥  

The results show that ( ),V tπ  is decreasing in t. This finding further con-
firms that if ( )K t K≡ , investors would prefer a higher rate of increase in cash 
flows at the early stages of an investment economic lifecycle. Proposition I of 
Lemma 2 can be extended to the case that ( )K t  is decreasing over time, t.  

Proposition II of Lemma 2: ( ),V tπ  is increasing in π . 
Proof: We know from the boundary condition that ( ) [ ], max ,0V Tπ π τ= − . 

Now we assume for all t t′≥ , we show that ( ),V tπ  increases in π . When 
t t t′= − ∆ , we obtain 

( ) ( ) ( ){ }1, max , 1 ,V t t K t t E V tπ π τ δ π π−′ ′− ∆ = − ∆ + + ∆ + ∆    

Noting that both terms of the right side are increasing in π , ( ),V tπ  is in-
creasing in π  as the adoption of a new technology could mitigate the negative 
effects of carbon tax. Proposition II of Lemma 2 can be extended to the case with 
any function ( )K t  (see Table 4, Figure 4).  
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Proposition III of Lemma 2: *
tπ  is increasing in t.  

Proof: From Lemma 1, the solution for *
tπ  is: 

( ) ( )11 ,K t t E V t tπ τ δ π π−− = ∆ + + ∆ + ∆ + ∆    

Note that the right side of the above equation is decreasing in t but increasing 
in π . Therefore, the solution of *

tπ  is increasing in t which suggests that with 
the adoption of a new technology (as a mitigating factor for carbon tax), *

tπ
will increase in t. Proposition III of Lemma 2 can be extended to the case that 

( )K t  is increasing over time, t (see Table 5, Figure 5). 

4. The GBM: As a Binomial Process 

Following Black and Scholes (1973) [27] and Insley (2002) [36] we assume that 
cash flows tπ , follow a GBM process which is a consistent assumption in finan-
cial economics. So, in this paper we assume that cash flows follow a lognormal 
diffusion process and the model underlying the process is  

d d dt zπ
π α σ
π

= +  

The maximum likelihood estimates of the drift α , and the variance, σ  for 
cash flows can be stated as 20.5mα σ= +  where m is the mean of the series 

1t tπ π −− . When we adopt Insley’s estimates for 0.01α =  and 0.13σ = , the 
validity of our results and conclusion did not change (also, see Table 5, Figure 
5). Further, a base discount of 5% is also used.  

The value of option to invest is derived explicitly by solving the underlying 
partial differential equation involving the binomial option pricing model devel-
oped independently by Cox, Ross and Rubinstein (1979) [40]. In a two-state op-
tion pricing model, the stochastic process described above is replaced with a dis-
crete state assuming an increase (up) or decrease (down) movement in cash 
flows. Based on that assumption, we describe the binomial option pricing model 
as follows.  

The initial cash flows are π . In the next period, π  will either increase to 
u π∗  (upstate) or decrease to d π∗  (down state). The probability of an 
upstate is p and the probability of downstate is 1 p− .  

The inference is that 1.0; 1.0u d> < . In other words, the proportional in-
crease in the cash flow when there is an up movement is 1.0u − ; and the pro-
portional decrease in the cash flow when there is down movement is 1.0 d− . 

The probability of reaching the next period therefore is 1.0 because at that 
stage the investment could be implemented or delayed. 

The expected value of the investment is a function of the expected cash flow, 
the effect of carbon tax on the expected cash flows and the impact of adopting a 
new technology that would mitigate the effect of carbon tax on the expected cash 
flows, all discounted at the appropriate discount rate. However, the uncertainty 
in the cash flow could be exacerbated by the imposition of carbon tax and the 
associated technological change. Therefore at any point in time t, the stochastic 
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process could be described by two states: the first state being the expected cash 
flow from the investment and the second state is the expected cash flow given 
the imposition of carbon tax and the adjoining technological change designed to 
mitigate the effect of carbon tax on the cash flows. The binomial option pricing 
model specifies the cash flow process and the expected values of the investment 
can be explicitly determined at discrete nodes as long as the discount rate is 
known. 

