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Abstract 
In the last decade, a few valuable types of research have been conducted to 
discriminate fractured zones from non-fractured ones. In this paper, petro-
physical and image logs of eight wells were utilized to detect fractured zones. 
Decision tree, random forest, support vector machine, and deep learning 
were four classifiers applied over petrophysical logs and image logs for both 
training and testing. The output of classifiers was fused by ordered weighted 
averaging data fusion to achieve more reliable, accurate, and general results. 
Accuracy of close to 99% has been achieved. This study reports a significant 
improvement compared to the existing work that has an accuracy of close to 
80%. 
 

Keywords 
Decision Tree, Deep Learning, Ordered Weighted Averaging, Random  
Forest, Support Vector Machine 

 

1. Introduction 

Fractures play a significant role in fluid flow and oil production. Therefore, in 
the fractured reservoirs, e.g. Asmari Formation that is a thick sequence of shal-
low-water carbonates of the Zagros Basin, fractured zones should be identified 
and modelled. ILs, with a resolution of about 0.1 mm, are well-known tools for 
fracture identification, but they are usually not available. Seismic sections, well 
test, mud lost, petrophysical logs (PLs), and core description which have been 
used for fracture identification [1] [2], were associated with serious shortcom-
ings. Seismic sections have low resolution (10 meters or less) and could be used 
just for the detection of faults or thick fractured zones (FZs). The resolution of 
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well tests and mud loss is also low. In addition, well tests are rarely available. 
Cores are usually unavailable, or not oriented, therefore their interpretation suf-
fers from various shortcomings. PLs are usually available, and their resolution is 
about 15 cm. Recent research was focused on the identification of fractures using 
PLs. Researchers have selected the wells and both PLs and ILs were run inside. 
FZs are known by interpretation of ILs. They have applied data mining/machine 
learning techniques to find the relationship between fractured/non-fractured 
zones (F/NFZs) and PLs. In this abstract, a two-class problem must be solved. 

2. Background on Machine Learning Approaches 

Nobody can answer the question about which machine learning algorithm is 
better for a specific problem. It can only be found by applying different algo-
rithms individually and comparing the results to figure out which one could 
work more accurately.  

Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), 
and Deep Learning (DL), are four classifiers that were used in the current paper. 
The flowchart of the procedure was followed up for FZ detection and it is shown 
in Figure 1. Utilized methods are introduced briefly in the following sections. 

2.1. Data Preprocessing 

Data preprocessing is the first step in data mining. For this purpose, some da-
ta corrections such as missed data, and tools error have been conducted for all 
PLs. 

For two classifiers SVM and DL, data needs to be normalized. Relations 1 and 
2 are the ways for normalization for SVM and DL respectively [3]: 

� � [ ]min

max min

, 0,1i
i i

x x
x x

x x
−

= →
−

                      (1) 

 

 
Figure 1. Steps for finding fractured zones by ML approaches. 
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where �ix  is the normalized value of xi which is a well-log value, i.e. the regis-
tered value by an in-well sensor at a specific depth. minx  and maxx  are mini-
mum and maximum of well-log value, respectively.  

� � � [ ]ˆ ˆ2 1, 1,1i i ix x x= − → −                         (2) 

where � �ˆ ,i ix x  are the normalized values, with two different ranges. 

2.2. Classifiers 

The following four classifiers, used in this paper are introduced, here. 

2.2.1. Decision Tree 
The construction of DT is like a tree that has a root node and several interior 
nodes named internal nodes or decision nodes. Internal nodes include a series of 
questions pertaining to the data to reach a leaf node or terminal nodes which are 
decision nodes [4] [5].  

There are several steps in order to reach a final decision in leaf nodes. First, 
split the data into multiple subsets according to the rule associated with the va-
riable, in the root node. Next, split the data again in internal nodes or decision 
nodes recursively according to the best decision to identify the variables and the 
rule associated with the variable. Then, repeat the last step on the sub-nodes un-
til reaching a stopping condition. Finally, leaf nodes are the final decisions based 
on the majority class label for classification goals or consider the average of the 
target variables which presents a regression task. 

There are many algorithms for DT, such as ID3, C4.5, CART, and SLIQ. All of 
them work the same but the way of splitting is different. 

The best splitting node in DT classification refers to obtaining homogenous as 
possible sub-nodes or child nodes upon splitting a parent node. This means the 
lower variance in sub-nodes is the better splitting in the case of regression. Clas-
sification Error, Gini Index, and Entropy are exemplar approaches that were 
proposed to achieve this goal. Since these approaches show the impurity of a 
node, a lower value of means higher homogeneity of the node. 

In this research, the Gini Index approach is used. Gini is an index of the 
number of random data points being misclassified. This index varies between 0 
and 0.5. The lower Gini Index shows the lesser chance of any random data point 
that is misclassified, and it helps with better decision making with lower ambi-
guity [4] [5]. 

