
Journal of Mathematical Finance, 2021, 11, 267-293 
https://www.scirp.org/journal/jmf 

ISSN Online: 2162-2442 
ISSN Print: 2162-2434 

 

DOI: 10.4236/jmf.2021.112016  May 20, 2021 267 Journal of Mathematical Finance 
 

 
 
 

Interest and Growth 

Andrew P. Leung  

Melbourne, Australia 

           
 
 

Abstract 
This paper considers the relationship between population growth and capital 
accumulation. In general, the relationship is not monotonic; there is a tension 
between two opposing effects: a higher growth rate diluting capital that has 
already been accumulated, and the ability of a growing population to generate 
its own wealth. The strengths of these effects depend on the population 
structure and the time horizon for each generation to accumulate wealth. 
This type of analysis has been conducted within a natural Overlapping Gen-
erations framework. However, an explicit assumption is needed to allow a 
comparatively static analysis of levels of population growth and capital ac-
cumulation. That assumption is effectively the requirement for each genera-
tion to be self supporting in terms of its consumption and contribution to 
production. We show that this assumption can be justified in theory by a 
form of economic efficiency with respect to population changes, referred to as 
demographic efficiency. This analysis is also conducted within the Overlap-
ping Generations model of modern economics. An interesting aspect is the 
structure of “steady state” economies, that is where each consumer is identic-
al to any other through time. With simple examples and assumptions, this 
paper demonstrates that a given interest rate can support more than one 
population growth rate (unlike Samuelson’s golden rule, where these rates are 
equal). The ramifications for non steady state economies are accordingly 
more complex. 
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1. Introduction 

Since its introduction, the overlapping generations (OLG) model has been con-
sidered as the natural framework for explaining savings behavior in relation to a 
given population. A vast literature has developed with respect to its application. 
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The two main streams of the OLG literature have been devoted to the existence 
of competitive equilibria and the characterization of efficiency.  

For the discrete time, finite lifetime model with given endowments, Samuel-
son found a criterion of efficiency within the OLG framework, referred to as the 
“golden rule”, and discussed it in several papers [1] [2] [3]. Under steady state 
growth, efficiency is assured if the rate of interest equals the (constant) rate of 
population growth. This characterization was extended, first with a fundamental 
result of [4], then by [5]. Most of these efficiency characterizations involve a 
specific relationship between the interest rate dynamics and that of the popula-
tion.  

In contrast, [6] presents an economy with a (countably) infinite number of in-
finitely lived agents. As with [7], his commodity space as well as the price space 
is the space of real sequences. He shows that under standard conditions, if the 
value of the total endowment of resources is finite, then the first theorem of wel-
fare economics holds, that is, every competitive equilibrium is Pareto optimal. 
He also shows that this classical result can fail when the value of the total en-
dowments is not finite at equilibrium.  

The paper by [8] integrates the approach taken by Balasko and Shell, and 
Wilson, with that taken by [9] [10] and [11]. The latter approach is from the 
viewpoint of a general equilibrium economy, where prices reside in the dual of 
the commodity space. This is the starting point of this paper which, however, is 
concerned with a different aspect of economies, namely, the role of consumers 
themselves.  

It is also of interest to examine the role of population in achieving efficiency. 
[12] introduced an OLG model where fertility, via the number of children born, 
is a decision variable of the parents. It has been claimed [12] [13] that such en-
dogenization guarantees efficiency in OLG models, but questions of convergence 
in such models have not been given as much prominence as in models assuming 
exogenous growth.  

This paper seeks to extend the efficiency characterizations for OLG models 
with exogenous population to OLG models with variable population growth. It 
does this by considering an extended definition of efficiency which embraces 
variations in population, referred to as demographic efficiency in this paper. It 
also demonstrates that such an extended concept of efficiency holds for a price 
equilibrium, if all generations of consumers follow a lifetime budget constraint. 
This lifetime budget is measured in terms of present values of income and ex-
penditure with discounting at the interest rates supporting the equilibrium.  

This lifetime budget constraint and its constraints provide the starting point 
for studies in capital accumulation and population growth as undertaken re-
cently by [14], Equations (3) and (4), and [15], Equation (7). However, the 
framework adopted in this paper is less restrictive than that used by the authors 
quoted. Not only are mortality characteristics permitted to evolve through time, 
but both interest rates and population growth are endogenous to the model and 
need not underpin steady states. Given a production technology, the only ex-
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ogenous feature of the model, there are quantitative relationships between the 
endogenous variables may be used to explore the link between population and 
capital accumulation, surely a relevant objective in retirement incomes policy.  

The lifetime budget constraint is also reminiscent of the “no surplus” condi-
tion for efficiency in finite economies [16], under which each generation has an 
incentive to participate in trade. However, the lifetime budgets introduced in 
this paper are concerned more with the nature of each generation’s endowment, 
rather than with the relative values of endowments and allocations.  

This paper is organized as follows. First, we introduce a general framework, in 
discrete time, for OLG models, covering consumer demographics, consumption 
and production. Second, several notions of efficiency are discussed, including 
one based on endogenous population. Third, we state a sufficient condition for 
demographic efficiency. Fourth, the major contribution of this paper is in dis-
cussing the extent to which that condition is also necessary. The paper concludes 
with some implications for retirement incomes policy and with some possible 
extensions.  

This paper is organized as follows. First, we introduce a general framework, in 
discrete time, for OLG models, covering consumer demographics, consumption 
and production. Second, several notions of efficiency are discussed, including 
one based on endogenous population. Third we state a sufficient condition for 
demographic efficiency. Fourth, the major contribution of this paper is in dis-
cussing the extent to which that condition is also necessary. The paper concludes 
with some implications for retirement incomes policy and with some possible 
extensions.  

2. Framework 

In this paper, we adopt an OLG model with production in the spirit of [17]. The 
only refinements made to this model are the possibility of life for multiple pe-
riods, and a general population structure for consumers, which are detailed as 
follows.  

2.1. Demographics 

Consumers are distinguished only by time of birth, and the set of such consum-
ers born at a particular time s is referred to as a generation. Thus all members of 
a generation are assumed to be identical. 

The total population of consumers at time t may be described by a population 
function ( ),s t , non-zero only for t s≥ , representing the number of 
consumers born at time s who survive to time t [[18], Chapter 18]. The mortality  

rate at time t of consumers born at time s is thus ( ) ( ) ( )
( )

, , 1
,

,
s t s t

q s t
s t

− +
=
 



.  

Consumers who die during the period [ ), 1t t +  are assumed to die just before  
time 1t + . The function ( )ˆ

t
s =∑  , which is related to each generation’s  
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expectation of life, provides a measure on generations s∈ .  
The total population of consumers at time t is given by ( ) ( ),

s
L t s t=∑ . For  

a particular generation s, the ratio ( ) ( ), ,s t s s   may be regarded as the 
probability at birth of survival to time t [[18], Chapter 3].  

Each generation is supposed to be endowed with labor, described by a 
given labor supply function ( ),b s t  which measures the number of working 
hours available during the period [ ), 1t t + . The aggregate labor supply is thus1 
( ) ( ) ( ), ,

s
B t b s t s t=∑  .  