Using the dynamic programming formulation, the values of an investment 
can be evaluated at each stage. At each stage the decision maker must evaluate 
whether the investment is financially valuable or not. If the discounted value of 
investing today (t) exceeds the discounted value of waiting, the managerial deci-
sion will be to invest today. For risk neutral valuation, the following equation 
states the appropriate recursive condition at any cash flow in the binomial tree 
as: 

( ) ( ) ( ) ( ){
( ) ( ) }

1, 1 , 1 , ,

1 ,

t t t tV Max K t t pE u V t

p E d V

π τ π τ δ π π τ

τ

−  = − − ∆ + + ∆ ∆ ∆ 

+ − • + ∆  
 

where ( ),E u V τ• + ∆    is the expected value of the investment one year from 
now given that an upstate has occurred and vice versa. This valuation can then 
be expressed as [ ],u uMax Invest Wait .  

[ ] ( )1u tInvest u π τ= ∗ − , tK t∆  suggests that cash flow is expected to increase 
in the next period given the change in technology and [ ]uWait  is the present 
value of the investment in t = 2 period if the upstate occurred and the investment 
decision is to delay or postpone the investment. Conversely, ( ),E d V τ• + ∆    
is the value of the investment one year from now given that the down-state oc-
curred. Other variables are as stated earlier.  

If at any node the investment value exceeds the value of delaying the imple-
mentation of the investment, the investment will be implemented. On the hand, 
if the value of delaying the investment is less than its current value, the invest-
ment will be abandoned at this time. Also, if the cost of the technology is greater 
than the value of investment, the investment will be abandoned as well. The es-
timated results therefore include the option of abandoning the investment if the 
value of the investment is too low to justify the cost of the technology plus the 
effect of the carbon tax. Formally, the value of the investment is computed as: 

( ) ( ) ( ){
( ) ( ) }

1, 1 , ,

1 ,

t t tV Max K t t pE u V t

p E d V

π τ δ π π τ

τ

−  = ∆ + + ∆ ∆ ∆ 

+ − • + ∆  
 

The equation above shows that the value of the investment depends on the 
expected values in future periods. Therefore, the future periods must be eva-
luated in order to determine whether it is optimal to invest now or delay invest-
ing to a later period. The dynamic analysis could be solved by backward induc-
tion to determine if the current value of the investment exceeds the discounted 
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expected value of the next period best outcome. The boundary condition is the 
value of the investment in the final period. 

5. The Example 

A C++ program was written to solve the continuous time finite-horizon dynam-
ic programming model requiring the following parameters; an initial cash flow 
estimate, the percent of carbon tax, the discount rate, the drift, the volatility, the 
terminal period and a function for new technology adopted by the investor as an 
attempt to mitigate the effect of carbon tax on the value of the investment. All 
values are nominal.  

With an initial cash flow of $10,000 and carbon tax rate at 20%, drift at 0.01, 
volatility equals 0.13, the discount rate at 5%, terminal period 25 years and the 
function for technology is ( ) 50e btK t −=  where bt measures the effect of tech-
nology over time, our base model is illustrated model and depicted in Table 6, 
Figure 6 and Table 7, Figure 7. 

( )$10000 : 20%; d 0.01d 0.13d ; 50e ; 5%; 25btt z K t Tτπ π δ
π

−= = = + = = =  

6. Conclusions 

In this paper, we analyze the effect of uncertainties in regulation and technology 
on the value of irreversible capital investments using the geometric Brownian 
motion. Regulatory uncertainty is attributed to a carbon tax levied on the carbon 
present in every hydrocarbon fuel. These hydrocarbon fuels when burnt, release 
atmospheric carbon dioxide (CO2) unlike non-combustion energy sources: wind, 
sunlight, hydropower and nuclear. While a carbon tax on hydrocarbon fuels 
used as a source of energy would be the theoretically ideal regulatory instrument 
for the abatement of carbon dioxide emissions, substitution effects between dif-
ferent sources of energy could be realized through innovation in technology. 