( ) 2

1 1
1 1

k k

i i i
i i

G p p p
= =

= − = −∑ ∑                        (3) 

in which pi corresponds to the probability of the data point belonging to ith class 
label and k accounts for different class labels. 

2.2.2. Random Forest 
RF is combining several DTs that were trained by different sets of observations. 
The final prediction is made by averaging the prediction of each tree. This is the 
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benefit of the RF rather than the DT because it solves overfitting of the training 
data. This also leads to higher accuracy in comparison with the DT. RF could 
also be useful for ranking the features. Steps of the RF are as follows. First, select 
the samples from the dataset. Next, create a DT and predict the results for each 
selected sample. Then, rank all predicted results individually by using the dataset 
mode factor. Lastly, find the final result by using majority vote over predicted 
results [4] [5]. 

2.2.3. Deep Learning 
A multilayer-perception (MLP) is a deep, artificial neural network; it is an en-
trance gate to the DL world. The structure of MLP consists of an input layer to 
receive a raw dataset and the last layer which is an output layer that makes the 
final decision. Between these two layers (input/output layers), there is an arbi-
trary number of hidden layers that are the core of the MLP and consist of func-
tions and weighting coefficients that belong to them [4] [5].  

Multi-layer perceptions train on pairs of input and output layers to discover 
the best model. Simultaneously, in training model functions, weighting coeffi-
cients, and biases are optimized to minimize the error between result data in the 
output layer and the test data. Backpropagation minimizes the error. The error 
also can be measured in a variety of ways, for instance, root mean squared error 
(RMSE). 

In this paper the number of features was 10, the number of hidden layers was 
3 in different nodes. Also, the activation function was ReLu, and the model was 
iris. DL was run up to epoch or step 200. The first assumption is a matrix, as an 
input dataset by n sample where each has features. The second assumption is 
that MLP has hidden layers. The third assumption is that the hidden layers have 
weights and biases and the fourth assumption is that the output layer has biases. 
Therefore, the outputs of the one hidden layer MLP is as follows [4] [5]: 

( ) ( )

( ) ( )

1 1

2 2

,

.

H XW b

O HW b

= +

= +
                           (4) 

A nonlinear activation function σ  is applied to each hidden node in which 
outputs of activation functions are called activations. So, multi-layer architecture 
will be as follows [4] [5]: 

( ) ( )( )
( ) ( )
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= +
                         (5) 

By stacking hidden layers, the next hidden layer will define one another as 
follows [4] [5]: 

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
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1
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                      (6) 

The most popular activated functions are the rectified linear unit (ReLU), 
sigmoid function or squashing function, and the tanh (hyperbolic tangent) func-
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tion. 

2.2.4. Support Vector Machine 
SVM is one of the most powerful and flexible methods in machine learning and 
can be used for both classification and regression; however, it is recommended 
to be utilized as a classifier. The important concepts in SVM are support vectors, 
hyperplane, and margin.  

To find a better classifier by SVM, researchers should find the maximum 
marginal hyperplane (MMH). Therefore, SVM will generate several hyperplanes 
iteratively for the best discrimination and this method chooses the best hyper-
plane that works correctly [4] [5]. Kernels in the SVM classifier convert a 
non-dimensional dataset to a separable space by adding more dimensions to it. 
Briefly, the SVM classifier is implemented with a kernel that transforms input 
data into the higher dimensional space with the best class discrimination.  

Linear, Polynomial, and Radial Basis Function (RBF) are popular kernels that 
are used in SVM. F/NFZs are not linearly separable; therefore, RBF is the kernel 
that was used in the current paper. The RBF kernel is a kind of exponential ker-
nels that is common in SVM classification and maps input space in definite di-
mensional space. The following formula explains it mathematically [4] [5]: 

( ) ( )( )2, exp gamma sumi iK x x x x= − ∗ −                 (7) 

in which gamma is in the range of 0 to 1.  
SVM classifier is an effective method when the number of features is quite 

large. It is a powerful classifier model since it maximizes margin. 
After applying classifiers, the question is which result is the best one? Ambi-

guity in decision-making leads to data fusion. Integrating the results achieved 
from different classifiers and all wells, to achieve more reliable, robust, and ac-
curate discrimination is the goal of Ordered Weighted Averaging Data Fusion. 

