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Abstract 
Cassava productivity is hampered by pests and diseases including cassava mo-
saic disease (CMD) and cassava brown streak disease (CBSD). The main ob-
jective of this study was to identify stable superior genotypes that combine dis-
ease resistance and high yield. Sixteen cassava genotypes were planted in a 
randomized complete block design with three replications for six planting 
seasons (years) at five sites in Tanzania. The genotypes were assessed using 
the additive main effect and multiplicative interaction (AMMI) analysis, and 
highly significant (P < 0.001) effects of genotype, environment, and genotype- 
by-environment (G*E) interactions were observed for all traits studied. Per-
cent sum of squares (SS) due to environment (12.66% - 85.23%) was the high-
est followed by G*E (14.12% - 39.56%) for CMD foliar symptoms, root weight 
and dry matter. On the other hand, % SS due to genotype (52.14% - 69.14%) 
was highest followed by G*E (26.14% - 35.91%) for CBSD foliar and root 
symptoms indicating that the environment and G*E greatly influenced trait 
expression. The most stable genotypes which combined disease resistance and 
high yield were NDL 2003/31 and NDL 2003/111. The findings of this study 
will give impetus for the release of new cassava varieties that are not only high 
yielding but are also dually resistant to both CMD and CBSD in different lo-
cations and sites. 
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1. Introduction 

Cassava (Manihot esculenta Crantz) is a vital food staple in sub-Saharan Africa 
(SSA), ranked as the number one root crop, followed by sweet potato and yam 
[1]. With over 300 million MT of annual root production [1], cassava is a major 
source of carbohydrates in the diet of millions of people in SSA and is grown as a 
famine reserve crop owing to its tolerance of harsh environmental conditions [2] 
[3]. The crop also has industrial application as it is used to produce high-quality 
flour, starch, beverages, animal feeds, alcohol, biofuel, detergents, textiles, plas-
tics and pharmaceutical products [4] [5] [6] [7]. 

Although Tanzania has the largest area (885,091 ha) under cassava production 
in East Africa, its average yield is low at 5.7 t/ha [1], which is far below the esti-
mated yield potential of cassava (50 - 60 t/ha) [8]. This is due to many biotic and 
abiotic factors including the two viral diseases: cassava mosaic disease (CMD), 
and cassava brown streak disease (CBSD) [9] [10] [11]. Cassava roots affected by 
CBSD have a brown necrotic rot and are unfit for consumption. By contrast, sto-
rage roots of cassava plants severely affected by CMD fail to bulk because their 
leaves become chlorotic and mottled, thus having impeded photosynthesis and 
leading to stunted growth [12]. Dual infections of CMD and CBSD are common 
and a serious threat to cassava production and food security as losses more than 
80% have been reported in susceptible varieties [13]. 

Deployment of cassava varieties with dual resistance to both diseases is cur-
rently being pursued as the most effective and sustainable way to manage the 
devastating effects of the viral diseases in Eastern and Southern Africa [14]. CMD, 
CBSD and yield traits expression in cassava can be influenced by the environ-
ment leading to varied phenotypes in different environments [15] [16] [17]. This 
is defined as genotype-by-environment (G*E) interaction [18] and it can result 
from differences in the sensitivities of genotypes to the conditions in the target 
environment [19]. This leads to inconsistent performances across different en-
vironments; therefore, limiting the efficiency of selection of superior genotypes.  

The objective of most cassava improvement programmes is to identify and se-
lect diseases free, high yielding and stable genotypes across several environments 
and seasons. The efficiency and success of such selections depend on the consis-
tency of the performances of genotypes in varying environments [20] [21]. For 
this reason, genotypes are tested in diverse environments to assess their adapta-
bility and stability. Genotypes whose G*E effects are not significant are said to be 
stable [22]. Several methods have been used to assess the G*E effect and stability 
in crop performances including the additive main effect and multiplicative inte-
raction (AMMI) model [23] [24].  

The AMMI model fits the sum of several multiplicative terms rather than only 
one multiplicative term in assessing the performance of genotypes in different 
environments [25]. AMMI analysis can be used to determine the stability of the 
genotypes across locations using the PCA (principal component axis) scores and 
AMMI stability value (ASV) [26]. The ASV is based on the AMMI model’s IPCA1 
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and IPCA2 (interaction principal components axes 1 and 2), respectively scores 
for each genotype [27]. Genotypes having the least ASV are considered as widely 
adapted genotypes. Similarly, IPCA2 score near zero indicates more stable ge-
notypes whilst large values represent more responsive and less stable geno-
types.  

However, the stability parameter alone does not give much information about 
the yield or performance of a genotype and cannot be used as the only selection 
parameter since most stable genotypes would not necessarily be the best with 
regards to desirable traits. Therefore, Jiwuba et al. [15], Nduwumuremyi et al. 
[28] and Tumuhimbise et al. [29] used yield stability index (YSI) and genotype 
stability index (GSI) which incorporate high yield or performance with stability. 
Both the YSI and the GSI are based on the sum of the ranking due to ASV scores 
and yield or performance ranking. Low GSI value indicates desirable genotypes 
with high mean yield or performance and stability.  

The main aim of this research was to analyze the effects of G*E interaction 
on resistance to CMD, CBSD and yield traits on 16 cassava genotypes using the 
AMMI model. The specific objectives were to 1) Identify superior genotypes that 
exhibit high stability which combine CMD and CBSD resistance and high yield; 
2) Identify environments that best represent the target environment for high ex-
pression of the traits. 

2. Materials and Methods 
2.1. Study Location and Germplasm 

The study was done in five sites: Chambezi, Mtopwa, Nachingwea, Naliendele 
and Mtopwa for six planting seasons (2013, 2014, 2015, 2016, 2017 and 2018) 
(Table 1). Advanced breeding lines including released improved varieties and 
local landraces were evaluated in the study (Table 2). The advanced breeding 
lines and improved varieties were obtained from the TARI-Naliendele or the  
 

Table 1. Sites description. 