Our optimal investment problem is formulated as a linear complementarily 
problem based on the differential of the Bellman equation, a time-dependent 
stochastic process. Three analytical solutions were derived from the linear com-
plementarily problem; the first analytical solution states that the expected value 
of an irreversible investment must exceed its current value in order to exercise 
the option to delay the timing of the investment. In other words, the value of an 
irreversible investment must be greater or equal to zero. When value is equal to 
zero, the option to invest is “at-the-money” and investor is better-off holding 
unto the option; when value is greater than zero, the option to invest is 
“in-the-money” and investor is better-off exercising the option; and when value 
is less than zero, the option to invest is “out-of-the-money”; though, this out-
come is not expected to persist in a competitive market environment. Secondly, 
the linear complementarily problem also states that the value of the option to 
delay investing while in the continuation region, should always exceed the value 
of the payout given carbon tax. This finding is consistent with the behavior of a 
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rational investor holding an American-type call option. The option can be exer-
cised at any time in the continuation region if the value of the option of post 
carbon tax is greater than zero. However, the option would be exercised imme-
diately if the value of option decreases to the level of the payout. Thirdly, the li-
near complementarily problem finally posits that if the first and second linear 
complementarily solutions hold as a strict equality, then the value of investing 
now is equal to the value of waiting and the investor will be indifferent.  

We also extend the results of Dixit and Pindyck (1994) [7] showing that the 
imposition of carbon tax will impact the decision to delay or postpone the im-
plementation of an investment even when cash flows π  are greater than its 
critical value, *π . However, the adoption of a new technology could mitigate 
the negative effects of carbon tax on the value of irreversible investments. In ad-
dition, we show that, assuming the threshold in technology is ( )K t K≡ , the 
value of an investment could decrease in time regardless of the technological 
change because investors typically would prefer a higher rate of increase in cash 
flows at the early stages of the economic lifecycle of an investment. Conversely, 
this paper also shows that though the adoption of a new technology could miti-
gate the negative effects of carbon tax on investment cash flows, the increase in 
cash flows would increase the likelihood of the increase in the value of an 
irreversible investment. The result is that value of an irreversible investment is 
expected to increase as cash flow increases. Further, an increase in cash flow as a 
result of a change in technology will increase the minimum required critical val-
ue for cash flow, 

*π  in time for irreversible capital investments, therefore *π  
is increasing in time. 
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Appendix 

Table 1 is a table of expected values at various levels of cash flows (in thousands) 
against different carbon tax rates. We find that when the amount of cash flow 
expected from an investment is at $5000 and above, the value of the investment 
decreases as the rate of carbon tax increases. The result also suggests the value on 
an investment is not significantly impacted by carbon taxes when cash flows are 
at $2500 or zero. Following Table 1 is Figure 1 depicting the graphical relation-
ship between expected values, cash flows and carbon tax rates. 
 
Table 1. Expected value, cash flow and carbon tax rate (τ/π) (unit of cash flow in ‘000s). 

 
τ/π, tax rates. 

π 20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40% 42% 44% 46% 48% 50% 

0 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 19.36 

2.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 

5 20.48 20.38 20.28 20.19 20.09 20 19.91 19.83 19.82 19.82 19.82 19.82 19.82 19.82 19.82 19.82 

7.5 21.78 21.67 21.56 21.46 21.35 21.24 21.14 21.03 20.93 20.83 20.73 20.62 20.52 20.43 20.33 20.23 

10 23.22 23.1 22.98 22.87 22.75 22.63 22.51 22.4 22.29 22.17 22.06 21.95 21.84 21.73 21.62 21.51 