2.3. Data Fusion  

Ordered weighted averaging (OWA) was introduced by Ronald R. Yager (1988) 
[6]. This operator is commonly used in the decision-making processes. It is still 
a powerful and yet simple method for finding aggregate output from data series. 
The OWA operator with n dimension is a mapping F: Rn → R and has an asso-
ciated n vector. Here n is the number of inputs that must be fused to achieve a 
final result. In the current study, n is equal to 14, because the database of seven 
wells times two classifiers (RF and SVM) were applied to discriminate FZs from 
NFZs. Weights are in the range of zero and one ( [ ]0,1iw ∈ ), and their summa-
tion have to be equal to 1 [6]: 

1
1

n

i
i

w
=

=∑                              (8) 

In each depth, results achieved from different training wells and classifiers are 
defined as ak. So, ak could be zero (label which represents NFZs) or one (label 
which represents FZs). The operator works as follows: 
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bkj are in fact ak which have a descending order. Therefore, b1 is the biggest 
label (usually 1) and b14 the least (usually 0). k represents the depths of the test 
well. Here, output of this cumulative operator is always in the range of zero and 
one, and could be said in the group of “OR” and “AND” [7] [8]: 

[ ] ( ) [ ]1 2min , , , maxi i w n i iF a a aa a≤ ≤�                 (10) 

Yager introduced an Orness evaluation that is related to the vector addressed 
by w [7]: 

( ) ( )
1

1orness
1

n

i
i

w n i w
n =

= −
− ∑                     (11) 

Therefore, for every “w”, the orness (w) is located at a unit distance. Suppose 
that dk represents the real fracture label in each depth of a test well. The error 
should be minimized by optimizing the weights (wi) [7]: 

( )2
1 1 1 1 1 1
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1 2

m

k k k k
k
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 
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 
∑ �             (12) 

The main problem is that the OWA operator must act everywhere in a way 
that the error is minimized. In other words, weights (wi) must count in such a 
way that in the end, the error () goes towards zero. This number should be ob-
tained while the solution is optimized. Yager has proposed two scenarios for op-
timization of the weights: optimistic and pessimistic. 

In optimistic ordered weighted averaging (OOWA), weights (wi) are defined 
as a function of coefficient (α) [6]: 
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Therefore, it is enough that α varies from zero to one, and error (e) associated 
to a different α is calculated. Minimum error corresponds to optimum α. It 
could be said that optimum weights (wi) in OOWA. 

In pessimistic ordered weighted averaging mechanism (POWA), weights (wi) 
again are defined as a function of the α [6]: 
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The procedure for optimization of weights (you say α) is similar to the opti-
mistic mechanism. 

3. Related Works 

Mazaheri and her associates used Artificial Neural Network to estimate Fracture 
Measure (FM), as a parameter which was calculated by aperture, fracture type, 
azimuth, and apparent distance [9]. Their results that pertained to finding the 
relation between FM and conventional logs were satisfactory with a generalized 
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correct classification rate (CCR) of about 80% [10]. They optimized cell size to 
more effectively utilize FM to recognize FZs. They applied different data mining 
techniques to do that and fused the results with the Sugeno integral method. 
Comparison between the results confirmed that 30 cm is the optimum cell size 
[11]. Tran studied characterization and modeling of naturally fractured reser-
voirs. Tran also tried to identify the fractures as a data source [12]. He integrated 
and classified different logs to discriminate FZs from NFZs. He could not vali-
date the results because he did not access ILs.  

Olivia et al. developed a fast region-based Convolutional Neural Network 
(fast-RCNN) for automatic interpretation of acoustic image logs (ILs) to identify 
fractures and breakouts. They achieved around 81% accuracy in fracture detec-
tion which is satisfactory [13]. However, it should be mentioned that they just 
automatically interpreted ILs instead of manually interpreting them. Therefore, 
their aim was not to develop a method to discriminate FZs by using PLs. 

Tokhmechi and his associates, decomposed water saturation by wavelet 
transformation and showed that the majority of the information from the origi-
nal log is hidden at low-frequency bands. The approximate section of water sa-
turation of filtered zones helped them to detect FZs with an accuracy of about 
70% [14]. They, in another research study, applied Parzen and Bayesian classifi-
ers to raw, de-noised, and various frequency bands of PLs for FZ detection [15]. 
They utilized OWA (ordered weighted averaging) to fuse the results obtained 
from different training wells and classifiers as well. The generalization of their 
approach was confirmed with an average accuracy of about 72%. Their third 
study was focused on fracture density estimation by utilizing wavelet and Fouri-
er transformation to calculate the energy of the PLs in the FZs [16]. Linear and 
non-linear regressions were fitted between the energy of logs and fracture densi-
ties. Results showed a strong correlation between the energy of caliper, sonic, 
density (RHOB), and lithology (PEF) logs with fracture density in each well. 
Martinez-Torres utilized fuzzy logic to integrate caliper, gamma-ray, sonic, 
self-potential, and resistivity logs to make a composite fracture log [17]. Lack of 
IL for verification of the proposed approach is his research’s shortcoming.  

