
Journal of Modern Physics, 2021, 12, 781-797 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2021.126050  May 13, 2021 781 Journal of Modern Physics 
 

 
 
 

Reconstruction Method in F(G) Gravity: 
Stability Study and Inflationary Survey 

C. Aïnamon1, M. J. S. Houndjo1,2, A. A. L. Ayivi3, M. G. Ganiou3, A. Kanfon2,3  

1Institut de Mathématiques et de Sciences Physiques (IMSP), Porto-Novo, Bénin 
2Faculté des Sciences et Techniques de Natitingou, Natitingou, Bénin 

3Département de Physique, Université d’Abomey-Calavi, Calavi, Bénin 

  
 
 

Abstract 
The present paper is devoted to reconstruction and cosmological study in 
modified ( )F G  theory of gravity. Our reconstruction scheme is based on 

Friedmann metric induced equations in modified ( )F G  theory by suppos-
ing a power law form for the scale factor of Friedmann metric. Firstly, we deal 
with the stability study, the obtained model. This survey reveals that for ap-
propriated choice of the reconstructed model parameter, this model is stable 
under two cosmological evolutions namely the de Sitter and the power law 
evolutions symbolized by the appropriated scale factor. Secondly, we investi-
gate the inflationary survey by fitting the model with the inflation obser-
vables. These observables are determined and their comparison with Planck’s 
results leads to a special inflationary ( )F G  model. We prove that this mod-
el especially obtained for radiation domination evolution develops an insta-
bility, so can fall to ordinary matter domination era or dark energy domina-
tion era. This is the key of graceful exit from inflation. 
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1. Introduction 

Cosmology aims to study the universe as a whole [1]. It is based on Einstein’s 
theory of gravity, General Relativity which has brilliantly succeeded some expe-
riment tests. But some recent observations such as the Ia type supernova [2] [3] 
and the Cosmic microwave background [4] [5] impose new constraint on the 
current Universe content. These observations allow us to affirm that the Un-
iverse is in a phase of accelerated expansion. Thus, an alternative attempts to 
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provide a plausible explanation to the present of our Universe in accordance 
with these observations, several theoretical approaches have emerged. These ap-
proaches can be classified into two categories [6]. The first brings together those 
which maintain the General Relativity as a gravitational theory and modify the 
content of the Universe by introducing new exotic forms of matter fields either 
as an inflaton field or as dark matter. The second category is made up of ap-
proaches that modify gravity theory by building theories that limit General Rela-
tivity, but with additional degrees of freedom that can lead to accelerated expan-
sion of the Universe. The latter is called the theory of modified gravity which we 
quote among others: ( )F R  theory, ( )F T  theory, ( ),F R   theory,  
( ),F T   theory, ( )F G  theory, ( ),F R G  theory, ( ),F G   theory where  
, ,R T  , denote respectively the scalar curvature, the scalar torsion and the trace 

of the energy-momentum tensor. Note that these modified theories of gravity 
have been the subject of attention of several researchers in recent years. A special 
modified General Relativity has recently been used for several interesting works 
[7] [8] [9]: the ( )F G  theory is a modified theory of Gauss-Bonnet where  
( )F G  is a generic function of the Gauss-Bonnet invariant G which is inspired 

by string theory and takes the form:  

 2 4G R R R R Rµν µνρσ
µν µνρσ= − +                    (1) 

The Gauss-Bonnet term plays an important role because it makes it possible to 
avoid phantom contributions and helps to regulate the action of gravitation [10] 
[11] [12]. This 4-dimensional Gauss-Bonnet term is a topological invariant and 
therefore has no dynamic effect if it is added linearly to the Lagrangian. To in-
troduce an additional dynamic, we can associate the Gauss-Bonnet term with a 
scalar field, as it naturally appears in the effective actions using low energy 
chains [13] [14]. For exponential coupling with a scalar field potential, this mod-
el can produce a period dominated by matter followed by an accelerated period 
[15] [16]. 