Remark 1. The above framework relates to a closed economy. Immigration 
can be allowed for by defining an expanded population function ( ), ,s z t  
where z is the age at migration and ( ), , 0s z t =  for z s≥ . Emigration then 
corresponds to ( ), , 0s z t =  for z s≤ . However, that is beyond the scope of 
this paper.  

2.2. Consumption 

At any time, there is a finite number n commodities in the economy. The 
commodity space at any time is the n dimensional Euclidean space n , which is 
equipped with the Euclidean norm ⋅ .2  

A state of the economy is described by a consumption function  
( ) 2, : ns t → c , for each member of the generation s at time t.3 The 

aggregate consumption at time t is thus ( ) ( ) ( ), ,
s

t s t s t=∑ C c . A given or initial 
endowment of consumption is denoted ( )* , ns t ∈c . We are concerned mainly 
with consumption functions that are bounded uniformly across time and 
generations.  

As the measurable population function ( ),s t  induces a measure on 2 , 
we thus consider the following Lebesgue spaces in various contexts:  
• ( )2 , nl∞   : the space of all bounded functions 2: nf →  . The norm of 

this space is taken to be the essential supremum norm, i.e.  

( )sup ,s t
∞
=f f  

• ( )2
1 , nl   : the space of all summable functions 2: ng →  . The norm of 

this space is given by the rule:  

( ) ( )1
,

, , .
s t

s t s t= < ∞∑ g g  

Similarly the total population function ( )
s

L t =∑  defines a measure on   
associated with the spaces ( ), nl∞    and ( )1 , nl   , and with their corres-
ponding norms.  
where there is no ambiguity, for 1,2m =  we write ( )ml∞   and ( )1

ml  , or 
even l∞  and 1l , for the spaces ( )2 , nl∞    and ( )1 ,m nl   , respectively.  

 

 

1This will be applied as an input to production. 
2We use this notation rather than the more usual ⋅  in order to avoid confusion with the pL  

norms introduced subsequently. 
3Note that n-dimensional variables are generally denoted as vectors in bold type. 
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2.3. Consumer Utility 

We assume that the preferences of consumers in a generation s over various 
consumption paths ( ),s tc  are given by a utility summation of the form  

[ ] ( ) ( ), ,s

t
U u s t s t =  ∑ c c  

where ( )u ⋅  is the instantaneous utility function at any point of time. Where 
there is no ambiguity we omit the reference to the generation s and write simply 
[ ]U c . This imposes an additively separable structure on each consumer’s overall 

utility, implicit in taking a summation. The utility summation is similar to a Von 
Neumann-Morgenstern type of expected utility, with discounting via the popu-
lation parameter ( ),s t , regarded as a survival probability to time t for the 
generation s.  

The instantaneous utility function ( )u c  is assumed to be concave, mono-
tonic, and twice continuously differentiable. In order to make sense of the utility 
summations, we need to ensure that only allocations *c  for which ( )*u c  is 
bounded are considered. We can achieve this by requiring either ( )u ⋅  to be 
bounded, with ( )*supu u= < ∞c , or else *c  itself to be bounded.  

In general only utility functions satisfying a particular uniform property for 
their second derivatives are considered.  

Definition 2. The curvature of an instantaneous utility function ( )u c , at the 
point c  in the direction of the unit vector x , is defined as the quantity  

( ) ( )
( )

T

,
u
u

κ
′′

= −
′

x c x
c x

c
 

where ( )u′′ c  is the Hessian matrix corresponding to the function ( )u c .  
A utility function is then said to have bounded minimum (resp. maximum) 

curvature if there is a uniform lower (resp. upper) bound to ( ),κ c x  for all 
,c x .   
This is related to the coefficient of risk aversion introduced in [19]. Further 

assumptions on the behavior of ( )u c  will be made in context4.  

2.4. Production 

For simplicity, we adopt the usual assumption that production is instantane-
ous via a net production function ( ), BF K  for capital K  and aggregate labor 
supply B, as introduced in Section 2.1. Under these circumstances, K  is an 
n-dimensional vector of commodities, representing the rates at which inputs are 
used in the production process, and F  is similarly a vector representing out-
puts. We also adopt the conventional assumptions that the function ( ), BF K  is 
concave in its arguments. Other conditions on F  will be made in context.  

3. Prices 

The economic framework introduced above is completely abstract and does not 

 

 

4Since u is a function of a commodity bundle, the gradient u′  is a vector in n . Similarly the 
second derivative u′′  should be interpreted as a Hessian matrix. 
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involve the existence of supporting prices. The concept of an “efficient” alloca-
tion may be defined under this abstract framework, as set out in the next section.  

In practice, abstract economies are rarely of interest for their own sake, but 
only to the extent that they are supported by prices. To introduce the role of 
prices, we adopt the following notation.  

Let ( )tp  be the price vector of commodities, ( )r t  be the instantaneous 
rate of interest and ( )tw  the wage rate at time t. Further, let sT  denote the 
present value of net transfers to generation s from other generations per head of 
population.  

Then the value of labor income is b ⋅ p w  at time t. Taking discount factors  

( ) ( )
0

exp ,
t

t r zγ  = −  
∑  

the present value of labor and other endowments, allowing for interest as well as 
the probability of survival for generation s, is  

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

, ,

, , , .

s

s

s

z
s z z s z

s

z
s z b s z z z s s T

s

γ
γ

γ
γ

∞

∞

⋅

= ⋅ +

∑

∑



 

p c

p w
 

Writing ( ) ( ) ( )t t tγ=v p  as the (discounted) prices, we can define (aggre-
gate) income for generation s by  

( ) ( ) ( ) ( ) ( ) ( ), , , .s s

s
Y s z b s z z z s s s Tγ

∞

≡ ⋅ +∑ v w  

Thus the lifetime value of labor for generation s can be expressed by sum-
mations such as ( ) ( ) ( ) ( ), ,

t
s t b s t t t⋅∑ v w , whereas the value of lifetime con-

sumption can be expressed by summations such as ( ) ( ) ( ), ,
t

s z t s t⋅∑ v c  for 
( ) ( )2,s t l∞∈ c .  
It may be noticed in passing that the lifetime present values appearing above 

allow for discounting both for interest (via ( )tv ) as well as the probability of 
survival (via ( ),s t ). This is based in effect on aggregating over all members of 
each generation. An alternative derivation is to apply the redistribution mechan-
ism suggested by [20]. Under that mechanism, redistribution of wealth is ef-
fected individually, each member of a generation receiving an annuity whilst 
alive, in return for surrender of wealth on death. This individual wealth accu-
mulation relation is identical to the aggregate relation above, which is not sur-
prising as the principles underlying actuarial equivalence of annuity prices and 
the redistribution mechanism are identical.  

The value of aggregate future consumption is thus ( ) ( )
0t

t t
>

⋅∑v C . If this value  

is finite, the discounted prices ( )tv  may be regarded as elements of the dual 
space ( )1l  , in which case we refer to ( )tv  as a discount function.  