12.5 24.74 24.61 24.49 24.37 24.25 24.12 24 23.88 23.76 23.63 23.51 23.39 23.27 23.16 23.04 22.92 

15 26.34 26.21 26.08 25.95 25.82 25.69 25.56 25.43 25.31 25.18 25.05 24.92 24.8 24.68 24.55 24.43 

17.5 28 27.86 27.72 27.59 27.45 27.32 27.18 27.05 26.92 26.79 26.66 26.53 26.4 26.27 26.14 26.01 

20 29.69 29.55 29.42 29.28 29.15 29.01 28.88 28.74 28.6 28.47 28.33 28.2 28.06 27.93 27.79 27.66 

22.5 31.46 31.32 31.18 31.04 30.89 30.75 30.61 30.47 30.33 30.18 30.04 29.9 29.76 29.62 29.48 29.35 

25 33.24 33.1 32.96 32.81 32.67 32.53 32.39 32.24 32.1 31.96 31.82 31.68 31.53 31.39 31.25 31.11 

27.5 35.1 34.95 34.8 34.65 34.5 34.35 34.2 34.05 33.9 33.75 33.6 33.46 33.31 33.17 33.03 32.88 

30 36.96 36.81 36.66 36.51 36.37 36.22 36.07 35.92 35.77 35.62 35.47 35.32 35.17 35.02 34.87 34.72 

32.5 38.85 38.7 38.54 38.38 38.23 38.08 37.93 37.78 37.63 37.48 37.34 37.19 37.04 36.89 36.74 36.59 

35 40.81 40.65 40.5 40.34 40.18 40.03 39.87 39.71 39.56 39.4 39.24 39.09 38.93 38.77 38.62 38.46 

37.5 42.77 42.61 42.46 42.3 42.14 41.99 41.83 41.67 41.52 41.36 41.2 41.05 40.89 40.73 40.58 40.42 

40 44.73 44.57 44.42 44.26 44.1 43.94 43.79 43.63 43.47 43.32 43.16 43 42.85 42.69 42.53 42.38 

Basic model. ( ) ( )10 , 20%, d 0.01d 0.13d , 50exp 0.5 , 5%, 25k t z K t t Tτπ π δ
π

= = = + = − = = . 

 

 
Figure 1. Figure 1 of Table 1: Expected value, cash flows and 
carbon tax rate. 
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Table 2 and related Figure 2 show how expected value changes as the drift 
rate changes from 0.01 to 0.30. The results indicate that increasing the drift rate, 
(which is the change in the average value of the stochastic cash flow) will in-
crease the expected value of the investment across all carbon tax rates. Intuitive-
ly, if the carbon tax rate is fixed, increasing the drift rate will increase value of 
the investment. The results are similar when we analyzed how the value of in-
vestment will be affected by changing the volatility of the cash flow. The average 
rate of change in the investment value is about 0.4% for both the drift rate and 
volatility. 
 
Table 2. Expected Value, Carbon tax rate and Drift α (units: 1 k). 

 
α 

τ/π 0.01 0.10 0.20 0.30 

20% 23.22 23.22 23.22 23.31 
22% 23.10 23.14 23.19 23.19 
24% 22.98 23.02 23.07 23.08 
26% 22.87 22.91 22.96 22.96 
28% 22.75 22.79 22.84 22.84 
30% 22.63 22.67 22.72 22.73 
32% 22.51 22.56 22.60 22.61 
34% 22.40 22.44 22.49 22.49 
36% 22.29 22.33 22.38 22.38 
38% 22.17 22.22 22.27 22.27 
40% 22.06 22.11 22.16 22.16 
42% 21.95 22.00 22.05 22.05 
44% 21.84 21.88 21.93 21.94 
46% 21.73 21.77 21.82 21.83 
48% 21.62 21.66 21.71 21.72 
50% 21.51 21.55 21.61 21.61 

Basic Model: ( ) ( )10 , 20%, d 0.01d 0.13d , 50exp 0.5 , 5%, 25k t z K t t Tτπ π δ
π

= = = + = − = = . 