Several other interesting works have been done so far in this theory. The Gauss- 
Bonnet scalar and the ( )F G  theory were considered to reconstruct theories 
favorable to the expansion of the universe [11]. In [17], the conditions of exis-
tence and stability of cosmological solutions of the power law, when the Eins-
tein-Hilbert action is modified by inclusion of a Gauss-Bonnet function ( )F G , 
have been established. The cylindrical symmetry in ( )F G  gravity was studied 
and it was shown that only three choices of ( )F G  models are compatible with 
the exact solutions [18]. The same authors obtained in [19] a perfectly symme-
trical and cylindrical solution in modified Gauss-Bonnet theory. A description of 
the deceleration-acceleration cosmological transition has been made in modified 
( )F G  and ( )F R  theory [20] where it has been shown that a solution con-

taining the Big-Bang and Big-Rip singularities can be reconstructed using only 
the auxiliary field formalism. The cosmography in modified ( )F G  gravity theory 
has been studied in [21] and the authors have reconstructed the present values of 
( )F G , of its derivatives as well as those of the cosmographic parameters by 
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considering a homogeneous and isotropic universe on a large scale. A cosmo-
logical study was carried out in modified Gauss-Bonnet theory [22] to account 
for the recent accelerated expansion of the universe. In their work, C. Bömher 
and F. Lobo analyzed the stability of Einstein’s static universe by considering li-
near and homogeneous perturbations in the context of the modified Gauss- 
Bonnet theory [23]; by use of a generic function F(G), they showed that the re-
gion of stability of such a universe is governed by the parameter of equation of 
state ω  and the second derivative of the model ( )F G . 

This success of the ( )F G  theory has motivated us to take an interest in it 
and solving some current riddles in cosmology. The present work constitutes a 
contribution going in the same direction as the points previously mentioned. 
In addition to the benefit of being able to explain the present Universe accele-
ration of the by modifying standard theories of gravity, another major issue 
which will hopefully be explained in the next two decades, is the primordial 
post-quantum gravity era of our Universe. To date there are two candidate de-
scriptions for this primordial era, the inflationary scenario [24]-[32] and the 
bouncing cosmology scenario [33] [34] [35]. Thus, in our present study, we 
will endeavor first to reconstruct a model in modified ( )F G  gravity theory. 
Then, we aim to investigate the stability of the reconstructed model in order to 
check its possibility to render account some Universe evolution phases. No-
wadays, inflation survey reveals as an excellent tool to investigate dynamical 
property of a cosmological model. This justifies the second part of this work 
where the inflationary observables will b addressed with the reconstructed 
model.  

The paper is organized as follow. After providing the basic equations of the 
gravitational ( )F G  theory in Section 2, we deal with the reconstruction pro-
gram through the Section 3. The stability of the reconstructed model is achieved 
in the Section 4. The model is put at the heat of cosmological inflationary survey 
via the Section 5. The final section 6is devoted to the conclusion. 

2. Basic Equations of the Gravitational F(G) Theory 

The action in dimension 4 of ( )F G  gravity theory is given, as in [36] [37], by:  

 ( ) 41 d
2 m
RS g F G x S

k
 = − + +  ∫                      (2) 

where R is the Ricci scalar curvature, ( )F G  is a generic function of the Gauss- 
Bonnet topological invariant G, 2 8k G= π  et mS  is the action of matter. 

By varying this four-dimensional action with respect to the metric, we obtain 
the equation of the field which is written [36] [37]:  

 
( )

( ) ( )( )

18
2

m

G R R g g g g g R R g

R g R g F G GF G F g T

µν µρνσ ρν σµ µν σρ µσ νρ ρσ νµ

ρ σ
µν σρ µσ νρ µν µν

+ + + − −
 ′ ′− + ∇ ∇ + − =


       (3) 
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where Gµν  is Einstein’s tensor, mTµν  the energy-momentum tensor of matter. 
In this work, we consider that 2 8 1k G= π =  and the prime represents the ordi-
nary derivative with respect to G. For the Robertson-Walker flat space metric 
which is written as:  

 ( )
322 2 2d d d i
i

s t a t x= − + ∑                       (4) 

we have:  