3.1. Topologies of Consumption and Price Spaces 

Under the weak topology for l∞ , the pair 1,l l∞  is a dual pair or dual sys-
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tem [21]. For 1,2m =  the strong dual space of each ( ),m nl∞   , denoted 
( ),m nl∞

′  , is isometric to ( ),m nba   , the space of bounded additive n  
valued set functions on m , and includes ( )1 ,m nl    as a proper subspace 
[[22], §IV.8.16].  

Where there is no ambiguity, we similarly write ( )mba   or even just ba. Be-
sides the strong topologies induced by the norm in each space, this paper con-
siders the weak topologies5 [ ],ba lσ ∞  on ba and [ ]1,l lσ ∞  on 1l . Under the 
natural embedding of 1l  in ba and with the weak topology [ ],ba lσ ∞ , 
Goldstine’s theorem states that 1l  is a dense subset of ba [[22], §V.4.5].  

Finally, in order to apply results in the literature, we consider the Mackey to-
pology ( )1,l lτ ∞ , defined as the finest topology of the dual pair 1,l l∞ , [[21], 
§6.7]. This is the topology of uniform convergence on all convex compact sub-
sets of 1l  in the [ ]1,l lσ ∞  topology. Following a characterization due to [23], 
convergence in the Mackey topology for l∞  may be shown to be equivalent to 
that in the so-called strict topology, which is based on the semi-norms  

( ) ( ) ( ) ( )sup ,t t t lβ β ∞= ⋅ ∈c c c                      (1) 

for any function ( ) 0tβ → .  

3.2. Utility Maximization 

In an economy with prices, it is necessary to specify how consumers choose 
consumption paths. This follows the familiar maximization of utility subject to 
the lifetime budget constraint above. That is, each generation’s problem is:  

[ ] ( )max such that .s s

c t t
U u Y= = ⋅∑ ∑ c c v c               (2) 

Each consumer’s problem is analogous to that in a finite economy, where the 
commodities are distinguished not only by type but also by time of consump-
tion. The value of lifetime income is then given by the variable sY  defined 
above.  

To solve this problem it is possible to apply standard optimization techniques. 
An interior solution is guaranteed by strict concavity of ( )u c . The first order 
condition for an interior solution ∗=c c  is ( ) ( ) ( ),u s t t∗ ∗′ =c c v  for all s and t. 
The extent to which such a condition is also necessary is considered in Proposi-
tion 15 of this paper. Since s

t
Y = ⋅∑ v c  is the value of future consumption, or 

equivalently the value of income, then the factors ( )sλ  are just the marginal 
(indirect) utilities with respect to income for each generation. 

4. Economic Efficiency 

A price equilibrium may be defined as an allocation *c  and discounted prices 
v  where consumers maximize utility as follows.  

Definition 3. Given the demographic structure ( ),s t , a price equilibrium 
{ }*,c v  is defined as an allocation ( )* ,s tc  together with a set of prices (or dis-

 

 

5Sometimes referred to as the weak* topology. 
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count factors) ( )tv  such that each generation maximizes utility under a life-
time budget constraint, that is *=c c  solves a utility maximization problem of 
the form set out in Equation (2).   

To examine efficiency of an economy, we need to consider the effect of vary-
ing the allocation ( )* ,s tc  to some other allocation ( ),s tc . In general we are 
interested only in prospective reallocations, that is where allocations are varied 
after some fixed time. Without loss of generality we may take this time to be 

0t = . Thus ( ) ( )*, ,s t s t=c c  for 0t < .  
Definition 4. An improving allocation ( ),s tc  for the given allocation 
( )* ,s tc  is one for which ( ) ( )*s sU U≥c c , with strict inequality for at least one 

generation s.   
The allocation ( )* ,s tc  is then efficient with respect to a given class if no im-

proving allocation exists for 0t ≥  from among a class of feasible allocations.  
As consumption paths extend over a continuum, and there is a continuum of 

consumers, the traditional welfare theorems of finite economies need not hold. 
In general, additional conditions are needed to ensure both the existence of effi-
cient allocations and their implementation as price equilibria.  

The above definition of efficiency rests upon the class of feasible allocations 
that are to be admitted. We consider three such classes below, which result in 
successively stronger concepts of efficiency.  

Definition 5. An allocation is (allocatively) efficient if there are no improving 
allocations which preserve aggregate consumption.   

The feasible allocations ( ),s tc  are therefore those which maintain aggregate 
consumption for a given initial allocation ( )* ,s tc , that is  

( ) ( ) ( ) ( ) ( ) ( )* *, , , , .
s s

t s t s t t s t s t= = =∑ ∑ C c C c  

This is a concept of efficiency applicable to a pure exchange economy, that is, 
one in which the aggregate level of consumed commodities is taken as fixed, 
without regard to their source.  

Definition 6. The allocation ( )* ,s tc  is efficient in production if no improv-
ing allocation exists for 0t ≥  which are compatible with the production tech-
nology.   

The feasible allocations in this case are those allocations ( ),s tc  satisfying 
the condition:  

( ) ( ) ( ) ( )1 , ,t t B t+ + = +C K F K K                 (3) 

for some capital path ( ) 0t ≥K .  
Remark 7. The function ( )tK  may be considered net of capital deprecia-

tion.  

Variations in Population and Production 

With the production process described in the previous section, it becomes possi-
ble to consider the full implications of a change in population. Consider a given 
population density ( ),s t , referred to as the planned population, and a hypo-
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thetical variation in future birth rates resulting in a change in the population 
density ( ),s t  of the form6 ( )n s∆ =  , where ( )n s  is non-zero only for 

0s ≥ . For a given capital path ( )K t , this will allow production to vary through 
its dependence on aggregate labor ( )B t , and hence consumption ( ),s tc  may 
also vary. Let us now consider how efficiency is affected by such variation.  

If ∆  and ∆c  denote the changes in population and consumption, the cor-
responding changes in aggregate consumption C  and aggregate labor supply 
( )B t  are given by:  

( ) ( ) ( )

( ) ( ) ( )

, ,

, .
s

s s s s

B b s t n s s t

n s s t n

∆ =

∆ = ∆ = + ∆ + ∆

∑

∑ ∑ ∑ ∑



   C c c c c
             (4) 

Notice that the variation n ∆ c  is of the second order.  
A classical instantaneous production function ( ), BF K  must also satisfy the 

constraint 3, so that  

.∆ = ∆C F                              (5) 

Definition 8. An allocation is demographically efficient if there are no im-
proving allocations that may be paired with a variation of future birth rates in 
such a way that the corresponding variations { },n∆c  satisfy (3) and (4) above.   

This is the last (and the strongest) case of the general efficiency notion intro-
duced in Section 4. It may be noted that, where capital is not varied, concavity of 
the production function implies the following relationship:  

( ) .B B t B∆ = ∆ ≤ ∆ = ∆C F F w                      (6) 

where ( ) Bt =w F  is the wage rate.  

5. Sufficient Conditions 

We state without proof sufficient conditions for sufficiency in each of the senses 
defined above. They are straightforward to demonstrate by repeated applications 
of Fubini’s theorem, which is stated and proved in [24].  

Proposition 9 (Demographic Efficiency). Suppose that  
• { },∗c v  is a price equilibrium;  
• the utility is bounded and has bounded minimum curvature;  
• the marginal condition ( ) ( )u sλ∗′ =c v  holds; and  
• ( ) ( )1t L∈ v  is summable.   