Descriptions 
Sites 

Chambezi [42] [43] Mtopwa [44] Nachingwea [44] Naliendele [44] Segera [45] [46] 

Site location 
Coastal belt of  

the Indian Ocean 
Makonde plateau 

Masasi-Nachingwea  
plains 

Coastal belt of  
the Indian Ocean 

Dry plains of Handeni  
district in Tanga region 

Co-ordinates 06˚55'S, 38˚91'E 10˚41'S, 39˚23'E 10˚20'S, 38˚46'E 10˚22'S, 40˚10'E 05˚31'S and 38˚54'E 

Altitude 46 m 760 m 465 m 111 m 290 m 

Soil Type Ferralic Cambisol 
Veti-acric  

Ferrasols - Xanthic 
Veti-acric  

Ferrasols - Rhodic 
Veti-acric  

Ferrasols - Xanthic 
Rhodic Ferrasols  
(Orthic, Xanthic) 

Soil texture Sandy soils 
Deep, highly  

weathered, well drained 
sandy clay loam 

Deep, highly  
weathered, red  

sandy clay loam 

Deep, highly  
weathered, well 
drained sandy  

clay loam 

Well drained, moderately deep or 
deep reddish and yellowish  

sandy clay loam to clay. 
Well-structured soil with low fertility 

SoiI pH 5.0 - 7.0 4.5 - 6.5 4.5 - 8.2 4.5 - 6.5 5.5 - 7.5 
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Table 2. Pedigree and status of advanced breeding lines and local cassava cultivars. 

Genotype Female parent Male parent Remarks Status 

Albert Unknown Unknown 
Putative fullsib 

TME 117 
Local landrace 

KBH 2002/26 (Mkuranga 1) KBH 95/082 Unknown Halfsib Released 

KBH 2002/477 Kiroba Unknown Halfsib Not released 

KBH 2002/482 (Kizimbani) Kiroba Unknown Halfsib Released 

KBH 2002/494 Kiroba Unknown Halfsib Not released 

KBH 2002/66 (Kipusa) 196/1632 Unknown Halfsib Released 

KBH 96/1056 Kiroba Unknown Halfsib 
Candidate line for 

official release 

Kiroba Unknown Unknown Halfsib Released 

Mahiza Unknown Unknown Halfsib Local landrace 

Mkumba Namikonga AR42-4 Fullsib Released 

Naliendele 034 Kibaha Unknown Halfsib 
Released but CBSD 
resistance broken 

NDL 2003/111 Namikonga Kalulu Fullsib 
Candidate line for 

official release 

NDL 2003/031 Nachinyaya Kiroba Fullsib 
Candidate line for 

official release 

NDL 2005/1471 Nachinyaya Unknown Halfsib 
Candidate line for 

official release 

NDL 2005/1472 Nachinyaya Unknown Halfsib 
Candidate line for 

official release 

Pwani Namikonga AR42-4 Fullsib Released 

Fullsib—genotypes with known male and female parents; Halfsib—genotypes with a known mother that 
was open pollinated hence male parent is unknown. 

 
International Institute for Tropical Agriculutre’s breeding programmes, while 
the local landraces were obtained from farmers’ fields. 

2.2. Experimental Design 

A randomized complete block design with three replicates was used for this 
study. Cassava cuttings (about 25 cm long with 4 to 5 nodes and viable buds) 
from each of the genotypes were planted in 4 rows with 10 cuttings each at a 
spacing of 1.0 m × 1.0 m, resulting in a total of 40 plants/plot/replicate. To in-
crease disease inoculum pressure, susceptible cassava varieties Albert and Lim-
banga were planted as spreader rows for CBSD and CMD, respectively [30]. Al-
bert and Limbanga cutting were planted alternately after every 8 plots and as a 
border row around each replicate. Released varieties and landraces including Al-
bert, Kiroba, Pwani, Mahiza, Mkumba and Naliendele 134 were planted as con-
trols in the experiment. Neither fertilizer nor irrigation was applied; the field was 
rain-fed throughout the growing period but was kept weed-free.  
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2.3. Data Collection 

Data on several parameters were collected including CMD and CBSD foliar se-
verity at 3, 6, and 9 MAP; root necrosis; root weight (t/ha), and dry matter con-
tent during harvest at 12 MAP. CMD foliar severity was scored on a 1 - 5 scale 
where: 1 = no visible symptoms; 2 = mild distortion only at the base of leaflets 
with the rest of leaflets appearing green and healthy/mild chlorotic pattern over 
entire leaflets; 3 = conspicuous mosaic pattern throughout the leaf, narrowing 
and distortion of lower 1/3 of leaflets; 4 = severe mosaic, distortion of two-thirds 
of leaflets and general reduction of leaf size; and 5 = severe mosaic, distortion of 
¾ of leaflets, twisted and malformed leaves [31].  

CBSD foliar severity was scored on a 1 - 5 scale where: 1 = no visible symp-
toms; 2 = mild foliar mosaic on some leaves and no stem lesions; 3 = foliar mo-
saic with mild stem lesions and no die back; 4 = foliar mosaic and pronounced 
stem lesions and no dieback; and 5 = defoliation with pronounced stem lesions 
and dieback [32]. At 12 MAP, plants were harvested, and roots were examined 
for CBSD root symptoms. Roots from each plant were chopped longitudinally 
and transversely to identify the presence of necrotic patches on the starch bear-
ing tissues. Scoring for root necrosis severity was also done based on a 1 - 5 
where: 1 = no clear symptoms; 2 = <5% of root necrotic; 3 = 5% - 25% of root 
necrotic; 4 = 25% - 50% root necrotic and mild root constriction; and 5 = >50% 
of root necrotic [32] [33] [34]. Roots from each plant were harvested and chopped 
longitudinally and transversely to check for root necrosis on the starch bearing 
tissues. Root weight in tonnes per hectare (t/ha) was estimated according to Ma-
sinde et al. [16] while root dry matter content using the specific gravity method 
[35]. 

( )
2

kgRoot weight 10000
mRoot weight t ha

1000

 × 
 =              (1) 

Weight of roots in airDry matter content 158.3 142
Weight of roots in air Weight of roots in water
 

= × − − 
(2) 

2.4. Data Analysis 

The AMMI model was used to determine the stability of the genotypes across 
environments. The AMMI model first fits the additive effects for the genotypes 
and the growing environments (five growing sites and six seasons) and multip-
licative term for G*E interactions. The AMMI model according to Gauch [36] 
and Farshadfar et al. [37] is presented as 