 ( ) ( )2 2 26 2 ; 24R H H G H H H= + = +                 (5) 

where H is the Hubble parameter and the dot means () the time derivative.  
Considering that the universe is flat and filled with a perfect fluid, Friedmann 

equations for the modified gravity ( )f G  are written:  

 ( ) ( )2 33 24 mH GF G F H F G ρ′ ′= − − +                (6) 

( ) ( ) ( )3 22 8 16 8 mH H F G HHF G H F G ρ′ ′ ′− = − + + +              (7) 

The continuity equation is given by:  

 ( )3 0H Pρ ρ+ + =                        (8) 

( )3 1 0Hρ ρ ω+ + =                        (9) 

where ω  is the energy parameter. 
The equations which constitute the basis of the theory being established, we 

will now design our model. 

3. Reconstruction of F(G) Model  

In this section, we will reconstruct a ( )F G  model. To do this, we choose a scale 
factor ( )a t  obeying the power law and which is in the form:  

 ( ) *
*

p
ta t a
t

 
=  

 
                         (10) 

where *a  is the value that takes a at the time *t  and p is a constant. In this 
case, the Hubble parameter satisfies the following relations:  

 
2

2
2 2; ;p p pH H H

t t t
= = − =                 (11) 

Then, the GB invariant takes the form:  

 
( )3

4

24 1
,

p p
G

t
−

=                       (12) 

leading to  

 
( )

1
3 424 1p p

t
G

 −
=  
  

                     (13) 

From the continuity Equation (9), we obtain:  
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( ) ( )3 13 4

0

24 1
p

p p
G

ω

ρ ρ

−
+

 −
=  

  
                  (14) 

Taking into account the Equations (11)-(13), the first Friedmann equation be-
comes:  

( ) ( ) ( ) ( ) ( )

( )31 1
42

2
0 3

4 3 0
1 8 1 24 1

p
pG GG F G GF G F G

p p p p

ω

ρ
+

  
′′ ′+ − − + =  

− − −      
(15) 

This equation takes the form:  

 ( ) ( ) ( )
1
2

0 0GCGF G F G F G AG
B

α

ρ
α

′′ ′+ − − + =          (16) 

with: 4
1

C
p

=
−

; 
( )
3

8 1
pA

p
=

−
; ( )324 1B p p= −  et ( )3 1

4
pα ω= + . 

It is a differential equation in term of G which, after solving, gives the solu-
tion: 

( )
( )( )

1
12

0
1 2

4
2 1 1

CGAGF G C G C G
C B C

α

α

ρ
α α

−
= − − + +

+ − + +
      (17) 

that we write more simply:  

 ( )
1
2

1 2F G DG EG C G C Gα β= + + +                (18) 

where: 4
2

AD
C

= −
+

; 
( )( )

0

1 1
E

B Cα

ρ
α α
−

=
− + −

; 
1
C

β = − ; 1C  and 2C  being  

integration constants. The model (18) is a general model. The reason is that for 
appropriate choice of its parameters namely the parameters 0 1, , , ,C p Cω ρ  et 

2C , the viable ( )F G  models investigated in [9] can be recovered. Such models 
have the properties to describe not only cosmological evolutions leading by dark 
matter and the ordinary matter and also the transition between the two evolu-
tions. To verify this expected property of the model, we will deal with its stability 
in the coming section. 

4. Stability of the F(G) Model 

In this section, it is about the study of the stability of the ( )F G  model con-
structed. To achieve this, we use de Sitter solutions and power law solutions 
which are techniques generally used in cosmology as shown by the work [17] 
[38] [39] [40] [41]. We will consider both the perturbation of matter and geo-
metry in the general equations of motion. In the same approach with the work 
[42] [43], the geometric and the matter perturbations will be led respectively by 
the following equations  

 ( ) ( ) ( )( )1 ,bH t H t tδ= +                     (19) 

( ) ( ) ( )( )1b mt t tρ ρ δ= +                     (20) 
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where ( )bH t  and ( )b tρ  correspond respectively to the Hubble parameter and 
to the energy density of basic ordinary matter. By making an analogy with the 
continuity Equation (9), we can write:  