If, in addition,  
• total consumption has finite value 

t

∗⋅ < ∞∑ v C .  

• for all generations s, we also have  

B
t t

b ∗⋅ = ⋅∑ ∑ v F v c  

then the allocation ( ),s t∗c  is demographically efficient.   

 

 

6It is implicitly assumed that any additional members of a particular generation must be identical to 
its original members, which is a matter of equity. 

https://doi.org/10.4236/jmf.2021.112016


A. P. Leung 
 

 

DOI: 10.4236/jmf.2021.112016 276 Journal of Mathematical Finance 
 

Note that the condition *

t
⋅ < ∞∑ v C  is automatically satisfied if the average 

allocation 
( )
( )
t

L t
C

 is bounded and ( ) ( )1t l∈ v .  

The interesting condition for demographic efficiency contained in Proposition 
9 is that, for almost all generations, transfers are zero. That is, a form of lifetime 
budget constraint providing that the present value of future consumption must 
equate at birth with the present value of future labor income, with present values 
allowing for discounting for both interest (via the factors v ) and probability of 
survival (via the factors  ). This condition does not involve bequests to or from 
other generations, or contributions from firms’ profits. In fact the condition is a 
special case of the first-order condition set out in Section 3, with zero net trans-
fers 0sT =  for each generation.  

It is also of interest to consider conditions for ensuring efficiency in production. 
The following result mirrors the condition for finite economies:  

Proposition 10 (Productive Efficiency). Under the conditions of Proposition 
9, suppose that ( ) ( ) ( )1t t t ⋅ = − − − Kv F v v  for the capital path ( )tK  satis-
fying Equation (4). Then the allocation ∗c  is efficient in production.   

Whilst variations in future aggregate population, consumption, production 
and capital can all occur together, it is convenient to assume that capital is not 
varied, at least for the purposes of examining necessary conditions for demo-
graphic efficiency.  

6. Necessary Conditions 

It is important to consider whether the sufficiency conditions presented in the 
previous section are the best possible.  

6.1. Allocative Efficiency 
6.1.1. Existence of a Separating Functional 
Suppose that ( ) ( )* 2,s t l∞∈ c  is an efficient allocation. In direct analogy with 
discrete economies we wish to consider whether a separating functional in the 
dual space ( )ba   exists, that is one which separates the allocation from im-
proving allocations. Although it is shown in this section that a separating func-
tional exists under certain technical conditions, such separating functionals are 
not referred to as prices. As the sufficiency results from the previous section 
suggest that prices should possess integrability properties, we reserve the term 
price for a functional in the subspace ( ) ( )1l ba⊂  .  

We first set out a lemma which introduces the consumption averaging opera-
tor π .  

Lemma 11 (An Open Mapping). Let the map  

( ) ( )2: l lπ ∞ ∞→   

be defined by taking average consumption over generations at a particular time, 
in the following way  
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( )
( )

s

s

t
L t

π = =
∑
∑





c C
c  

for a bounded consumption function ( )2l∞∈ c . Then π  is an open map 
(that is, maps open sets to open sets).   

The above lemma allows us to apply a separation theorem for open sets to ob-
tain the following general result.  

Proposition 12. Suppose that:  
• ( ) ( )* 2,s t L∞∈ c  is a bounded efficient allocation;  
• the utility function ( )u ⋅  has bounded maximum curvature;  
• the magnitude of its gradient ( )u′ ⋅  is bounded above.   

Then:  
• the set of improving allocations ( ){ }* 2 *improvesl∞  = ∈   c c c  has an 

interior point; and  
• there exists a continuous functional ( )ba∈ v  such that , 0π∆ ≥v c  for 

any improving variation ( ) ( )2,s t l∞∆ ∈ c .   
The above Proposition has several consequences, one of which is stated with-

out proof as follows.  
Corollary 13. Under the conditions of Proposition 12, the continuous func-

tional ( )ba∈ v  for any improving variation ( ) ( )2,s t l∞∆ ∈ c  has the prop-
erty that , 0∆ ≥v c  for all generations s.   

This allows us to confirm that the separating functional demonstrated in 
Proposition 12 does indeed separate improving allocations.  

Lemma 14. Under the same conditions as assumed for Proposition 12, suppose 
the separating functional is represented as a discount function ( ) ( )1t l∈ v . Then 
it is unique up to a multiplicative constant, and we have a decomposition 
( ) ( ) ( )*u s tλ′ =c v  for some scalar function ( )sλ .   
The above results will prove to be useful in deriving conditions under which 

the supporting functional is a discount function.  

6.1.2. Existence of a Discount Function 
While Proposition 12 ensures the existence of a separating functional for effi-
cient allocations, it is very natural to ask whether conditions exist to guarantee 
that it is a discount function. The following result, based on the characterization 
of purely finitely additive measures of Yoshida-Hewitt, provides a partial answer 
to this question.  

Proposition 15 (Existence of a Discount Function). Under the same condi-
tions as assumed for Proposition 12, suppose ( ) ( )* 2,s t l∞∈ c  is an efficient al-
location and the separating functional ( )ba∈ v  has the property that ( )*v c  is 
non-zero for some generation s. Then the countably additive component of 
( ) ( )1t l∈ v , denoted ( )c tv , is also a separating functional, and satisfies the 

relation ( ) ( ) ( )*u s tλ′ =c v  for some scalar function ( )sλ .   
The first implication of the above Proposition provides for the existence of a 

discount price structure ( )tv . The decomposition ( ) ( ) ( )*u s tλ′ =c v  is the 
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continuous time analog of the first order condition applying in discrete econo-
mies. This decomposition is consistent with the conditions holding for price 
equilibria described in Section 5. In fact it implies that the allocation *c  is a 
price equilibrium for the supporting prices given by ( )tv  and that these prices 
are unique, up to a multiplicative constant. Thus the Second Welfare Theorem 
holds for the OLG models of this paper under the assumptions made.  

6.2. Demographic Efficiency 

The sufficient condition for demographic efficiency, set out in Proposition 9, 
represents a form of lifetime budget constraint for individual generations with-
out any reference to bequests or profit contributions from firms' production. It 
is a more difficult matter to show that this condition is also, under certain rea-
sonable conditions, a necessary one. As the proofs are intricate and very technic-
al, they are relegated to the Appendix. 

If { },∗c v  is a demographically efficient allocation, then it is also allocatively 
efficient, and hence under the conditions of Proposition 15 a separating dis-
count function ( ) ( )1t l∈ v  exists. Consider a variation in population struc-
ture { },n∆c  of the form set out in Definition 8, where ( )n s∆ =   for some 
bounded function ( )n l∞∈  . This induces a change in aggregate labor  

( ) ( ),
s

B b s t n s∆ =∑   and a change in production  
( ) ( ), ,B B B∆ = + ∆ −F F K F K .  

The feasible consumption functions ( )2l∞∈ c  which are compatible with 
the varied production must satisfy the physical constraint  

.
s s

n∗∆ + = ∆ ≤ ∆∑ ∑ c c C F  

Notice that the second order term 
s

n ∆∑  c  appearing in Equation (4) has 
been omitted for simplicity. This has the physical interpretation that the varia-
tion in population ( )n s   is provided with the original consumption ∗c  and 
not the varied consumption c . This is correct up to the second order for small 
variations in population; however the issue is dealt with in greater detail below.  