 
1

n

ij i j k ik jk ij
k

Y g e e
=

= + + + +∑µ λ α γ                 (3) 

where 

ijY  = Phenotypic trait e.g. yield of the thi  genotype in the thj  environment 
µ  = Grand mean 

ig  and  je  = Genotype and environment deviations from the grand mean, 
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respectively 
k  = The number of principal components retained in the model 

kλ  = The eigenvalue of the PCA axis k  

ikα  and jkγ  = the principal component scores for PCA axis k  of the thi
genotype and the thj  environment, respectively 

ije  = Residual 
The ASV was calculated for each genotype according to the relative contribu-

tions of IPCA1 and IPCA2 to the interaction sum of squares. The ASV has been 
defined as the distance from the coordinate point to the origin in a two-dimen- 
sional scatterplot of the first IPCA1 scores against the second IPCA2 [27] [38]. 
The IPCA1 accounts for most of the G*E variation. The IPCA1 scores are weighted 
by the ratio of IPCA1 SS (from the AMMI ANOVA) to IPCA2 SS in the ASV for- 
mula as  

( ) ( )
2

sumofsquares 2
score score

sumofsquares

IPCA1ASV IPCA1 IPCA2
IPCA2
 = +  

        (4) 

The larger the IPCA score is, either negative or positive, the more adapted a 
genotype is to a certain environment. Smaller ASV scores indicate a more stable 
genotype across environments [39]. Genotype stability index (GSI) was also cal-
culated using the sum of the ranking based on trait and ranking based on the 
AMMI stability value. GSI incorporates both the mean and stability of the trait 
being studied in a single criterion. Low values of both parameters show suitable 
genotypes for example those with high mean yield and stability [29] [40]. Both 
AMMI and biplot analysis were computed using the R package Agricolae [41]. 

GSI = RASV + RY, 

where 
RASV = Rank of the genotypes based on the AMMI stability value, 
RY = Rank of the genotypes based on yield across environments. 

3. Results 
3.1. CMD Foliar Symptoms 

The results of the combined AMMI analysis of variance revealed highly signifi-
cant (P ≤ 0.001) effects of genotype, environment and G*E for CMD foliar 
symptoms at 3, 6, and 9 MAP (Table 3). Percent sum of squares (SS) due to en-
vironment (41.04% - 42.61%) was higher than % SS due to G*E (30.19% - 
36.35%) and genotype (22.61% - 27.24%) indicating that environment greatly in-
fluenced the expression of CMD symptoms. G*E interaction SS was partitioned 
into four significant Interactive Principal Components Axes (IPCAs) for CMD 3 
MAP while CMD 6 and 9 MAP had three significant IPCAs. IPCA1 and IPCA2 
accounted for a total SS of 67.88%, 80.5% and 73.19% of the G*E variation for 
CMD at 3, 6 and 9 MAP, respectively. This justified the use of AMMI2 (IPCA2 
vs IPCA1) biplot model for CMD foliar symptoms. The mean CMD foliar symp-
toms were 1.17, 1.24 and 1.21 at 3, 6, and 9 MAP, respectively (Table S1). A  
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Table 3. Combined AMMI ANOVA for CMD and CBSD foliar symptoms at 3, 6, and 9 
MAP of 16 cassava genotypes evaluated across 30 environments (6 planting seasons × 5 
sites). 

Source df 
Mean squares 

CMD 3 
MAP 

CMD 6 
MAP 

CMD 9 
MAP 

CBSD 3 
MAP 

CBSD 6 
MAP 

CBSD 9 
MAP 

Treatment 479 0.19*** 0.36*** 0.26*** 0.88*** 1.26*** 1.02*** 

Genotype (G) 15 1.37*** 2.92*** 2.23*** 17.15*** 25.70*** 22.43*** 

Environment (E) 29 1.28*** 2.54*** 1.80*** 0.61*** 1.30*** 0.79*** 

Block 60 0.08*** 0.10* 0.08*** 0.11 0.16* 0.09 

Interaction (G*E) 435 0.08*** 0.13*** 0.09*** 0.34*** 0.42*** 0.29*** 

IPCA1 43 0.33*** 0.58*** 0.38*** 1.43*** 1.73*** 1.09*** 

IPCA2 41 0.20*** 0.48*** 0.27*** 0.83*** 1.36*** 0.84*** 

IPCA3 39 0.13*** 0.11* 0.11*** 0.39*** 0.47* 0.27*** 

IPCA4 37 0.05* 0.06 0.05 0.35* 0.34 0.28* 

IPCA5 35 0.03 0.04 0.04 0.22 0.25 0.24 

Error 899 0.03 0.07 0.04 0.13 0.11 0.09 

  Sum of squares 

Treatment 479 90.70 172.62 122.59 422.50 603.30 486.50 

Genotype (G) 15 20.51 43.87 33.40 257.32 385.55 336.38 

Environment (E) 29 37.22 73.55 52.18 17.68 37.72 22.94 

Block 60 4.47 6.16 4.99 6.31 9.83 5.34 

Interaction (G*E) 435 32.97 55.20 37.01 147.50 180.03 127.18 

IPCA1 43 14.08 24.95 16.16 61.59 74.45 46.91 

IPCA2 41 8.30 19.49 10.96 33.82 55.93 34.26 

IPCA3 39 5.11 4.17 4.26 15.15 18.23 10.58 

IPCA4 37 1.98 2.21 2.00 12.90 12.67 10.39 

IPCA5 35 1.20 1.52 1.32 7.73 8.78 8.44 

Error 899 31.2 63.66 38.18 119.73 100.08 81.62 

% treatment SS due to G  22.61 25.41 27.24 60.90 63.90 69.14 

% treatment SS due to E  41.04 42.61 42.56 4.18 6.25 4.72 

% treatment SS due to G*E  36.35 31.98 30.19 34.91 29.84 26.14 

% G*E SS due to IPCA1  42.71 45.20 43.66 41.76 41.35 36.89 

% G*E SS due to IPCA2  25.17 35.31 29.53 22.93 31.07 26.94 

% G*E SS due to IPCA3  15.50 7.55 11.51 10.27 10.13 8.32 

% G*E SS due to IPCA4  6.00 3.84 5.40 8.75 7.04 8.17 

% G*E SS due to IPCA5  3.64 2.75 3.57 5.24 4.88 6.64 

 
higher mean and % SS due to IPCA1 and IPCA2 were observed at 6 MAP in 
comparison to at 3 and 9 MAP. This indicated that there were fewer interactions, 
therefore, more stable symptoms expression at 6 MAP. 