 ( ) ( ) ( )( )3 1 0b b bt H t tρ ρ ω+ + =                 (21) 

whose solution is:  

 ( ) ( ) ( )3 1 d
0e bH t t

b t ωρ ρ − + ∫=                     (22) 

whith 0ρ , an intégration constant. 
In order to study the linear perturbation of ( )H t  and ( )tρ , we carry out 

a development of the model ( )F G  in series of ( )2 224b b bG H H H= +  as fol-
lowing:  

 ( ) ( ) 2b b
G bF G F F G G O= + − +                 (23) 

On the one hand, we substitute the Equations (19), (20) and (23) in Equation 
(6) which is the first Friedmann equation, and we obtain after simplification:  

 

( ) ( ) (
) ( ) ( )(

) ( ) (
)

3 2 4 3 6 2

2 3 2 4 2

4 2 4 3 2 2

3 3 2 2 3

24 24 24 24 576 48

24 96 24 24 72

96 72 96 72 48 24

96 24 48 24 96

b b
b b b b GG b G b b b

b
b b b b GGG b b b b b

b b
b GG b b b G b b b b b

b
b b GG b b b b b b

t H H H H F H F H H H

H H H H F t H H H H H

H F H H H F H H H H H

H H F H H H H H H

δ

δ

 + − −
 + + + + 

+ − + − +

+ − + +

  

   

  

  ( )(
) ( )

2

4 2

72

96 6 0

b b b

b
b GGG b b m

H H H

H F H tρ δ+ − + =

 

 (24) 

On the other hand, the substitution of the Equations (19) et (20) in Equation 
(9) leads to:  

 ( ) ( )
( ) ( )3 1

m

b

t
t

H t
δ

δ
ω

−
=

+



                   (25) 

By eliminating ( )tδ  from combination of Equations (24) and (25), we get 
the differential equation:  

 

( )
( ) ( ) ( )

( ) (
)( ) ( )
( ) (

2 4

4 2 2 3

3 2 4 3

2 2 2 3 2 2

2

d
3 1 24 24 24 24

576 48 24 96 24

24 72 96 72 92

72 48 24 96 24 48

24

m b b
b b b G b b b b b GG

m

b
b b b b b b b GGG b b

b b
b b b b GG b b b G

b
b b b b b b GG b b b

b

t
H H F H H H H H F

t

H H H H H H H H F H H

H H H H F H H H F

H H H H H H H F H H H

H

δ
ω ρ

δ
= + − +

+ + + +

+ + − +

− + + −

+

  

    

 

   

 )( ) 13 2 496 72 96 6 db
b b b b b b GGG bH H H H H H F H t

−
+ + − 

 

(26) 

whose general solution is written in the form:  

 ( ) ( ){ }0 exp 3 1 dm Ht C C tδ ω= + ∫                  (27) 

where 0C  is an intégration constant and HC  has for expression:  

( )
( ) (

2 4

4 2 2 3

24 24 24 24

576 48 24 96 24

b b
H b b b G b b b b b GG

b
b b b b b b b GGG b b

C H H F H H H H H F

H H H H H H H H F H H

ρ = − +

+ + + +

  

    
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)( ) ( )
( ) (

)( )

3 2 4 3

2 2 2 3 2 2

12 3 2 4

24 72 96 72 92

72 48 24 96 24 48

24 96 72 96 6

b b
b b b GG b b b G

b
b b b b b b GG b b b

b
b b b b b b b GGG b

H H H H F H H H F

H H H H H H H F H H H

H H H H H H H F H
−

+ + − +

− + + −

+ + + − 

 

   

  

 (28) 

From the Equations (25) et (27), we obtain: 

( ) ( ){ }0 exp 3 1 dH
H

b

C C
t C t

H
δ ω= − + ∫                 (29) 

In the rest of our work, we will use the stability of de Sitter solutions as well as 
that of power law solutions in order to appreciate the convergence of each of the 
perturbation terms. 