The set of demographically feasible allocations may thus be defined as those 
which are compatible with the change in population and production, denoted by  

( ) ( ) ( )2 for some .
s s

l n n l∗ ∗ ∗
∞ ∞

   = ∈ − + ≤ ∆ ∈    
∑ ∑   c c c c c F  

It should be noted in this definition that an increase in births with ( ) 0n t >  
leads to aggregate consumption being increased, all else being equal, as the result 
of a larger population. However, this can be offset by consumption per head 
changing from ( ),s t∗c  to ( ),s tc .  

It should also be noted that the set ∗   c  is much larger than the set of 
feasible allocations for allocative efficiency, which comprise only those alloca-
tions ( )2l∞∈ c  such that π π ∗≤c c . Hence a discount function for allocative 
efficiency in the sense of Proposition 15 is not necessarily a separating functional 
for demographic efficiency.  
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The main result of this paper is the following.  
Proposition 16 (Necessary Condition for Demographic Efficiency) Suppose 

that *c  is a demographically efficient price equilibrium under the conditions of 
Proposition 15 with discount function ( ) ( )1t l∈ v . Suppose also that:  
• the lifetime of each generation is finite, so that ( ),s t  has finite support for 

each s.  
• the production function has bounded second derivatives BB M≤F , say.   

Then the discount function ( )tv  separates demographically feasible alloca-
tions *   c  from improving allocations *   c . Further, for all generations s, 
we have the lifetime budget constraint  

* .B
t t

b dt⋅ = ⋅∑ ∑ v F v c  

Remark 17. It may be noticed that the definition of feasible allocations 
actually allocates the initial consumption plan ∗c  to the new born n  and not 
the revised consumption c . An equitable allocation would result in the feasible 
allocations being defined as: 

( ) ( ) ( )2ˆ for some
s s

l n n l∗ ∗
∞ ∞

   = ∈ − + ≤ ∆ ∈    
∑ ∑   c c c c c F  

which unfortunately is not a convex set. This technical difficulty may be overcome 
as follows.  

Suppose ( )2l∗
∞= + ∆ ∈ c c c  is a feasible allocation in ∗   c  for some pop-

ulation variation ( )n l∞∈   with , 1n
∞ ∞

∆ <c . Then the variations  
{ }, nε ε∆c  also establish an equitable allocation in ˆ ∗   c  for sufficiently small 

0ε >  since 

( ) ( )

( ) ( )

2

2

2

2 2

, ,

1, ,
2

s s s

s

B
s s

s

n n

B B B n

bn n

B B B M B n

ε ε ε

ε ε

ε ε

ε ε ε

∗∆ + + ∆

 < + ∆ − + ∆ 

< + ∆

< + ∆ − + ∆ + ∆

∑ ∑ ∑

∑

∑ ∑

∑

  



 



c c c

F K F K c

F c

F K F K c

 

As , 1n
∞ ∞

∆ <c  are bounded, there exists ( ) 0tε >  independent of ∆c  
and n such that 

( ) ( )2 , ,
s s s

n n B B Bε ε ε ε∗∆ + + ∆ ≤ + ∆ −∑ ∑ ∑  c c c F K F K  

so that { }, nε ε∆c  is in ˆ ∗   c . Thus define  

( ) ( )

( ) ( )

2

for some with ,

s s
l n

n l n tε

∗ ∗ ∗
∞

∞ ∞ ∞

  = ∈ − + < ∆  


∈ ∆ < 


∑ ∑ 



 c c c c c F

c
 

so that ˆ∗ ∗   ⊂    c c . It is easily shown that ∗   c  has all the properties of 
∗   c , including convexity, that are required to make the proof of Proposition 
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16 work. Hence the result holds even for equitable allocations.  
Proposition 16 establishes a very similar condition to that for Proposition 9, 

both being of the form of an individual generation’s lifetime budget constraint. 
The main aspect of interest in this condition is the absence of any bequest in-
volving other generations.  

Remark 18. The condition that each generation has a finite lifetime is mild, 
yet realistic. However, it is not assumed that all lifetimes are equal, or even un-
iformly bounded. It is needed to allow for the situation that 1n

∞
< . However 

infinite individual lifetimes may be accommodated in a continuous time frame-
work.  

Remark 19. The proposition does not presume that any of the variables relat-
ing to population, interest rates, labor or consumption are either exogenous or 
endogenous. It simply finds the relationships between these variables if (demo-
graphic) efficiency were to hold. Of course, if enough of these variables are ex-
ogenous, the remaining ones are endogenous under the proposition. A simple 
physical analogy is in the position and velocity of a particle at a given time. 

7. Steady State Economies 
7.1. Discrete Time 

We analyze the relationship between interest rates and growth rates of the 
economy are discrete time, assuming a steady state economy (i.e. where each 
consumer is identical to any other). In the next section, we do the same in con-
tinuous time, and the results are similar. However, Samuelson’s “golden rule” 
(where interest and growth rates are equal) holds only approximately in discrete 
time, but precisely in at least one case in continuous time. 

7.2. Aggregates 

Assume the population at time suffers a mortality rate µ , and that those born 
at time s surviving to time t is ( ) ( ).1 e e e t ssµ θ µθ− + − − −  . The individual consump-
tion function is assumed to be linear ( )c z rzγ= + . (see below). The total popu-
lation is using the age z t s= −  

( ) ( ) ( )

( )

( ) ( )
0

0

1 e e e

1 e e e

1 e e e

e

t ss

s t

s z

z

zt

z
t

L t µ θ µθ

µ θ θ µ

µ θ µ θθ

θ

− + − −

≤

− + −

≥

− + − +

≥

 = − 

 = − 

 = − 

=

∑

∑

∑
 

and similarly total consumption at time t is 

( ) ( ) ( ) ( )
( ) ( ) ( )

0

1 e e e

1 e e e

t ss

s t

zt

z

C t c t s

c z

µ θ µθ

µ θ µ θθ

− + − −

≤

− + − +

≥

 = − − 

 = − 

∑

∑
 

and the total labor income (for a unit wage) is 
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( ) ( ) ( ) ( )
( ) ( ) ( )

0

1 e e e

1 e e e

t ss

s t

zt

z

B t b t s

b z

µ θ µθ

µ θ µ θθ

− + − −

≤

− + − +

≥

 = − − 

 = − 

∑

∑
 

7.3. Per Capita Values 

For generation s the value of future consumption at a discount rate r is 

( ) ( ) ( ) ( )
( ) ( ) ( )1

0

1 e e e

1 e e

t s r t s

t s

r z

z

c t s

c z

µ θ µ

θ µ

− + − − − −

≥

− + − +

≥

 − − 

 = − 

∑

∑
 

and the value of future income is similarly 
( ) ( ) ( )1

0
1 e e .r z

z
b zθ µ− + − +

≥

 − ∑  

7.4. Production 

Capital is assumed to be of the form ( ) ( ),F K B Bf k=  where capital per labor 
unit k K B=  is constant, showing constant returns to scale. For a steady state 
the production function must be of the form: 