Mazhari and associates proposed a generalized Case-Based Reasoning (CBR) 
method for FZ detection via PLs [10]. To such an aim, they used a set of training 
wells to create a database composed of both petrophysical data and the ILs. They 
conducted a learning automata-based algorithm to find the optimal similarity 
relation between PLs and manual interpretation of the borehole ILs. Their de-
veloped model was successfully tested on the Asmari reservoir through several 
oil wells and it achieved a general CCR of about 70%.  

Jafari et al., studied an adaptive neuro-fuzzy inference system for fracture 
density estimation from PLs [18]. They found a good statistical correlation be-
tween fracture density and well log data including sonic, deep resistivity, neu-
tron porosity, and bulk density, and achieved a correlation coefficient of 98% 
between the measured and neuro-fuzzy estimated fracture density. 
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Zarehparvar Ghoochaninejad and his colleagues estimated hydraulic aperture 
of detected fractures using well log responses using a Teaching–Learning–Based 
Optimization algorithm (TLBO), which trained an initial Sugeno fuzzy inference 
system [19]. Aghli et al., tried to find a quick generalized method for identifica-
tion of FZs using PLs and then used the Velocity Deviation Log (VDL) to iden-
tify fracture aperture opening and their effects on porosity and permeability in 
high fracture density zones [20]. Discrimination of lithofacies to the optimiza-
tion of FZ detection using PLs was another approach to maximize the accuracy 
[21]. The aforementioned chained activities show the importance of using data 
mining techniques to discriminate FZs from NFZs, which is also the approach of 
the current research. Flavio and Gregor proposed a composite well log, called 
velocity deviation log, to estimate different reservoir properties, and fracture 
identification as well [22]. Yan and associates proposed a fracture-cased porosity 
modeling procedure [23]. They created synthetic IL by integrating PLs. They 
have found that the procedure is useful not only for fracture detection but also 
for fracture properties estimation. It seems this procedure is straight-forward 
and might be developed in the future. 

In this paper, different classifiers were developed in Python Jupiter notebook 
and Google Colab, to better discriminate FZs from NFZs. The proposed classifi-
ers containing DT, RF, SVM, and DL, were applied over eight oil wells of a giant 
fractured reservoir. Their PLs and ILs are available. Outputs are compared and 
then fused by OWA to achieve more accurate, reliable, and general results. 

4. Database  

The database used in this study is one of the world's giant carbonate fractured 
reservoirs. Exploration over the studied field was started in 1923 and the first oil 
well was drilled in 1931. The formation of the reservoir is Asmari which is a 
fractured carbonate rock. More than 450 oil wells have been drilled so far. Full 
set PLs were run inside almost all of the wells, while ILs were run in just eight of 
them. Petrophysical and ILs of eight wells were used in the current study. They 
are located over semi UGC map1 of the studied reservoir (Figure 2). 

In Table 1, a list of PLs that were run inside eight studied wells are reported. 
Overall, 29 raw and interpreted logs were available in the studied wells. For in-
stance, density (RHOB), sonic and photoelectric factor (PEF) are examples of 
raw and dolomite, porosity, and summation of gamma ray (SGR) are examples 
of interpreted logs (Table 1). 16 out of 29 logs were selected for more studies. 

In Table 2, the availability of selected logs in eight studied wells are listed. ILs 
were also run in all eight studied wells. Interpreted IL is the source of class labels 
(F/NFZS) and is also used for validation.  

As can be seen in Table 2, some of the logs are not available in different wells. 
For instance, geological rock type logs, e.g., dolomite, shale, or limestone are not 
available in about half of the wells. Raw PLs containing caliper, cumulative  

 

 

1Underground Counter Map. 
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Figure 2. Semi UGC map and location of studied wells. 
 
Table 1. Discrimination of available PLs between raw and interpreted ones. 

Kind of log Logs 

Raw 
Caliper, Gamma Ray (Potassium, Thorium, Uranium, GR), Resistivity (MSFL, LLS, 

SFL, ILM, ILD, LLD, DFL, RXO, RT), Sonic, Density (RHOB, PEF), Neutron (NPHI) 

Interpreted 
Lithology (Limestone, Dolomite, Sandstone, Shale, Anhydrite), Gamma Ray (SGR, 

CGR), Porosity and Saturation (POR, PHI, TOTAL, SEC, 2ASW × PHIO, SXO, SW) 

 
Table 2. Availability of petrophysics logs in studied wells. 