ASV ranked the genotypes based on the least scores where low scores represented 
the most stable genotypes. Low ASV coupled with low disease severity resulted 
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in the selection of stable genotypes with minimal CMD symptoms. All the geno-
types had low CMD severity of ≤1.8 (Table S1). Based on CMD foliar symptoms 
at 6 MAP, the most stable genotypes with regards to low ASV values and their 
position relative to the biplot origin (0.0) were Albert, NDL 2003/111, KBH 
2002/66 and NDL 2003/31 with a means ≤ 1.27 (Figure 1, Table S1). The GSI 
ranking combines both stability and higher scores of a trait. Accordingly, site 
Chambezi’s environments had moderate stability with the highest mean CMD 
 

 

 
Figure 1. AMM2 biplot for CMD foliar symptoms. Environments. Chambezi 2013-2018 (c - c6), Nachingwea 2013-2018 (nc1 - 
nc6), Mtopwa 2013-2018 (m1 - m6), Naliendele 2013-2018 (nl - nl6), Segera 2013-2018 (s1 - s6). Genotypes: Albert (1), KBH 
2002/26 (2), KBH 2002/477 (3), KBH 2002/482 (4), KBH 2002/494 (5), KBH 2002/66 (6), KBH 96/1056 (7), Kiroba (8), Mahiza (9), 
Mkumba (10), Naliendele 134 (11), NDL 2003/111 (12), NDL 2003/31 (13), NDL 2005/1471 (14), NDL 2005/1472 (15), Pwani 
(16).  

CMD FOLIAR SEVERITY 3 MAP CMD FOLIAR SEVERITY 6 MAP

CMD FOLIAR SEVERITY 9 MAP
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foliar severity of 1.24 (Figure 2, Table S1). 

3.2. CBSD Foliar Symptoms 

There was a highly significant (P ≤ 0.001) effect of genotype, environment and 
G*E interaction for CBSD foliar symptoms at 3, 6, and 9 MAP (Table 3). Percent 
SS due to genotype (60.90% - 69.14%) was higher than due to environment 
 

 
Figure 2. AMM1 biplot for CMD foliar symptoms. Environments. Chambezi 2013-2018 (c - c6), Nachingwea 2013-2018 (nc1 - 
nc6), Mtopwa 2013-2018 (m1 - m6), Naliendele 2013-2018 (nl - nl6), Segera 2013-2018 (s1 - s6). Genotypes: Albert (1), KBH 
2002/26 (2), KBH 2002/477 (3), KBH 2002/482 (4), KBH 2002/494 (5), KBH 2002/66 (6), KBH 96/1056 (7), Kiroba (8), Mahiza (9), 
Mkumba (10), Naliendele 134 (11), NDL 2003/111 (12), NDL 2003/31 (13), NDL 2005/1471 (14), NDL 2005/1472 (15), Pwani 
(16).  

CMD foliar severity (1 – 5)

CMD FOLIAR SEVERITY 3 MAP CMD FOLIAR SEVERITY 6 MAP

CMD foliar severity (1 – 5)

CMD FOLIAR SEVERITY 9 MAP

CMD foliar severity (1 – 5)
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(4.18% - 6.25%) and G*E (29.84% - 34.91%) indicating that most of the varia-
tions observed were due to genetic make-up. Four IPCAs were significant (P ≤ 
0.05) for CBSD 3 and 9 MAP while 6 MAP had three significant IPCAs. IPCA1 
and IPCA2 accounted for a total SS of 64.69%, 72.42% and 63.83% of the G*E 
variation for CBSD 3, 6 and 9 MAP, respectively. The mean CBSD foliar severity 
was 1.46, 1.61 and 1.57 at 3, 6, and 9 MAP. Similar to CMD symptoms, a higher 
mean and % SS due to IPCA1 and IPCA2 were observed at 6 MAP, indicating 
more stable symptoms expression at this time point.  

Based on foliar symptoms at 6 MAP, all the genotypes had low CBSD foliar 
severity ≤ 1.7 apart from Naliendele 134, Mkumba, Mahiza and Albert. The most 
stable genotypes with low ASV included KBH 2002/66, NDL 2005/1471, KBH 
96/1056 and NDL 2003/111 with mean of ≤1.27 (Figure 3, Table S2). Although 
Mahiza too had a low ASV of 0.49, it had a higher severity of 2.27. Similar to 
CMD symptoms, site Chambezi’s environments had the highest mean CBSD fo-
liar severity of 1.77 with moderate GSI ranking indicating moderate stability 
(Figure 4, Table S2).  

3.3. CBSD Root Necrosis 

The effect of genotype, environment and G*E interaction was highly significant 
(P ≤ 0.001) for root necrosis (Table 4). Percent SS due to genotype was highest 
at 52.14% followed by G*E (35.19%) and environment (12.66%). The findings 
indicated that genetic make-up greatly influenced the expression of root 
symptoms. Five IPCAs had significant (P ≤ 0.05) mean squares and IPCA1 and 
IPCA2 accounted for a total SS of 60.51% of the G*E variation. The most stable 
genotypes with low ASV included NDL 2003/11, Pwani, NDL 2005/1471, KBH 
2002/482 and NDL 2003/31 (0.42) with a mean of ≤1.72 (Figure 5, Table S3). 
All the genotypes had low root necrosis severity (≤1.9) below the grand mean  
 

CBSD FOLIAR SEVERITY 3 MAP CBSD FOLIAR SEVERITY 6 MAP
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Figure 3. AMMI2 biplot for CBSD foliar symptoms. Environments. Chambezi 2013-2018 (c - c6), Nachingwea 2013-2018 (nc1 - nc6), 
Mtopwa 2013-2018 (m1 - m6), Naliendele 2013-2018 (nl - nl6), Segera 2013-2018 (s1 - s6). Genotypes: Albert (1), KBH 2002/26 (2), 
KBH 2002/477 (3), KBH 2002/482 (4), KBH 2002/494 (5), KBH 2002/66 (6), KBH 96/1056 (7), Kiroba (8), Mahiza (9), Mkumba 
(10), Naliendele 134 (11), NDL 2003/111 (12), NDL 2003/31 (13), NDL 2005/1471 (14), NDL 2005/1472 (15), Pwani (16).  

 
Table 4. Combined AMMI ANOVA for root necrosis, root weight and dry matter of 16 
cassava genotypes evaluated across 30 environments (6 planting seasons × 5 sites). 