( ) ( ),F K B Bf k=                         (7) 

where k K B=  is constant and represents the capital/labor ratio. 
Thus the steady state interest rate and wage rate are then: 

( )Kr F f k′= =  

( ) ( ) .B
k Kw F f f k f f k f kr
B B
∂ ′ ′= = − = − = −
∂

 

7.5. Utility 

We need to justify a steady state consumption path of the form 

c rzγ= +  

for z t s= − . To find such a consumption path, the utility function ( )u c  must 
satisfy ( ) e rzu c λ −′ =  so that 

( ) d d 1 d e
d d d

rzu z uu c
z c r c

λ −′ = = =  

so that 
d e e e 0
d

rz cu r r
c

γλ λ− −= = >  

or 

( ) e e cu c U r γλ −= −  

for some constant 0U > . We must then have 
2

2
d 0
d

u
c

< , that is diminishing 

utility to scale. 
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7.6. Example 

We assume the individual rate of consumption function is linear with 
( )c z rzγ= +  for an individual of age z (assuming they survive to that age). The 

consumer utility which justifies this assumption is derived in the previous sec-
tion. 

We also a Cobb-Douglas production function f kα= , with 1α β+ =  and 
labor as ( )b z b=  for m z n≤ ≤ . The parameter 0m >  denotes the age of 
maturity (or productiveness) of an individual, and n that of retirement. 

As a numerical example, let 0.01µ = , 0.05r = , 0.4α = , 15m = , 40n =   

and 0.1γ = . Since ( ) 1r f k k kα βα α− −′= = = , then 
1

32k
r

βα = = 
 

 and  

2.4w kαβ= = . 

7.7. Equilibrium Conditions 

The conditions for an equilibrium are thus the equality of lifetime consumption 
and income at a wage rate w for each consumer: 

( ) ( ) ( ) ( )
0 0
e er z r z

z z
c z w b zµ µ− + − +

≥ ≥

=∑ ∑                    (8) 

The economy wide production constraint, that it is consumed or employed to 
increase capital, becomes 

( ) ( ),F K B Bf k C K= = + ∆  

C k B= + ∆                                      (9) 

( ) ( ) ( ) ( )
0

1 e e e zt

z
f k b zµ θ µ θθ− + − +

≥

 = −  ∑  

( ) ( ) ( )
0

1 e e e zt

z
c zµ θ µ θθ− + − +

≥

 = −  ∑                     (10) 

( ) ( ) ( )
0

1 e e 1 e e zt

z
k b zµ θ µ θθ θ− + − +−

≥

   + − −   ∑           (11) 

because 

( ) ( ) ( ) ( )
0

1 e e e zt

z
B t b zµ θ µ θθ− + − +

≥

 = −  ∑  

( ) ( ) ( ) ( ) ( )
0 0
e 1 e e .z z

z z
c z f k b zµ θ µ θθ− + − +−

≥ ≥

 = − − ∑ ∑  

7.8. Laplace Transform in Discrete Time 

We may also express the equilibrium conditions in terms of the discrete Laplace 
transform: 

( ) ( )
0

ˆ e z

z
f f zθθ −

≥

=∑  

Hence 

0

1e
1 e

z

z

θ
θ

−
−

≥

=
−∑  

and differentiating wrt to θ : 
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2
0

ee
1 e

z

z
z

θ
θ

θ

−
−

−≥

=
 − 

∑  

For the consumption function c rzγ= + : 

( ) ( ) ( ) 2
ˆ

1 e 1 e
r r

rc r
µ µ

γµ
− + − +

+ = +
−  − 

 

( ) ( ) ( ) 2
ˆ

1 e 1 e

rc
µ θ µ θ

γµ θ
− + − +

+ = +
−  − 

 

We suppose that labor is constant ( )b z b=  for m z n≤ ≤ : 

( )
( ) ( )

( )
e eˆ

1 e

r m r n

r
b r b

µ µ

µ
µ

− + − +

− +

−
+ =

−
 

( )
( ) ( )

( )
e eˆ

1 e

m n

b b
µ θ µ θ

µ θ
µ θ

− + − +

− +

−
+ =

−
 

The equilibrium conditions become: 

( ) ( )ˆĉ r wb rµ µ+ = +                       (12) 

and 

( ) ( ) ( )ˆˆ 1 ec f k bθµ θ µ θ− + = − − +                 (13) 

We suppose that labor is constant ( )b z b=  for m z n≤ ≤ : 

( )
( ) ( )

( )
e eˆ

1 e

m n

b r b
µ θ µ θ

µ θ
µ

− + − +

− +

−
+ =

−
 

( )
( ) ( )

( )
e eˆ

1 e

m n

b b
µ θ µ θ

µ θ
µ θ

− + − +

− +

−
+ =

−
 

so that 

( )
( ) ( )e e

1 e
m nr wb µ θ µ θ

µ θ
γ − + − +

− +
 + = − −

 

( ) ( ) ( ) ( )1 e e e
1 e

m nr f k b µ θ µ θθ
µ θ

γ − + − +−
− +

  + = − − −   −
 

Hence 

( )

( ) ( ) ( )
( )

( ) ( )
1 11 e 1 e

1 ee e e e

r

r m r n m n

r r

b
w f k

µ µ θ

µ µ µ θ µ θθ

γ γ
− + − +

− + − + − + − +−

+ +
− −= =

− −− −
 

Hence 

( )

( ) ( ) ( )
( )

( ) ( )
1 11 e 1 e

1 ee e e er m r n m n

r r

k f k

µ θ µ θ

α µ µ µ θ µ θθ

γ γ

β

− + − +

− + − + − + − +−

+ +
− −=

− −− −
 

or 
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( )

( )
( )

( ) ( )

( ) ( )
e e1 e .

1 e e e
1 e

r m r nr

m n

r
k

r f k

µ µαµ

µ θ µ θθ

µ θ

γ
β

γ

− + − +− +

− + − +−

− +

+
−− =

− − −+
−

            (14) 

This condition suggests that r θ=  is almost a solution of 14, if we make the 
approximation 1 e θ θ−−  . The complete solutions illustrate this in Table 1. 

Blanks in the table indicate the absence of a significant growth rate. It is evi-
dent that the higher the interest rate, the higher the production per capita, and 
thus the higher the consumption that can be afforded, or the higher the popula-
tion growth rate. (Note that the absence of a growth rate does not mean that it is 
zero.) 

Samuelson’s “golden rule” holds only approximately in the table above for 
discrete time. In the following section we shall see that it holds precisely in con-
tinuous time. 
 
Table 1. Interest and growth rates, discrete time. 