Well 
1 2 3 4 5 6 7 8 

Well Log 

Caliper * * * * * * * * 

Geological 
Rock Type 

Limestone *    * * * * 

Dolomite *   * *  * * 

Sandstone    * * * * * 

Shale     *  * * 

Anhydrite *   * *  * * 

Gamma Ray 

Potassium * * *  *   * 

Thorium * * *  *   * 

Uranium * * *  *   * 

CGR * * * * * * * * 

GR *   *     

SGR * * *  * * * * 

Resistivity 

MSFL    *     

LLS (SFL)    *    * 

ILM  *    * * * 

ILD (LLD) * * * * * * * * 

DFL      *   

RXO    * *  * * 

RT *   * * * *  

Sonic Sonic * * * * * * * * 
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Continued 

Density 
RHOB * * * * * * * * 

PEF * * * * * * * * 

Neutron NPHI * * *  * * * * 

Porosity and 
Saturation 

Porosity (PHI) *   * * *   

Total     * *   

SEC    * * *   

2ASW*PHIO    *  * * * 

SXO    *   * * 

SW *   *  * * * 

*means available. 

 
gamma-ray (CGR), SGR, RHOB, Sonic, PEF, and neutron porosity (NPHI), are 
available in almost all of the wells. Water saturation (SW) and Porosity (effective 
“PORE” and total “PORT”) logs are also available in the majority of the wells. 
Resistivity logs containing MSFL, LLS, SFL, ILM, ILD, LLD, DFL, RXO, RT are 
not available in the majority of the wells; therefore, they will not be used in the 
current study.  

In the next step, PLs that are helpful to FZ detection are selected. For this 
purpose, the correlation coefficient of PLs with FZs is used. However, this factor 
had a very low value (less than 0.4). Minor differences are a sign of the complex-
ity of discrimination of FZs from non-fractured ones. Therefore, the reasons for 
selection were a higher correlation coefficient factor, affected logs of FZ, and 
availability of log in the studied well. In Table 3, the effects of FZs over PLs are 
briefly discussed. 

Overall, caliper, CGR, SGR, RHOB, Sonic, PEF, NPHI, SW, effective and total 
porosity were selected for FZ detection. Therefore, classifiers will define dis-
crimination F/NFZs in 10D feature space. 

5. Results and Discussion  

Results and discussion about them are presented as follows: 

5.1. Possibility of Discrimination of Fractured from  
Non-Fractured Zones 

Confusion matrix, accuracy or correct classification rate (CCR), have been cal-
culated, as classifier’s performance index. Those evaluation parameters are 
briefly introduced as follows: 

Confusion matrix (C) is a square matrix, in which entry diagonals represent 
the number of accurate classified data, and the rest represents misclassified data. 
The current study is two-class problem in which C00 represents the count of 
true negative, which means true classified NFZs (Figure 3). C01 represents false 
negative or NFZs which are misclassified as fractured ones. C10 represents false  
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Table 3. The effect of FZs on PLs. 

Log A common observation in the majority of the studied wells. 

Density (RHOB) 
Usually, because of the low density in the FZs toward rocks, RHOB is 
lower in the fractured area. 

Sonic 

The sonic log is based on wave arrival time. This time depends on P 
wave velocity that passes through lithology, porosity, and fluids. If the 
wave path passed a fracture zone, the time increases because P wave 
velocity is slower in porous and fluids rather than solids. 

Gamma Ray (GR) 
GR is natural radioactivity that comes from Uranium, Thorium, and 
Potassium that have accumulated in fractures. 

Potassium 
Potassium is found in Feldspar and clay minerals. Because of the lake 
of Feldspar in the study formation, Potassium is due to clay formation. 
Clay has plasticity, therefore, it indicates the NFZ. 

Thorium 
Claystone (shale) contains Thorium. Shale has plasticity properties and 
it is contrary to the properties of fractured rock. 

Water Saturation (SW) Higher water saturation usually indicates open fracture zones. 

Uranium Uranium can dissolve in water and deposit in fractures. 

Resistivity (RT) 
By trapping brine in fractures, resistivity decreases. It means the NFZ 
has a high RT. 

Photoelectric  
Factor (PEF) 

FZs in some of the study wells indicate high PEF because of the tarp of 
water. It is because elements of connate water have a higher atomic 
number than rocks. 

Caliper 

The Caliper tool reads the diameters of borehole more precisely when 
in FZ rock edge chipped away while drilling. Also, sometimes because 
of mud accumulation in open fractures a caliper log is even less than 
bit size. 

Neutron Porosity (NPHI) 
NPHI would increase if a fracture zone filled with fluid or Hydrogen 
content. 

Geological Rock Types  
(dolomite, limestone,  
shale, and anhydrite) 

Dolomite and limestone are brittle, with elastic behavior, capable of 
fracturing. Shale and anhydrite are ductile, capable of plastic behavior. 

 

 
Figure 3. Confusion matrix, which contains true negative (TN), false negative (FN), false 
positive (FP), and true positive (TP). 
 
positive or FZs which are misclassified as NFZs. Finally, C11 represents true 
positive, or the FZs are correctly classified [24]. 