Source df 
Mean squares 

Root necrosis Root weight Dry matter 

Treatment 479 3.60*** 1778.05*** 159.99** 

Genotype (G) 15 59.97*** 10,009.40*** 33.38* 

Environment (E) 29 7.53*** 12,572.60*** 2252.12*** 

Block 60 0.95** 1220.80*** 67.46*** 

Interaction (G*E) 435 1.40*** 774.60*** 24.88*** 

IPCA1 43 4.90*** 2830.10*** 94.28*** 

IPCA2 41 3.82*** 2010.01*** 73.80*** 

IPCA3 39 1.41*** 886.32*** 34.06*** 

IPCA4 37 1.17*** 722.53*** 17.55*** 

IPCA5 35 1.15* 507.32*** 14.20 

Error 899 0.56 251.5 19.31 

  Sum of squares 

Treatment 479 1725.14 851,688.00 76,633.00 

Genotype (G) 15 899.54 150,149.00 501.00 

Environment (E) 29 218.45 364,607.00 65,311.00 

Block 60 56.87 73,249.00 4048.00 

Interaction (G*E) 435 607.15 336,932.00 10,821.00 

IPCA1 43 210.79 121,694.39 4054.13 

IPCA2 41 156.57 82,410.25 3025.58 

IPCA3 39 54.81 34,566.54 1328.29 

IPCA4 37 43.13 26,733.41 649.33 

IPCA5 35 40.39 17,756.27 497.10 
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Continued 

Error 899 502.29 226,307.0 17,380.00 

% treatment SS due to G  52.14 17.62 0.65 

% treatment SS due to E  12.66 42.81 85.23 

% treatment SS due to G*E  35.19 39.56 14.12 

% G*E SS due to IPCA1  34.72 36.12 37.47 

% G*E SS due to IPCA2  25.79 24.46 27.96 

% G*E SS due to IPCA3  9.03 10.26 12.28 

% G*E SS due to IPCA4  7.10 7.93 6.00 

% G*E SS due to IPCA5  6.65 5.27 4.59 

 

 
Figure 4. AMM2 biplot for CBSD foliar symptoms. Environments. Chambezi 2013-2018 (c - c6), Nachingwea 2013-2018 (nc1 - nc6), 
Mtopwa 2013-2018 (m1 - m6), Naliendele 2013-2018 (nl - nl6), Segera 2013-2018 (s1 - s6). Genotypes: Albert (1), KBH 2002/26 (2), 
KBH 2002/477 (3), KBH 2002/482 (4), KBH 2002/494 (5), KBH 2002/66 (6), KBH 96/1056 (7), Kiroba (8), Mahiza (9), Mkumba (10), 
Naliendele 134 (11), NDL 2003/111 (12), NDL 2003/31 (13), NDL 2005/1471 (14), NDL 2005/1472 (15), Pwani (16).  

CBSD FOLIAR SEVERITY 3 MAP

CBSD foliar severity (1 – 5)

CBSD FOLIAR SEVERITY 6 MAP

CBSD foliar severity (1 – 5)

CBSD FOLIAR SEVERITY 9 MAP

CBSD foliar severity (1 – 5)
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of 2.29 apart from Mkumba (2.29), Naliendele (3.52). Mahiza (3.08), KBH 2002/477 
(2.22) and KBH 2002/66 (2.04). The genotypes with the highest root necrosis se-
verity also had high ASV, therefore, unstable. Among the environments, Cham-
bezi 2013 to 2018 has the highest mean root necrosis severity of 2.33 with mod-
erate GSI ranking indicating moderate stability (Figure 6, Table S3).  

3.4. Root Weight 

The effect of genotype, environment and G*E interaction was highly significant  
 

 
Figure 5. AMM2 biplot for root necrosis, root weight and dry matter content. Environments. Chambezi 2013-2018 (c - c6), Na-
chingwea 2013-2018 (nc1 - nc6), Mtopwa 2013-2018 (m1 - m6), Naliendele 2013-2018 (nl - nl6), Segera 2013-2018 (s1 - s6). Ge-
notypes: Albert (1), KBH 2002/26 (2), KBH 2002/477 (3), KBH 2002/482 (4), KBH 2002/494 (5), KBH 2002/66 (6), KBH 96/1056 
(7), Kiroba (8), Mahiza (9), Mkumba (10), Naliendele 134 (11), NDL 2003/111 (12), NDL 2003/31 (13), NDL 2005/1471 (14), NDL 
2005/1472 (15), Pwani (16).  

ROOT NECROSIS ROOT WEIGHT

DRY MATTER CONTENT
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Figure 6. AMM1 biplot for root necrosis, root weight and dry matter content. Environments. Chambezi 2013-2018 (c - c6), Na-
chingwea 2013-2018 (nc1 - nc6), Mtopwa 2013-2018 (m1 - m6), Naliendele 2013-2018 (nl - nl6), Segera 2013-2018 (s1 - s6). Ge-
notypes: Albert (1), KBH 2002/26 (2), KBH 2002/477 (3), KBH 2002/482 (4), KBH 2002/494 (5), KBH 2002/66 (6), KBH 96/1056 
(7), Kiroba (8), Mahiza (9), Mkumba (10), Naliendele 134 (11), NDL 2003/111 (12), NDL 2003/31 (13), NDL 2005/1471 (14), NDL 
2005/1472 (15), Pwani (16).  

 
(P ≤ 0.001) for root weight (Table 4). Percent SS due to environment was high-
est at 42.81% followed closely by G*E (35.19%) and genotype (17.62%). The 
findings indicated that both the environment and G*E greatly influenced the ex-
pression of root weight. Five IPCAs had significant (P ≤ 0.05) mean squares and 
IPCA1 and IPCA2 accounted for a total SS of 60.58% of the G*E variation. The 
most stable genotypes with low ASV included KBH 2002/477, NDL 2003/31, 
Mahiza and NDL 2005/477 (Figure 5, Table S3). Since ASV measure alone is 

Root necrosis severity (1 – 5)

ROOT NECROSIS ROOT WEIGHT

Root weight (t/ha)
DRY MATTER CONTENT

Dry matter content (%)
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not sufficient for the selection of superior genotypes, GSI ranking was used as it 
combines both genotype stability and high yield. Accordingly, the most stable 
and high yielding genotypes included NDL 2003/31 (51.55 t/ha), NDL 2003/111 
(51.86 t/ha), KBH 2002/477 (42.86 t/ha) and NDL 2005/1472 (35.59 t/ha) (Table 
S3). Chambezi 2013 to 2018 environments had the highest mean root weight 
(45.21 t/ha) with moderate to high stability based on GSI ranking (Figure 6, Ta-
ble S3). Higher yields were observed in favourable environments for example 
Chambezi which had higher rainfall than other sites (Figure 7, Table 1, Table 
S3). Site Segera having received the least rainfall was one of the sites with a lower 
combined mean root weight of 33.47 t/ha.  