4.1. Stability of de Sitter Solutions 

De Sitter’s solutions are well known in Cosmology because they constitute a 
perfect approximation of the exponential expansion of the Universe during its 
primordial inflation [44]. They are described by a constant Hubble parameter. In 
this context, the Hubble parameter and the associated scale factor correspond to:  

 ( ) ( ) 0
0 0eH t

bH t H a t a= ⇒ =                    (30) 

So the expression (22) becomes:  

 ( ) ( ) 03 1
0e H t

b t ωρ ρ − +=                       (31) 

And HC  takes the form:  

 
( ) ( ) ( )

( ) ( )

1
4 12 0 0

1
4 1 3

1 0 2 0 0

3 24 4 2 24

4 2 24 96 6

H bC D H E H

C H C H H

α α

β β

ρ α α

β β

−

−
−

= − + − +


+ − + − − 



       (32) 

Moreover, from the differentiation of each member of the Equation (31), we ex-
press dt which allows us to write:  

 
( ) 0

1d d
3 1

H
H b

b

CC t
H

ρ
ω ρ

= −
+∫ ∫                 (33) 

which give:  

 
( ) ( ) ( ) ( )

( ) ( )

1
2 42 0 0

1
4 4 2

1 0 2 0 0

d 3 24 4 2 24
3 1

4 2 24 96 6

b
HC t D H E H

C H C H H

α α

β β

ρ
α α

ω

β β
−

= − − + − ++ 


+ − + − − 



∫
    (34) 

By substitution of this previous expression in the relations (27) et (29), we obtain 
respectively:  

 

( ) ( ) ( ) ( )

( ) ( )

1
2 420 0 0

1
4 4 2

1 0 2 0 0

exp 3 24 4 2 24

4 2 24 96 6

m bt C D H E H

C H C H H

α α

β β

δ ρ α α

β β
−

 = − − + − + 
 + − + − − 

 

    (35) 
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and  

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

1
2 420 0 0

1
4 4 2

1 0 2 0 0

1
2 42 0 0

1
4 4 2

1 0 2 0 0

3 24 4 2 24

4 2 24 96 6

exp 3 24 4 2 24

4 2 24 96 6

b

b

t C D H E H

C H C H H

D H E H

C H C H H

α α

β β

α α

β β

δ ρ α α

β β

ρ α α

β β

−

−

= − − + − +


+ − + − − 


 × − − + − + 

 + − + − − 
 

     (36) 

4.2. Stability of Power Law Solutions 

In this study, we are interested in the solutions described by the power law of the 
scale factor. They are also initiated in Cosmology to describe a power law type 
inflation [41]. Thus, the scale factor changes according to a power of time t. And 
we have:  

 ( ) ( )n
b

na t t H t
t

∝ ⇒ =                       (37) 

Note that by posing n p= , the scale factor of (37) corresponds to that of the 
Equation (10). The density of ordinary energy given by the relation (22) and the 
Gauss-Bonnet invariant given by (5) take the respective forms:  

 ( ) ( )3 1
0

n
b t t ωρ ρ − +=                         (38) 

and  

 
( )3

4

24 1
b

n n
G

t
−

=                         (39) 

Then the relation (28) expressing the magnitude HC  becomes here:  

( )

( ) ( )( )

( ) ( )

( ) ( )( ) ( )( )

1 1 1 1
2 1 12 4 4 4

0 1

3 3 1
2 54 2 4

2

1 1
2 24 4

1

5 1 1
3 8 32 4 4

148 2 1
2

12 24 1 2 7
4

1 1

38 24 1 2 1 1 2
8

q q q

H b b b

q q

b b

q q

b b

q q

b b

C n n Dk g Ek g C k g

C g n n n Dk g

Ek g C k g

n n n Dk g Ek g

α βα β

α βα β

αα

ρ α β

α α β β

α α α

+ − −
− + +− −

+ +
−

− −
+ +− −

+ −
− +−

 = − − + + 
 

 
+ + − − − 

 


+ − + − 



+ − − + − −



( )( )
11 1

3 4 4
11 2 6

q q

b bC k g ng
βββ β β

−− +
+−

 + − − − 
 

(40) 

avec ( )3 1q n ω= − + ; ( )324 1k n n= −  et ( ) ( )b
b

G t
g t

k
=  

Taking into account the Equation (39), we deduce: 
5
41d d

4 b bt g g
−

= − . 
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It follows:  