Accuracy or Correct Classification Rate (CCR) represents the number of cor-
rectly classified data divided by total number of the data [24]: 

TN TPCCR
TN FP TP FN

+
=

+ + +
                   (15) 

In Table 4, DT, RF, DL, and SVM classifiers are completed for all PL date in 
the eight wells. The Confusion Matrix and CCR are the results of these classifica-
tions. The accuracy that represents the number of correctly classified data instances  
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Table 4. The results of discrimination of FZs from NFZs using DT, RF, DL, and SVM. 

Well DT RF DL SVM 

1 
318 44
52 234

 
 
 

, CCR = 0.85 
342 20
39 247

 
 
 

, CCR = 0.91 
315 29
30 274

 
 
 

, CCR = 0.91 
311 33
24 280

 
 
 

, CCR = 0.91 

2 
454 33
53 378

 
 
 

, CCR = 0.91 
466 28
30 394

 
 
 

, CCR = 0.94 
402 75
61 380

 
 
 

, CCR = 0.85 
452 24
24 418

 
 
 

, CCR = 0.95 

3 
328 19
9 79

 
 
 

, CCR = 0.94 
338 9
15 73

 
 
 

, CCR = 0.94 
318 29
19 69

 
 
 

, CCR = 0.89 
325 17
10 83

 
 
 

, CCR = 0.94 

4 
532 10
9 62

 
 
 

, CCR = 0.97 
539 3
12 59

 
 
 

, CCR = 0.98 
520 14
19 61

 
 
 

, CCR = 0.95 
518 16
17 62

 
 
 

, CCR = 0.95 

5 
308 10
21 185

 
 
 

, CCR = 0.94 
309 9
15 191

 
 
 

, CCR = 0.95 
296 21
28 175

 
 
 

, CCR = 0.90 
303 9
20 192

 
 
 

, CCR = 0.95 

6 
427 32
22 373

 
 
 

, CCR = 0.94 
442 17
20 375

 
 
 

, CCR = 0.96 
357 89
90 311

 
 
 

, CCR = 0.79 
437 13
16 388

 
 
 

, CCR = 0.97 

7 
286 9
10 172

 
 
 

, CCR = 0.96 
279 16
9 173

 
 
 

, CCR = 0.95 
264 32
19 163

 
 
 

, CCR = 0.89 
264 6
10 197

 
 
 

, CCR = 0.97 

8 
414 0
6 262

 
 
 

, CCR = 0.99 
407 7
18 250

 
 
 

, CCR = 0.96 
354 55
75 193

 
 
 

, CCR = 0.81 
400 2
6 274

 
 
 

, CCR = 0.99 

 
over the total number of data instances shows in this table that all classifiers 
work accurately more than at least 85%. To investigate which methods are the 
best Figure 4 is shown. 

In Figure 4, CCR for different classifiers in all studied wells, as well as the av-
erage CCR are presented. Comparison between classifiers shows that DL has the 
weakest discrimination, while both RF and SVM have the best. Based on the re-
sults, RF and SVM are the two selected classifiers for the next step, which is us-
ing the database of a well to discriminate FZs from NFZs in other wells. On the 
horizontal axis, the average of all classifiers in all wells is shown. 

5.2. Generalization of Classification 

In this section, for Generalization, one well data is considered as a test, and the 
data of the other 7 wells is used as training data. This is for checking the possi-
bility of using trained classifiers for fracture detection in other wells. RF and 
SVM are the classifiers that were used for this goal. The results are shown in Ta-
ble 5.  

In Table 5, CCRs, which are the result of classification when one well is test 
and others were utilized for training are presented. For example, in Table 5, 
column two, wells 1, 3, 4, 5, 6, 7, and 8 were trained individually using the clas-
sifier (RF and SVM) to discriminate F/NFZs, and then trained classifier was 
tested in well 2. As it shows, CCR is equal to 98% for all runs. 

To investigate more using the generalized classification, how much will the 
result improve? Figure 5 was created to answer this question. In this figure av-
erage CCRs (ACCR) for each test well, while RF or SVM that were utilized for 
classification are displayed. The amazing point is that in all cases ACCRs is  
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Table 5. Results of discrimination between F/NFZs using RF and SVM when one well is test and another well is train*. 