3.5. Dry Matter Content 

The effect of genotype, environment and G*E interaction was significant (P ≤  
 

 
Figure 7. Mean monthly rainfall and temperature for the five sites from 2013 to 2018. 
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0.001) for dry matter content (Table 4). Percent SS due to environment was very 
high at 85.23% followed by G*E (14.12%) and very low SS due to genotype (0.68%). 
Four IPCAs had significant (P ≤ 0.05) mean squares and IPCA1 and IPCA2 ac-
counted for a total SS of 65.43% of the G*E variation. The mean dry matter con-
tents for genotypes were close ranging from 26.95% - 28.77% (Figure 6, Table 
S3). The genotypes with high stability and dry matter content included KBH 
2002/494 (28.77%), KBH 2002/477 (28.69%), KBH 2002/66 (28.55%) Kiroba 
(28.37%) and KBH 2002/482 (28.18%) (Figure 5, Table S3). Segera which re-
ceived the least rainfall had the highest combined mean dry matter content of 
30.43%. Root necrosis may have affected dry matter content since environments 
with higher root necrosis had corresponding low dry matter content and vice 
versa. For example, among the environments in Chambezi, Chambezi 2016 had 
the highest root necrosis severity (3.06) and the lowest dry matter content (16.96%). 
Similar observations were made in other sites.  

4. Discussion  

The performance of cassava is subject to the strong influence of genotype, envi-
ronment and G*E interactions [15] [29] [47]. TARI-Naliendele has been devel-
oping improved genotypes, however, only a few varieties have been released. The 
newly developed breeding lines are in their final stages of breeding. Therefore, 
evaluating them in diverse environments and providing recommendations for 
suitable ones will contribute to increasing cassava production and improved 
food and nutrition security.  

The AMMI model was used in this study and the effects of genotype, envi-
ronment, and G*E interactions were significant. Percent SS due to environment 
was the highest followed by G*E interaction in CMD foliar symptoms severity, 
root weight and dry matter content showing that environment and G*E interac-
tion greatly influenced the variations observed. On the other hand, % SS due to 
genotype was the highest followed by G*E interaction in CBSD foliar symptoms 
and root necrosis. A considerable percentage of G*E interaction was explained by 
IPCA1 (34.725% - 45.20%), followed by IPCA2 (22.93% - 35.31%) and lastly 
IPCA3 (7.55% - 15.50%). Several studies have shown similar findings where a 
significant and greater percentage of G*E interaction was explained by IPCA1 
and IPCA2 [15] [29] [47] [48]. 

Mean CMD and CBSD foliar symptoms severity increased from 3 to 6 MAP 
then dropped at 9 MAP. The total % SS due to both IPCA1 and IPCA2 was the 
highest at 6 MAP for both CMD and CBSD. A possible explanation for this is 
that at 3 MAP, some plants may still have low viral titre [49] and may not ex-
press symptoms thus causing significant variations in the replications and envi-
ronments. This may result in the representation of substantial % SS by other 
IPCAs apart from IPCA 1 and 2. CBSD foliar symptoms are more difficult to 
recognize in older plants as the lower leaves with prominent symptoms senesce 
and fall off, causing variation in symptoms expression among the plants partic-
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ularly at 9 MAP [50]. Additionally, younger leaves are more susceptible to CMD 
resulting in a decrease in CMD symptoms in some plants with increasing plant 
age [51]. In our earlier study we reported a higher heritability at 6 MAP for 
CMD and CBSD foliar symptoms thus emphasising the importance of assess-
ment at this time point [20]. 

Stability analysis methods are often used by breeders to identify genotypes 
that have stable performance and respond positively to improvements in envi-
ronmental conditions [39] [40]. With regards to CMD and CBSD, suitable ge-
notypes would have low ASV and low disease severity. Further, genotypes with 
CMD foliar severity scores (<2.0) are classified as resistant while those with 
(≥2.0) as susceptible [52]. In this study, all genotypes had low foliar severity 
(>1.35) apart from Mahiza which was slightly higher at 1.77. The most stable 
genotypes with low CMD foliar severity (≤1.28) were Albert, NDL 2003/111, 
KBH 2002/66, KBH 2002/26, NDL 2005/1472, NDL 2003/31 and KBH 96/1056. 

CBSD-resistant varieties exhibit minimal symptoms with a severity of (<2.0) 
both on leaves and roots, tolerant once have more severe symptoms on leaves 
(≥2.0) coupled with minimal symptoms on roots (<2.0) while susceptible ones 
developed severe symptoms on both leaves and roots (>2.0) [16] [53] [54]. All 
genotypes apart from Naliendele 134, Mkumba, Mahiza, Albert, KBH 2002/26 
and KBH 2002/66 had minimal symptoms (<2.0) both on leaves and roots. Sta-
ble genotypes with low ASV on CBSD foliar severity did not necessarily have 
stable root necrosis severity. This could be due to the different QTLs affecting 
CBSD foliar symptoms and root necrosis leading to varied expression of symp-
toms on leaves and roots [53]. Stable resistant genotypes with minimal symp-
toms on both leaves and roots (<2.0) were NDL 2005/1471 NDL 2003/111, KBH 
2002/482 and NDL 2003/31. The environments in site Chambezi had the highest 
combined means for CMD (1.24), CBSD (1.77), and root necrosis (2.06). Ma-
sumba et al. [53] reported higher CMD and CBSD severity suggesting the suita-
bility of this site for disease resistance evaluation. The environments, however, 
had higher GSI ranking portraying moderate stability. Virus transmission and 
disease spread are determined by inoculum pressure and their variation from 
season to season may have contributed to the lower stability observed [55]. 

Based on GSI ranking, the most stable high yielding genotypes included NDL 
2003/31 (51.55 t/ha), NDL 2003/111 (51.86 t/ha), KBH 2002/477 (42.86 t/ha) and 
NDL 2005/1472 (35.59 t/ha). Higher yields were recorded in favourable envi-
ronments indicating that genotypes can exploit their full potential to yield well 
under good environmental conditions. Accordingly, the environments in site 
Chambezi had the highest combined root weight means of 45.21 t/ha. Chambezi 
had higher rainfall particularly during the first six months, a critical period for 
root initiation and development [56] [57]. Most of the genotypes had moderately 
high dry matter content ranging from 26.95% - 28.77%. Low rainfall results in 
high dry matter content as was observed in the environments in site Segera 
which had the highest combined dry matter content mean of 30.43 [16] [58]. 
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Additionally, the environments with the least CBSD root necrosis symptoms had 
the highest dry matter content and vice versa, indicating that presence of root 
symptoms can affect key agronomic traits leading to loss of farmer preferred 
traits [16] [58].  