Interest Rate 
r 

Growth rate 

1θ  2θ  3θ  Wage w 
Percapita 
capital k 

0.005% 0.005%   4.05 346.91 

0.010% 0.010%   3.01 128.88 

0.015% 0.015%   2.53 72.21 

0.020% 0.020%   2.23 47.88 

0.025% 0.026%   2.03 34.81 

0.030% 0.032%   1.88 26.83 

0.035% 0.087%   1.76 21.52 

0.040% 0.021% 0.038% 0.118% 1.66 17.79 

0.045% 0.014% 0.043% 0.144% 1.58 15.03 

0.050% 0.009% 0.049% 0.169% 1.51 12.93 

0.055% 0.006% 0.054% 0.192% 1.45 11.29 

0.060% 0.004% 0.059% 0.215% 1.40 9.97 

0.065% 0.002% 0.064% 0.238% 1.35 8.89 

0.070% 0.069% 0.261%  1.31 8.00 

0.075% 0.074% 0.284%  1.27 7.25 

0.080% 0.079% 0.308%  1.23 6.61 

0.085% 0.084% 0.331%  1.20 6.06 

0.090% 0.089% 0.355%  1.17 5.58 

0.095% 0.094% 0.380%  1.15 5.17 

0.100% 0.099% 0.405%  1.12 4.80 
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7.9. Continuous Time 

For analysis in continuous time, the variables are similar (but the outcomes are 
rather different). Assume the population at time suffers a mortality rate µ , and 
that those born at time s surviving to time t is ( ) ( )1 e e e t ssµ θ µθ− + − − −  . Hence the 
total population at time t is 

( ) ( ) ( )e e dt ss

s t

L t sµθµ θ − −

≤

= +∫                     (15) 

( ) ( )

0

e e dzt

z

zµ θθµ θ − +

≥

= + ∫                    (16) 

e .tθ=  

which is of exponential growth. The total consumption function at time t is then, 
using z t s= −  as the attained age of an individual: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

e e d e e d .t s r zs t

s t

C t c t s s c z zµ µθ θµ θ µ θ
∞

− − − +

≤

= + − = +∫ ∫     (17) 

For any generation s, the per capita value of future consumption at a constant 
interest rate r is 

( ) ( ) ( ) ( ) ( ) ( )
0

e e d e dt s r t s r z

s t

c c t s t c z zµ µµ θ
∞

− − − − − +

≤

= + − =∫ ∫         (18) 

The value of per capita future income ( )b z  at a unit wage rate for an indi-
vidual aged z is similarly 

( ) ( ) ( ) ( ) ( ) ( )
0

e e d e d .t s r t s r z

s t

b b t s t b z zµ µµ θ
∞

− − − − − +

≤

= + − =∫ ∫         (19) 

Note that the economy is steady state, as consumption and income are the 
same for all individuals over time, and interest rates and wage rates are constant 
(in real terms), notwithstanding constant exponential growth of the population 
and the economy as a whole. 

Thus 

( ) ( ) ( ) ( ) ( )
0

e e dztF Bf k f k b z zµ θθµ θ
∞

− += = + ∫  

Thus the conditions for stationarity of an equilibrium are the equality of the 
value of lifetime future income (at a wage rate w) and of consumption for any 
generation: 

( ) ( ) ( ) ( ).

0 0

e d e dr z r zc z z w b z zµ µ
∞ ∞

− + − +=∫ ∫                 (20) 

and at any time the growth of capital through production not consumed in as 14 

( ) ( ) ( ) ( ) ( )
0 0

e d e dz zc z z f k b z zµ θ µ θθ
∞ ∞

− + − += −∫ ∫              (21) 

Given a framework for consumption and production of the economy these 
relations link r and θ . It is clear that r θ=  is a solution to these relations 
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(Samuelson’s “golden rule”). But as the examples show below, they are by no 
means unique, even in steady state economies. 

Laplace Transform in Continuous Time 
The equilibrium conditions above may be expressed succinctly in terms of the 
Laplace transform, defined generally as: 

( ) ( )
0

ˆ e dz

z

f f z zθθ −

≥

= ∫  

whence 

( ) ( )
0 0

e d e dz z

z z

f z z f z zθ θθ− −

≥ ≥

′ =∫ ∫  

so that if ( ) nf z z=  

( ) 1

0 0

e d e dz z n

z z

nf z z z zθ θ

θ
− − −

≥ ≥

=∫ ∫  

and by induction 

1
!ˆ .n

n
nz
θ +=  

The equilibrium conditions then become: 

( )
( )2

ˆ rc r
r r

γµ
µ µ

+ = +
+ +

                  (22) 

 ( )ˆwb rµ= +                        (23) 

kαβ=                             (24) 

and 

( )
( )2

ˆ rc γµ θ
µ θ µ θ

+ = +
+ +

                  (25) 

( ) ( )ˆf k bθ µ θ= − +                  (26) 

where 

( ) .w f kf k kαβ′= − =  

Eliminating b, 22 and 25 and become: 

( ) ( )

( ) ( )1 1

1 1
1 e e

1 1
1 e e

r m r n

m n

rb
k

r
r f k

α µ µ

θ θ

γ
θ β

γ
θ

− + − +

− + − +

 = + +  −
 = + + −  −

 

or 

( ) ( )

( ) ( )

1 1e e1
e e

1

m n

r m r n

r
kr

r f k

θ θα

µ µ

γ β
θγ

θ

− + − +

− + − +

+ −+ =
− −+

+

 

which is exactly satisfied for rθ = . 
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8. Conclusions 

The central result of this paper is contained in Proposition 16, which sets out the 
conditions for demographic efficiency as a particular form of budget constraint 
for all generations. The examples provided in [24] suggest that these conditions 
may be sufficient to specify completely the long run behavior of an economy.  

The generational budget constraints may thus be seen as linkages, under price 
equilibrium, between the development of interest rates; technological progress, 
as shown by the trend to higher order commodities covered by the production 
function; and population movement. Whereas allocative efficiency provides qua-
litative conditions for these linkages, demographic efficiency provides quantita-
tive ones.  

This result has ramifications for retirement incomes policy, which seeks to 
achieve objectives for capital accumulation of consumers. These policies are 
based on transfers of wealth by government between different generations, via 
taxation, via subsidies granted to the needy, or even via monetary policy. They 
suffer the risk that population movements, and/or the course of interest rates, 
will in the long term compromise the objectives of those policies. And they also 
suggest that population policies, such as birth control, paid parental leave, forced 
sterilization, may have unpredictable consequences for the economy. 

These conclusions have been reached under very restrictive conditions. The 
framework of this paper does not allow for altruism on the part of consumers in 
planning future consumption [25]. Nor does it allow for uncertainty in produc-
tion, which would lead to uncertainty in consumption plans. It remains to be 
seen whether these features result in serious modification of the results pre-
sented in this paper. 
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Appendix: Proofs of Results in Section 6 

Lemma 11 
Proof. For all ( )1l∈ v , ( )2l∞∈ c  we have  

( ) ( ) ( ) 1
,

, .
t s t

t t L tπ π
∞

≡ ⋅ ≤ ⋅ < < ∞∑ ∑ v c v c v c v c  

Hence πc  defines a continuous linear functional on ( )1l   and 
( )lπ ∞∈ c . If ( )2l∞∈ c  is taken to be of the form ( ) ( ) ( ),s t t l∞= ∈ c c , then 

π =c c , so that the map π  is surjective. Hence by the open mapping principle 
[[22], §II.2.1], the map is open.                                       □ 

Proposition 12   
Proof. This is essentially Theorem 1 of [8], but the proof given here relies on 

establishing an interior point in the set of improving variations, which result is 
needed in Section 6.2. 