Test Well # 1 Test Well # 2 Test Well # 3 Test Well # 4 Test Well # 5 Test Well # 6 Test Well # 7 Test Well # 8 

TW RF SVM TW RF SVM TW RF SVM TW RF SVM TW RF SVM TW RF SVM TW RF SVM TW RF SVM 

2 0.96 0.97 1 0.98 0.98 1 0.98 0.98 1 1 0.98 1 0.98 0.98 1 0.99 0.99 1 0.99 0.98 1 0.99 0.99 

3 0.97 0.97 3 0.98 0.98 2 0.97 0.98 2 0.99 0.99 2 0.98 0.98 2 0.99 0.99 2 0.99 0.99 2 0.99 0.99 

4 0.97 0.96 4 0.98 0.98 4 0.97 0.97 3 0.99 0.98 3 0.98 0.98 3 0.98 0.99 3 0.98 0.99 3 1 0.99 

5 0.96 0.97 5 0.99 0.98 5 0.98 0.98 5 0.99 0.99 4 0.98 0.98 4 0.99 0.99 4 0.99 0.99 4 0.99 0.99 

6 0.97 0.97 6 0.98 0.98 6 0.98 0.97 6 0.99 0.98 6 0.98 0.98 5 0.99 0.99 5 0.98 0.99 5 0.99 0.99 

7 0.96 0.97 7 0.99 0.98 7 0.98 0.98 7 0.99 0.99 7 0.98 0.98 7 0.98 0.98 6 0.98 0.98 6 0.99 0.99 

8 0.97 0.96 8 0.98 0.98 8 0.98 0.98 8 0.99 0.99 8 0.97 0.97 8 0.99 0.98 8 0.98 0.99 7 0.99 1 

*TW: Training Well. 

 

 
Figure 4. Comparison between average correct classification rate (CCR) of discrimina-
tion of F/NFZs by using different classifiers over studied wells. 
 

 
Figure 5. Comparison between average correct classification rate (ACCR) of discrimina-
tion of F/NFZs by using RF and SVM classifiers over studied wells. 
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higher than 96 percent, while in previous studies, ACCRs using Parzen, Bayesian 
[15], and case based reasoning [10] classifiers reported less than 70 percent. 
Therefore, RF and SVM, are great; however, the performance of RF is a little bit 
better than SVM (average in Figure 5). 

The best tool for validation of the result of this paper is ILs that have FZ in-
formation with a resolution of millimeters. This will be obtained when the re-
sults (FZ) extract from classifiers in any well are compared to ILs that belong to 
the same well.  

In Figure 6 and Figure 7 discrimination between F/NFZs for wells 1, while 
using RF and SVM classifiers are displayed, and could be comprised by real 
zones achieved in the interpretation of ILs. 

 

 
Figure 6. Discrimination between FZs and NFZs for well #1, when PLs of other wells 
(wells 2 through 8) were used for training of RF classifier (0: NFZ and 1: FZ). 
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Figure 7. Discrimination between FZs and NFZs for well #1, when PLs of other wells 
(wells 2 through 8) were used for training of SVM classifier (0: NFZ and 1: FZ). 

 
In Figure 6 and Figure 7, FZs are labeled with 1 and zero for NFZs. These 

figures confirm the validation of the results. However, by digging into the re-
sults, it was observed that errors occurred in the boundaries of F/NFZs. In the 
industry, FZ recognition is much more important than the resolution of the 
boundaries; therefore, the achieved results are highly encouraging. 

Now, the question is for the wells in which IL is not available. Which well 
should be considered for training? Ambiguity in decision-making leads to data 
fusion. Integrating the results achieved from different classifiers and all wells, to 
achieve more reliable, robust, and accurate discrimination is the goal of data fu-
sion. To overcome this problem, OWA was selected for fusion. Optimistic 
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(OOWA) and pessimistic (POWA) scenarios were applied over the 14 results of 
classifiers, and optimum which minimizes the sum of squared error (SSE), was 
found. It should be emphasized that SSE in the current study is equal to the 
number of misclassified data. In other words, SSE is equal to false negative (FN) 
plus false positive (FP) in Figure 2.  

Results of optimization (Minimum SSE) for wells 3 and 4 as examples are 
presented in Figure 8. As can be seen, accuracy has increased to about 100%. 
Amazing results, in comparison to the best results (about 72%) that have been 
published so far [10] [15]. 

 

 
Figure 8. 14 results of classifications using training data were fused using OWA data fu-
sion method in two scenarios (optimistic and pessimistic). The results of optimization of 
α, number of errors, and approximate CCR for wells 3 and 4 are presented. 
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It should be emphasized that in all cases SSE for OOWA and POWA is equal 
together (Table 6); therefore, there is no priority for one of them. α_opt differs 
in the range of 0.09 to 0.13 in optimistic and 0.89 to 0.92 in pessimistic scena-
rios. In general, α_opt could be considered equal to 0.11 and 0.91 for optimistic 
and pessimistic scenarios respectively. 

An average number of errors (FP plus FN) for RF, SVM, and OWA Table 7 
are reported. This Table helps to rank the methods and kind of training data-
base.  

Table 7 also highlights that data fusion has improved the results by more than 
85 percent. Approximately, the summation of the number of errors for data fu-
sion declined from about 300 to 40. 

ROC (Receiver Operating Characteristic) curve is a fundamental graphical 
tool evaluation for a range of diagnostic test result.  
 