( )

( ) ( )( )

( ) ( )

( ) ( )( ) ( )( )

1 6 4
2 10 2 4 4

4 8 3 6
21 54 4 2 4

1 2

4 4
2 24 4

1

5 6
3 8 32 4

1d 48 2 1
4 2

12 24 1 2 7
4

1 1

38 24 1 2 1 1 2
8

q q

H b b

q q q

b b b

q q

b b

q q

b b
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(41) 

Note that we have not found an analytical solution for the integral of the relation 
(41), then a numerical study will be carried out in order to obtain the perturba-
tion functions and to discuss their convergence. 

4.3. Stability Analysis 

In this part of the work, we will deal with the evolution survey of the solutions 
obtained as a time function. We emphasize here that in the case of the study of 
de Sitter’s solutions, an explicit analytical expression of each of the perturbation 
functions ( )m tδ  and ( )tδ  is obtained respectively in (35) and (36) respec-
tively. And we can easily notice that for an appropriate choice of parameters, the 
quantities ( )m tδ  and ( )tδ  converge. Indeed, when t straights forward to in-
finity, the fonction ( ) ( ) 03 1

0e H t
b t ωρ ρ − +=  tends to 0 for positive or zero ω . Then, 

for ( )b tρ  tending to 0, we see that ( )m tδ  tends to 0C  (which is an arbitrary 
constant) and ( )tδ  tends to 0. Hence these two functions converge. In the case 
the power law solutions, the idea was to calculate the integral given by the Equa-
tion (41) then introduce the result in each of the Equations (27) and (29) in or-
der to obtain the respective expressions of ( )m tδ  and ( )tδ . But, it turns out 
that the analytical solution of the Equation (41) is not easy to get, so we pro-
ceeded to a numerical study. Thus, our approach at this level consists to plot the 
perturbation functions ( )m tδ  and ( )tδ  without having obtained their ana-
lytical expressions; which can permit us to appreciate their convergence. These 
curves are those of Figure 1 and Figure 2 below. They show the behaviors of 

( )m tδ  and ( )tδ  respectively for a Universe dominated by ordinary matter 
( 0ω = ) and for a Universe dominated by radiation ( 1 3ω = ). We also note that 
these disturbance functions are convergent.  

The convergence of these quantities for different values of the parameters of 
the reconstructed model, according to the de Sitter approach and the power law 
approach, proves that this model is stable. It is therefore conducive to the re-
production of the stage dominated by matter, radiation and also the phase cha-
racterized by de Sitter inflation [42]. 
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Figure 1. The perturbation functions of matter (green curve) and geometry (red curve), for: 0ω = , 8n = ; 9

0 10ρ −= ; 1 30C =  
and 2 100C = . 

 

 
Figure 2. The perturbation functions of matter (green curve) and geometry (red curve), for: 1 3ω = , 8n = ; 9

0 10ρ −= ; 1 30C =  
and 2 100C = .  

5. Cosmological Inflation 

In this section of our work, we study cosmological inflation. In particular, we 
will determine the values of the observables of the inflation phenomenon within 
the framework of a scale factor obeying the power law. Taking into considera-
tion the Planck’s results, we will deduce a family of models ( )f G  capable of 
describing inflation. 

5.1. Slow-Roll Parameters and Inflationary Observables 

In cosmological inflation survey, several works have always been based on the 
study of the inflationary observables [38]. These are the scalar spectral index of  

the curvature perturbations sn , the running 
d

d ln
s

s
n

k
α ≡  of the spectral index  

sn  where k is the absolute value of the wave number k, the spectral index Tn  
of the tensor and the ratio r. 