 

 
Figure 2. Figure 2 of Table 2: Expected value, carbon tax rate and 
drift. 
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Table 3. Expected value, carbon tax rate and volatility σ (units: 1 k). 

 
σ 

τ/π 0.13 0.53 1.03 1.53 2.03 

20% 23.22 23.23 23.25 23.27 23.30 

22% 23.10 23.12 23.13 23.15 23.19 

24% 22.98 23.00 23.02 23.03 23.07 

26% 22.87 22.88 22.90 22.92 22.95 

28% 22.75 22.77 22.78 22.80 22.84 

30% 22.63 22.65 22.67 22.68 22.72 

32% 22.51 22.53 22.55 22.57 22.60 

34% 22.40 22.42 22.44 22.45 22.49 

36% 22.29 22.30 22.32 22.34 22.38 

38% 22.17 22.19 22.21 22.23 22.27 

40% 22.06 22.08 22.10 22.12 22.15 

42% 21.95 21.97 21.99 22.01 22.04 

44% 21.84 21.86 21.88 21.89 21.93 

46% 21.73 21.75 21.77 21.78 21.82 

48% 21.62 21.64 21.66 21.67 21.71 

50% 21.51 21.53 21.55 21.57 21.60 

Basic Model: ( ) ( )10 , 20%, d 0.01d 0.13d , 50exp 0.5 , 5%, 25k t z K t t Tτπ π δ
π

= = = + = − = = . 

 

 
Figure 3. Figure 3 of Table 3: Expected value, carbon tax rate and volatility. 
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Next is the analysis on how adopting a new technology will impact the value 
of the investment. Interestingly the result shows that the adoption of new of 
technology (increasing from an arbitrary low value of 20 to a higher value of 50, 
a better technology) almost doubles the value of the investment regardless the 
rate of carbon tax. By deduction, the effect of carbon tax is mitigated given the 
level of efficiency of the technology adopted to minimize carbon emissions. Ta-
ble 4 and Figure 4 illustrate. 
 
Table 4. Expected value, carbon tax rate and technology K (units: 1 k). 

 
K 

τ/π 20 25 30 35 40 45 50 

20% 12.40 14.13 15.90 17.70 19.53 21.36 23.22 

22% 12.26 13.99 15.77 17.57 19.40 21.24 23.10 

24% 12.11 13.86 15.64 17.44 19.28 21.12 22.98 

26% 11.97 13.72 15.51 17.32 19.16 21.00 22.87 

28% 11.83 13.59 15.38 17.20 19.04 20.89 22.75 

30% 11.69 13.45 15.25 17.07 18.91 20.77 22.63 

32% 11.56 13.32 15.12 16.95 18.79 20.65 22.51 

34% 11.42 13.19 14.99 16.83 18.67 20.53 22.40 

36% 11.29 13.06 14.87 16.71 18.55 20.42 22.29 

38% 11.15 12.93 14.74 16.58 18.44 20.30 22.17 

40% 11.01 12.80 14.62 16.46 18.32 20.18 22.06 

42% 10.88 12.67 14.50 16.34 18.20 20.07 21.95 

44% 10.74 12.54 14.38 16.22 18.09 19.96 21.84 

46% 10.61 12.42 14.25 16.11 17.97 19.85 21.73 

48% 10.48 12.29 14.13 15.99 17.85 19.74 21.62 

50% 10.35 12.17 14.01 15.87 17.74 19.62 21.51 

Basic Model: ( ) ( )10 , 20%, d 0.01d 0.13d , 50exp 0.5 , 5%, 25k t z K t t Tτπ π δ
π

= = = + = − = = . 