5. Conclusion 

G*E was significant (P ≤ 0.05) for CMD foliar symptoms, CBSD foliar and root 
symptoms, root weight and dry matter content. This emphasised the importance 
of testing genotypes in multiple environments before an effective selection is 
made. Besides, variations were also significant among the test environments. Site 
Chambezi had the highest mean CMD and CBSD severity; therefore, it has been 
empirically confirmed as the most suitable environment for evaluation for dis-
ease resistance. Cassava produces high yield under favourable conditions such as 
adequate rainfall and soil fertility as was observed in Chambezi. The most stable 
genotypes which combined CMD and CBSD resistance, high yield were NDL 
2003/31 and NDL 2003/111. These genotypes outperformed the checks Albert, 
Kiroba, Pwani, Mahiza, Mkumba and Naliendele 134 indicating that they have 
the potential to increase cassava productivity and should therefore be recom-
mended for release to cassava farmers or further breeding prospects.  
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Appendix 

Table S1. Mean, AMMI stability value (ASV), Genotype stability index (GSI) and rank (r) of CMD foliar symptoms for genotypes 
and sites. 

Genotype 
CMD 3 MAP CMD 6 MAP CMD 9 MAP 

Mean ASV GSI rASV rGSI Mean ASV GSI rASV rGSI Mean ASV GSI rASV rGSI 

Albert 1.16 0.35 12.0 4 3 1.28 0.07 6.0 1 1 1.20 0.06 10.0 1 3 

KBH 2002/26 1.02 0.72 28.0 12 15 1.02 0.61 28.0 6 15 1.03 0.69 28.0 12 15 

KBH 2002/477 1.16 0.47 15.0 6 8 1.22 0.43 16.0 7 7 1.20 0.67 19.0 11 11 

KBH 2002/482 1.13 0.30 14.0 2 7 1.34 0.60 14.0 11 5 1.25 0.09 7.0 2 1 

KBH 2002/494 1.20 0.32 9.0 3 2 1.25 0.57 16.0 9 7 1.24 0.48 14.0 8 6 

KBH 2002/66 1.18 0.82 20.0 13 11 1.14 0.23 15.0 3 6 1.16 0.33 17.0 6 7 

KBH 96/1056 1.13 0.30 12.0 1 3 1.15 0.41 16.0 5 7 1.14 0.31 17.0 5 7 

Kiroba 1.20 1.34 21.0 16 12 1.29 0.77 18.0 14 12 1.26 1.17 18.0 15 10 

Mahiza 1.51 0.90 15.0 14 8 1.77 1.79 17.0 16 11 1.68 1.24 17.0 16 7 

Mkumba 1.05 1.09 28.0 15 15 1.03 0.78 30.0 15 16 1.05 1.06 29.0 14 16 

Naliendele 134 1.33 0.72 13.0 11 5 1.41 0.58 12.0 10 3 1.39 0.56 11.0 9 4 

NDL 2003/111 1.20 0.66 13.0 9 5 1.19 0.20 12.0 2 3 1.20 0.29 13.0 3 5 

NDL 2003/31 1.24 0.39 8.0 5 1 1.27 0.30 10.0 4 2 1.25 0.30 8.0 4 2 

NDL 2005/1471 1.15 0.57 17.0 7 10 1.23 0.73 21.0 13 13 1.21 0.74 20.0 13 12 

NDL 2005/1472 1.03 0.70 25.0 10 14 1.08 0.48 21.0 7 13 1.06 0.57 24.0 10 14 

Pwani 1.03 0.59 22.0 8 13 1.22 0.42 16.0 12 7 1.06 0.46 20.0 7 12 

Grand mean 1.17     1.24     1.21     

CV 16.1     15.2     17.1     

Environments                

Chambezi 2013 1.51 0.98 32.0 29 17 1.74 0.72 24.5 23 5 1.63 0.93 31.0 30 11 

Chambezi 2014 1.51 0.95 30.0 28 13 1.70 0.60 25.0 21 6 1.62 0.86 30.0 27 10 

Chambezi 2015 1.51 1.00 31.0 30 14 1.73 0.71 25.0 22 6 1.62 0.92 32.0 28 16 

Chambezi 2016 1.49 0.89 33.0 26 18 1.64 0.50 25.0 20 6 1.58 0.78 31.0 26 11 

Chambezi 2017 1.15 0.28 20.0 11 5 1.15 0.46 33.0 18 15 1.14 0.44 36.0 19 24 

Chambezi 2018 1.50 0.90 31.0 27 14 1.74 0.72 25.5 24 9 1.63 0.93 31.0 29 11 

Chambezi mean 1.45     1.62     1.54     

Mtopwa 2013 1.07 0.10 24.0 1 8 1.06 0.19 27.5 5 10 1.08 0.11 23.5 1 5 

Mtopwa 2014 1.06 0.14 28.0 3 11 1.06 0.21 31.5 7 14 1.06 0.17 39.0 11 28 

Mtopwa 2015 1.06 0.14 26.0 2 10 1.06 0.20 30.5 6 13 1.06 0.17 37.0 10 26 

Mtopwa 2016 1.00 0.36 47.5 18 30 1.02 0.47 49.0 19 30 1.01 0.43 48.0 18 30 

Mtopwa 2017 1.00 0.36 46.5 17 29 1.14 0.34 29.0 13 11 1.16 0.34 31.0 16 11 

Mtopwa 2018 1.04 0.39 45.0 19 28 1.12 0.11 21.5 4 4 1.14 0.16 26.0 8 6 

Mtopwa mean 1.04     1.07     1.09     
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Continued 