From the scalar potential denoted ( )V φ  characterizing inflation and its de-
rivatives, the parameters of the slow-roll are defined as follows [39] [40]:  
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22 1 d

2 d
pM V

V
ε

φ
 

≡  
 

                        (42) 

2 2

2

d
2 d

pM Vη
φ

≡                            (43) 

4 3
2

2 3

d d
d d

pM V V
V

ξ
φ φ

≡                         (44) 

Note that the inflation ends when 1ε = . 
We have the approximate expressions of the inflation observables as a func-

tion of the slow-roll parameters relative to the potential. They are written ac-
cording to [39] [40]:  

 16r ε≈                             (45) 

1 16 2sn ε η≈ − +                         (46) 

2 216 24 2sα εη ε ξ≈ − −                       (47) 

16 2Tn ε≈ −                           (48) 

Let us specify that in modified theory of gravity, it is not possible to exploit 
the conformal transformation of the Einstein theory because one cannot define 
neither a scalar potential, nor the parameters of the solw-rool relating to it. We 
then introduce the Hubble slow-roll parameters nε  which are defined by:  

 1

d ln
d

n
n N

ε
ε + ≡                          (49) 

with 0 iniH Hε ≡  and ( )ln iniN a a≡  the e-folding number and where inia  
is the scale factor at the start of inflation and iniH  is the corresponding Hubble 
parameter. It follows:  

 1 2

H
H

ε ≡


                           (50) 

2 2

2H H
HH H

ε ≡ −
 



                        (51) 

( ) ( ) ( )
2

12 2
3 2

22 2
HHH H H HH HHH H HH H

HH H
ε

−  − +
 ≡ − − −
  

    



   



   (52) 

Thus, we obtain as in [39] [40] the inflation observables which are written:  

 116r ε≈                            (53) 

1 21 2 2sn ε ε≈ − −                        (54) 

2
1 2 32sα ε ε ε ε≈ − −                       (55) 

12Tn ε≈ −                           (56) 

These observables thus expressed can be easily determined. Particularly within 
the framework of our study where we considered a scale factor evolving accord-
ing to the power law.  
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5.2. Inflationary F(G) Model in Agreement with Planck’s Results 

Recall that our model (18) was reconstructed from the first Friedmann equation. 
By ejecting this model into the second Friedmann equation, we get the following 
differential equation  

( ) ( )
( )

( )

( ) ( )

( )
( )

( )

( ) ( )( )

( ) ( ) ( ) ( )

3 1
43

4
2 2

3 42 2 4 12 8
3

1
2 2

22 2 2 2

1 32 1 4608 1 2 1
4

18432 1 1 4 3
1

6144 1 2 2
1

p

p p

p p
H H p

H H H

H H H
p p p

p p

pH H H
p p H H H H H H HH

p

ω

ω

ω ω ω

ω

− +

− + +
−

−

  − +    + + − + − + +   + +     


 + + 
  × − + − + +  − +    


 +    − + + + +  − +    









   

( ) ( ) ( )( )

( )
( )

( ) ( ) (
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4 3 2 2

3

1
2 2

23 2 2

2 2 4 3 2 1 4 3 1 1

4 6 8 18
11

4 1 1 4 3 0
1

p

p p H p H H p

H H H pH H H
H H H H HHH H H

pp p

pH H H
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 
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 
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

 + + 
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

  +  + + − + + + =     − +  



 

     



 (57) 

The Equation (57) is a differential equation in ( )H t  which admits for solution 

( ) pH t
t

= . Thus, from relations (50)-(52), we obtain:  

 1
1
p

ε =                             (58) 

2 0ε =                             (59) 

3
1
p

ε =                             (60) 

then, the relations (53)-(56) lead to:  

 16r
p

≈                             (61) 

21sn
p

≈ −                           (62) 

0sα ≈                            (63) 

2
Tn

p
≈ −                           (64) 

These are the values of the observables of power law inflation. We will now de-
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termine a ( )F G  model capable of describing such inflation and which is in 
agreement with Planck’s results. 

According to Planck’s results, we have: 0.962 0.974sn≤ ≤  and by virtue of 
equality (62), we obtain: 52.632 76.923p≤ ≤ . 