Table 6. OWA data fusion method, in two scenarios (optimistic and pessimistic) for all study wells. 

 OOWA POWA 

Well # 1 0.12optα =  No. of Errors = 14 2159 14CCR 1
2159

−
= ≈  0.91optα =  No. of Errors = 14 2159 14CCR 1

2159
−

= ≈  

Well # 2 0.12optα =  No. of Errors = 4 3057 4CCR 1
3057

−
= ≈  0.91optα =  No. of Errors = 4 3057 4CCR 1

3057
−

= ≈  

Well # 3 0.10optα =  No. of Errors = 3 1449 3CCR 1
1449

−
= ≈  0.90optα =  No. of Errors = 3 1449 3CCR 1

1449
−

= ≈  

Well # 4 0.10optα =  No. of Errors = 1 2041 1CCR 1
2041

−
= ≈  0.90optα =  No. of Errors = 1 2041 1CCR 1

2041
−

= ≈  

Well # 5 0.12optα =  No. of Errors = 9 1745 9CCR 1
1745

−
= ≈  0.91optα =  No. of Errors = 9 1745 9CCR 1

1745
−

= ≈  

Well # 6 0.10optα =  No. of Errors = 3 2845 3CCR 1
2845

−
= ≈  0.90optα =  No. of Errors = 3 2845 3CCR 1

2845
−

= ≈  

Well # 7 0.09optα =  No. of Errors = 3 1589 3CCR 1
1589

−
= ≈  0.89optα =  No. of Errors = 3 1589 3CCR 1

1589
−

= ≈  

Well # 8 0.13optα =  No. of Errors = 2 2271 2CCR 1
2271

−
= ≈  0.92optα =  No. of Errors = 2 2271 2CCR 1

2271
−

= ≈  

 
Table 7. Average FP plus FN for all utilized methods. Total number of data are 18,168. 

Well RF SVM OWA 

1 78 72 14 

2 51 63 4 

3 36 33 3 

4 14 27 1 

5 35 38 9 

6 37 42 3 

7 24 23 3 

8 18 14 2 

Summation of Error 293 312 39 
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Figure 9. Receiver operating characteristic curve for SVM classifier while one well has 
been train and another one test. 

 
Sensitivity is the probability of a depth will be positive given as a fracture 

zone. Specificity is the probability of a depth will be negative given as a nonfrac-
ture zone. The accuracy of a test is measured by the area under the ROC curve 
(AUC). AUC is the area between the curve and the x-axis. An area of 1 
represents a perfect test, while an area of 0.5 represents a worthless test. The 
closer the curve follows the left-upper corner of the plot, the more accurate the 
test.  

In Figure 9, the ROC curve in the case one well is used as train and another 
well as test, is shown. Here, SVM has been the utilized classifier. As these figures 
show, ROC analysis provides important information about discrimination per-
formance: the closer the apex of the curve toward the upper left corner, the 
greater the discriminatory ability of the classifier. This is measured quantitative-
ly by the AUC such that a value of >0.96 indicates excellent discriminatory abili-
ty. 

6. Conclusions  

In the current study, image and petrophysical logs of a carbonate-fractured re-
servoir of a giant oil field were studied. Therefore, conclusions depend on the 
utilized database, which is not necessarily general. Conclusions are briefly ad-
dressed as follows: 
● DT, RF, SVM, and DL were applied to discriminate FZs from NFZs by using 

selected PLs in each well. The database was split into train (70%) and test 
(30%) and classifications were trained. Results showed that RF and SVM, 
with an average CCR of about 95%, give better discrimination in comparison 
with DT and DL. RF and SVM were selected for the generalization step, in 
which classifiers were trained in one of the wells and applied over the other 
wells. In this step, average accuracy was about 98 percent, unbelievable re-
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sults.  
● In the generalization step, 14 results were achieved for each well. Seven of 

them belong to RF classifier (7 train wells and one test well). Seven similar 
results were achieved while using SVM. Ordered weighted averaging was ap-
plied to integrate 14 results, to achieve one unique, more accurate, and relia-
ble result. The accuracy for outputs for all wells was about 99%, amazing! It 
should be emphasized that the best accuracy in previous studies was about 
72%.  

● In all cases SSE for optimistic and pessimistic OWA was similar. 0.11 and 
0.91 were reported for optimistic and pessimistic scenarios respectively. 

● On average, the summation of the number of errors for data fusion declined 
from about 300 to 40. So, data fusion of more than 85 percent decreases the 
number of errors of classifiers.  

Fracture orientation (dip and dip direction), aperture, spacing, length, filling, 
and filler are examples of other fracture properties that could be interpreted 
from ILs, and are not discussed in the current paper. Finding those properties 
using PLs could be the topic of future research. 
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