 

 
Figure 4. Figure 4 of Table 4: Expected value, carbon tax rate and technology. 
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Following the results of how the adoption of a new technology could mitigate 
the effect of carbon taxes on the value of an investment is the speed at which the 
adopted technology could become more relevant or obsolete over time. This is 
referred to as b in our model. The value of an investment is negatively impacted 
if the effect of technology decays over time and the adopted technology becomes 
less effective in ameliorating the level of carbon emissions. Table 5 and Figure 5 
show the speed at which the value of an investment could decline over time as 
the effect of technology declines with time. 
 
Table 5. Expected value, new tech function ( ) ( )expK t K bt= ∗ −  and its effect over 

time (units: 1 k). 

 
K 

b 20 25 30 35 40 45 50 

0 38.97 48.55 58.14 67.72 77.31 86.89 96.48 

0.1 22.03 27.26 32.49 37.73 42.96 48.19 53.42 

0.2 16.69 20.07 23.51 26.98 30.49 34.01 37.55 

0.3 14.43 16.96 19.55 22.17 24.82 27.49 30.17 

0.4 13.18 15.23 17.32 19.44 21.60 23.77 25.95 

0.5 12.40 14.13 15.90 17.70 19.53 21.36 23.22 

0.6 11.86 13.36 14.91 16.49 18.08 19.69 21.32 

0.7 11.46 12.81 14.19 15.60 17.03 18.46 19.91 

0.8 11.15 12.39 13.64 14.93 16.22 17.52 18.84 

Basic Model: ( ) ( )10 , 20%, d 0.01d 0.13d , 50exp 0.5 , 5%, 25k t z K t t Tτπ π δ
π

= = = + = − = = . 

 

 
Figure 5. Figure 5 of Table 5. 
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Conversely, the results are dramatically reversed if the effect of technology on 
carbon emissions and carbon taxes becomes even more effective. 
 
Table 6. Expected value, new tech with ( ) ( )50expK t bt= ±  changing over time (units: 1 

k). 

b ( ) ( )50expK t bt= −  ( ) ( )50expK t bt=  

0 96.48 96.48 

0.1 53.42 262.87 

0.2 37.55 1201.11 

0.3 30.17 8143.04 

0.4 25.95 >10K 

0.5 23.22 >10K 

0.6 21.32 >10K 

0.7 19.91 >10K 

0.8 18.84 >10K 

Basic Model: ( ) ( )10 , 20%, d 0.01d 0.13d , 50exp 0.5 , 5%, 25k t z K t t Tτπ π δ
π

= = = + = − = = . 

 

 
Figure 6. Figure 6 of Table 6. 
 

The expected value of an investment involves discounting the expected after 
tax cash flows using the appropriate discount rate. While the choice of the ap-
propriate discount is central to finance and investment analysis, the problem of 
analyzing the effect of discount rates on the expected values of long term irre-
versible investments is exacerbated due to the high degree of uncertainty about 
appropriate discount rate. For simplicity, this paper iteratively modeled how the 
expected value of an investment will change given different discount rate re-
gimes. As expected, the lower the discount rate the higher the expected value of 
the investment over time. See Table 7 and Figure 7. 
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Table 7. Expected value, discount rate and time horizon (units: 1 k). 

 
T 

δ 20 21 22 23 24 25 

1% 8.87 9.86 11.62 14.62 19.68  

2% 8.48 9.32 10.90 13.70 18.49  

3% 8.24 8.93 10.35 12.96 17.52  

4% 8.09 8.64 9.91 12.36 16.71  

5% 8.02 8.42 9.56 11.85 16.01  

6% 8.00 8.27 9.27 11.42 15.41  

7% 8.00 8.14 9.01 11.03 14.85  

8% 8.00 8.07 8.82 10.70 14.38  

9% 8.00 8.00 8.63 10.39 13.93  

10% 8.00 8.00 8.49 10.14 13.54  

Basic Model: ( ) ( )10 , 20%, d 0.01d 0.13d , 50exp 0.5 , 5%, 25k t z K t t Tτπ π δ
π

= = = + = − = = . 

 

 
Figure 7. Figure 7 of Table 7. 
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