By posing for example 60p = , we obtain: 0.266r = , 0.966sn = , 0sα =  and 
0.033Tn = −  which are values actually in agreement with Planck’s results. Con-

sidering that just after inflation, the universe is essentially dominated by radia-
tion, we have 1 3ω =  and the model becomes:  

 ( )
59

6004
2 1 511

3 590
61 4.042.10

F G C G G C G G
ρ−

= − + −         (65) 

Note that it is possible to derive a ( )F G  model family describing inflation and 
in perfect agreement with Planck’s results by suitably choosing the values of the 
parameter p of our model. 

The question that is actually to be asked consists in checking if the inflationary 
model (65) extols the exit from inflation.  

5.3. Graceful Exit from Inflation 

Several approaches are used to study the exit from inflation. Based on the dy-
namic of the Hubble parameter, the exit from inflation are succesfully performed 
through the type VI singularity survey [45] and through the dynamic of the 
slow-roll parameters [46] [47]. For the first time, the authors in [48] have per-
formed the exit from inflation by involving quantum effects coming from trace 
anomaly equation and giving a de Sitter solution whose instability scores the 
graceful exit from inflation. In [49], from an autonomous dynamical system re-
constructed from ( )f R  motion equation and assisted by scalar field, they nu-
merically provide a de Sitter attractor which becomes unstable for e.fold number 

60N =  (end of inflation), proof of a graceful exit from the inflationary era. The 
actor of this exit is the scalar field because in their previous analysis [50] without 
scalar field, the obtained de Sitter solution is eternally stable. This last result is 
confirmed in ( )f T  theory by [51]. On can conclude from these last approach 
that the instability in a dynamical evolution is a source of graceful exit.  

Recently, the authors in [9] have analysed an intrinsic dynamic in ( )f G  
theory where some conditions for the cosmological viability of ( )f G  dark energy 
models have been performed. Through an approach based on autonomous dy-
namical system depending from two single parameters m and r, they provide 
natural conditions in the ( )f G  gravity to describe a ordinary matter or radia-
tion epoch, the dark energy epoch and the transition between the both epochs. 
The fundamental required condition is that the ( )m r  curve should pass through 
( )1 2 1; 2− −  in the m-r plane. This means the same point ( )1 2, 1 2− −  cor-
responds to ordinary matter or radiation domination and the dark energy do-
mination. So the critical points manifesting this property must be unstable in 
order to pass from matter or radiation domination epoch to the dark matter 
domination epoch. Such instability is reached when the parametric function  
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Figure 3. Evolution of ( )m r  (green curve at left) and its first derivative ( )m r′  (blue curve at right) for model (65) with 

200
0 10ρ = , 45

1 1.39727 10C = ×  and 138
2 1.14346 10C = × .  

 

( )m r  satisfies the condition ( )1 2 1m′ − > − . The parameter m and r are given 
by  

 ( ) ( )
( ) ( ) ( )

( )
and

Gf G Gf G
m G r G

f G f G
′′ ′

= = −
′

             (66) 

without providing the functional form of ( )m r  and ( )m r′  in the framework 
of the inflationary model (65), their parametric plot leads to the Figure 3. The 
green curve shows clearly the key point ( )1 2, 1 2− −  is reached meaning that 
this model can truly lead the radiation domination era. The condition of transi-
tion from the radiation domination era to ordinary matter domination era or 
dark energy domination era is clearly appreciable via the blue curve in the same 
Figure 3 because it shows ( )1 2 1m′ − > − . Such instability is qualified graceful 
exit from inflation [52].  

6. Conclusion 

During this study, we devoted to the reconstruction of a model in the modified 
theory of gravity ( )F G . From well elucidated processes, we have conducted the 
study of its stability. The results obtained clearly show that the reconstructed 
model is stable for the both de Sitter and the power-law evolutions. Therefore, 
this model is potentially suitable for dealing with cosmological questions such as 
the inflation of the Universe, the explanation of the different phases of the evo-
lution of the Universe, and many others. In this work, the question of the Un-
iverse inflation was also approached. The study made it possible to find the ob-
servables within the framework of a scale factor evolving according to the power 
law. This study also made it possible to determine a model describing the infla-
tion of the universe and which is in agreement with Planck’s results. Our analy-
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sis shows that the obtained top model develops clearly the graceful exit from the 
inflation. 
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