The proof is similar to that of the second welfare theorem for finite 
economies, but requires the application of separating hyperplane theorems for 
infinite dimensional spaces. Using the properties of the utility function ( )u c  it 
is not difficult to show that   and hence π  is convex. We show that π  
has an interior point in the strong topology of ( )l∞  , analogous to the exis-
tence of interior points in the positive cone of ( )l∞   [26]. 

Since *c  is bounded, there exists an allocation *≥c c  and a constant 0m >  
such that ( ) ( )*u u m− ≥c c  for all ( ),s t , with c  being bounded both above 
and below. It is clear that ∈c ; we claim that π c  is an interior point of 
π . 

Let 0K >  be the assumed upper bound on u′ , and let 0k >  be the cur-
vature parameter relating to maximum curvature, ie. 2Tx u x k u x′′ ′− ≤ . Using 
Taylor’s theorem with remainder for a variation ∆c , we have for some 
0 1θ< < :  

( ) ( ) ( ) ( )

( ) ( )

T

2

1
2
1
2

11 .
2

u u u u

u k u

K k

θ

θ

′ ′′+ ∆ − = ⋅∆ + ∆ + ∆ ∆

′ ′≤ ⋅ ∆ + + ∆ ∆

 ≤ ∆ + ∆ 
 

c c c c c c c c c

c c c c c

c c

         (27) 

Thus for any sufficiently small 1q < , we can find 0ε >  so that for all varia-
tions ∆c  to c  with ε

∞
∆ ≤c , we have  

( ) ( ) .u u mq+ ∆ − ≤c c c                      (28) 

Hence for any generation s, we have  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

* *

*

1 0.

s s

t

t t

U U u u

u u u u

q m

 + ∆ − = + ∆ − 

 ≥ − − + ∆ − 

≥ − >

∑

∑ ∑



 

c c c c c c

c c c c c    (29) 
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This implies that there is a neighborhood of c  which is mapped by π  into 
π . Since π  is an open mapping under Lemma 11, π c  is an interior point 
of π . 

Since *c  is efficient, we must have *π π∉ c . Applying a separation theo-
rem for convex sets with non-empty interior to the set π , [[22], §V.2.8], there 
exists ( )ba∈ v  with the required property.                           □ 

Lemma 14 
Proof. This follows from the fact that ( )tv  supports the allocation *c  sub-

ject to each generation’s budget constraint7 in Equation (2).                □ 
Proposition 15   
Proof. This is essentially Theorem 2 of [8], which shows that the countably 

additive component of ( )ba∈ v  is also a separating functional in ( )1l  . It 
suffices to show that the preferences induced by the utility function [ ]sU c  are 
continuous in the Mackey topology ( )1,l lτ ∞ , which is proved formally in [[9], 
Appendix II]. However, under the present conditions, a simpler proof is possi-
ble. 

Let ( ){ }2
n l∞∈ c  be a sequence of allocations which converges to c  in the 

Mackey topology. We need to show that [ ] [ ]s s
nU U→c c . 

Using the characterization (1), we see that the sequence ( ){ }2
n l∞− ∈ c c  

converges to zero in the Mackey topology, and therefore also in the weak topol-
ogy8 ( )1,l lσ ∞ . 

Using the inequality (27), we have  

( ) ( ) 1
2n n n
ku u K  − ≤ ∆ + ∆  

c c c c  

where n n∆ = −c c c . As { }n∆c  is weakly bounded, it must also be strongly 
bounded, so that there exists a constant 0M >  so that  

( ) ( )n nu u M− ≤ ∆c c c  

and thus  

[ ] [ ] ( ), 0.s s
n n

t
U U M s t− ≤ ∆ →∑c c c  

The remainder of the proof follow from Lemma 14.                    □ 
Proposition 16   
Proof. Let π  be the average consumption map of Lemma 11, and let *   c  

be the set of improving allocations for *c  as used in the proof of Proposition 
12. Under the given conditions it has been shown that 
• π  is a continuous open map (Lemma 11); 
• π  has an interior point in the strong topology of ( )l∞   (Proposition 

12); and 
• the discount functional ( )2

1l∈ v  separating *πc  and π  is unique up 

 

 

7It may be noted that uniqueness of the supporting price requires only one generation to have 
smooth preferences in the form of [ ]sU c . 
8As stated in [23], this is the only consequence of Mackey convergence that is needed. 
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to a multiplicative constant (Proposition 15 and Lemma 14).  
From the concavity properties of the production function it is easy to show 

that   and thus π  is a convex set. Since *c  is demographically efficient, 
we have * *,π π∈ ∉ c c  and π π =∅  . Applying a separation theorem 
for disjoint convex sets, of which the set π  has non-empty interior, [[22], § 
V.2.8], there exists a functional ( ) ( )t ba∈ z  separating π  and π , that is 
there exists a number q such that  

, , .qπ π≤ ≤ z z                      (30) 

Using the inequality *, ,π π≤ z c z , which holds to any desired accuracy, 
we can take *,q π= z c . 

Consider the Yoshida-Hewitt decomposition of c p= +z z z  into countably 
additive and purely finitely additive components. From Proposition 15, cz  also 
separates *πc  and π . But the discount functional v  separating *πc  and 
π  is unique, so we can take c =z v . 

Now consider the separation property *, ,π π≤z z c . For any ( )n l∞∈   
with finite support, the resulting variations B∆  and thus ∆F  also have finite 
support. This follows from Equation (4) and the assumption that each genera-
tion has finite lifetime. As the purely additive component pz  is zero on finite 
intervals, this means that for all birth variations ( ) ( )n s l∞∈   with finite sup-
port the separation property 30 becomes:  

( ) * 0.
t s

t n ⋅ ∆ − ≤  
∑ ∑ v F c  

Using Taylor’s theorem with remainder, we have  

( ) ( )

( )2

, ,
1 for some 0 1.
2B BB

B B B

B B B Bθ θ

∆ = + ∆ −

= ∆ + ∆ + ∆ ≤ ≤

F F K F K

F F
 

Thus we have  

( ) ( ) ( )21 ,
2Bt t B M B t⋅ ∆ ≥ ⋅ ∆ − ∆v F v F v  

and for any ( )n l∞∈   with finite support we have  

( ) ( ) ( )
2

*

,

1 .
2B

s t t s
t b n s M t bn  ⋅ − ≤     

∑ ∑ ∑ v F c v  

We now apply a continuity argument by taking successively “smaller” birth 
functions ( )n l∞∈  . For a given ( )n l∞∈  , consider the functions ( )n lε ∞∈   
for arbitrary ε ∈ . The above inequality implies that  

( ) ( )

( )

( )

*

,

2
2

2
2

1

1
2

1 .
2

B
s t

t s

s

t b n s

M t bn

M t bn

ε

ε

ε
∞

 ⋅ − 

 ≤   

≤

∑

∑ ∑

∑







v F c

v

v
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In the limit as 0ε →  we must have ( ) ( )*

,
0B

s t
t b n s ⋅ − ≤ ∑ v F c . Since this 

holds for arbitrary ( )n l∞∈  , the conclusion follows.                    □ 
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