Nachingwea 2013 1.08 0.20 25.0 5 9 1.05 0.22 35.0 8 19 1.07 0.14 29.0 3 7 

Nachingwea 2014 1.08 0.21 29.0 7 12 1.04 0.25 39.0 10 27 1.07 0.14 29.0 4 7 

Nachingwea 2015 1.08 0.20 23.0 4 7 1.05 0.23 35.0 9 19 1.07 0.16 33.0 9 19 

Nachingwea 2016 1.08 0.32 35.0 14 19 1.09 0.46 38.0 17 25 1.09 0.34 38.0 17 27 

Nachingwea 2017 1.01 0.32 43.0 15 26 1.05 0.33 39.0 11 27 1.08 0.25 34.5 12 20 

Nachingwea 2018 1.03 0.34 43.0 16 26 1.06 0.43 38.5 16 26 1.04 0.33 43.0 14 29 

Nachingwea mean 1.06     1.06     1.07     

Naliendele 2013 1.23 0.28 19.0 12 2 1.18 0.08 16.0 3 2 1.20 0.16 16.0 6 3 

Naliendele 2014 1.23 0.29 21.0 13 6 1.18 0.07 16.0 2 2 1.20 0.15 13.0 5 2 

Naliendele 2015 1.23 0.27 16.0 10 1 1.19 0.03 13.0 1 1 1.20 0.11 11.0 2 1 

Naliendele 2016 1.14 0.23 19.0 8 2 1.10 0.41 35.0 15 19 1.13 0.31 32.0 13 16 

Naliendele 2017 1.10 0.21 24.0 6 8 1.11 0.36 33.0 14 15 1.09 0.34 35.0 15 23 

Naliendele 2018 1.14 0.26 19.0 9 2 1.12 0.34 29.5 12 12 1.15 0.16 23.0 7 4 

Naliendele mean 1.18     1.15     1.16     

Segera 2013 1.10 0.61 36.5 22 22 1.25 0.74 33.5 25 17 1.19 0.57 36.0 23 24 

Segera 2014 1.18 0.67 38.5 23 23 1.31 0.76 37.0 29 24 1.21 0.59 32.0 25 16 

Segera 2015 1.14 0.70 38.5 24 23 1.32 0.74 35.0 27 19 1.22 0.55 34.5 22 20 

Segera 2016 1.14 0.56 35.0 20 19 1.29 0.75 36.0 28 23 1.16 0.53 34.5 21 20 

Segera 2017 1.12 0.58 35.0 21 19 1.24 0.74 33.5 26 18 1.20 0.52 31.0 20 11 

Segera 2018 1.16 0.75 38.5 25 23 1.27 0.77 41.0 30 29 1.21 0.58 30.0 24 9 

Segera mean 1.14     1.28     1.20     

 
Table S2. Mean, AMMI stability value (ASV), Genotype stability index (GSI) and rank (r) of CBSD foliar symptoms for genotypes 
and sites 

Genotype 
CBSD 3 MAP CBSD 6 MAP CBSD 9 MAP 

Mean ASV GSI rASV rGSI Mean ASV GSI rASV rGSI Mean ASV GSI rASV rGSI 

Albert 2.23 3.04 18.0 16 8 2.66 1.33 16.0 15 4 2.54 1.22 16. 15 4 

KBH 2002/26 1.13 0.15 14.0 2 3 1.42 0.82 19.0 10 10 1.28 0.44 15.0 5 3 

KBH 2002/477 1.57 1.52 18.0 13 8 1.73 1.27 20.0 14 13 1.69 1.15 19.0 13 13 

KBH 2002/482 1.25 0.38 14.0 5 3 1.34 0.80 18.0 8 8 1.33 0.64 17.0 8 5 

KBH 2002/494 1.51 1.77 20.0 14 11 1.69 0.56 11.0 4 2 1.64 0.93 18.0 11 10 

KBH 2002/66 1.26 0.64 16.0 8 7 1.27 0.35 12.0 1 3 1.26 0.37 14.0 3 2 

KBH 96/1056 1.07 0.58 21.0 7 13 1.02 0.56 21.0 5 14 1.06 0.34 17.0 1 5 

Kiroba 1.15 0.20 14.0 3 3 1.52 0.80 17.0 9 7 1.39 0.60 15.0 7 3 

Mahiza 2.13 2.01 18.0 15 8 2.49 0.49 5.0 3 1 2.35 1.02 15.0 12 3 

Mkumba 2.31 0.98 13.0 12 2 2.27 1.72 19.0 16 10 2.36 1.37 18.0 16 10 

Naliendele 134 1.48 0.04 8.0 1 1 2.09 0.92 16.0 12 4 1.83 1.17 19.0 14 13 

NDL 2003/111 1.06 0.43 21.0 6 13 1.08 0.57 19.0 6 10 1.08 0.37 18.0 4 10 

NDL 2003/31 1.06 0.28 20.0 4 11 1.03 0.58 22.0 7 15 1.06 0.35 17.0 2 5 

NDL 2005/1471 1.12 0.66 22.0 9 16 1.05 0.49 16.0 2 4 1.11 0.68 22.0 9 15 

https://doi.org/10.4236/ajps.2021.124046


B. Kimata et al. 
 

 

DOI: 10.4236/ajps.2021.124046 703 American Journal of Plant Sciences 
 

Continued 

NDL 2005/1472 1.20 0.88 21.0 11 13 1.19 0.83 23.0 11 16 1.21 0.81 22.0 10 16 

Pwani 1.78 0.84 14.0 10 3 1.81 1.16 18.0 13 8 1.86 0.59 10.0 6 1 

Grand mean 1.46     1.61     1.57     

CV 25.1     20.8     19.3     

Environments                

Chambezi 2013 1.40 0.35 29.0 6 14 1.87 0.75 26.5 24 13 1.64 0.39 13.0 6 6 

Chambezi 2014 1.40 0.31 21.0 2 6 1.89 0.81 28.5 26 18 1.66 0.35 8.0 3 2 

Chambezi 2015 1.41 0.34 22.0 4 7 1.91 0.75 25.5 23 11 1.67 0.38 12.0 5 5 

Chambezi 2016 1.41 0.35 24.0 7 9 1.79 0.64 14.0 9 1 1.60 0.29 11.0 1 3 

Chambezi 2017 1.28 0.86 47.0 17 24 1.29 0.71 46.0 16 27 1.30 0.91 59.0 29 30 

Chambezi 2018 1.40 0.34 26.5 5 12 1.89 0.75 24.5 22 6 1.65 0.37 11.0 4 3 

Chambezi mean 1.38     1.77     1.59     

Mtopwa 2013 1.48 1.00 32.0 20 19 1.45 0.67 35.0 12 22 1.49 0.76 50.0 27 29 

Mtopwa 2014 1.42 0.88 34.5 19 23 1.44 0.67 37.0 13 24 1.43 0.55 41.0 14 22 

Mtopwa 2015 1.42 0.88 33.5 18 22 1.44 0.64 36.0 11 23 1.43 0.58 43.0 17 23 

Mtopwa 2016 1.49 1.11 30.0 21 15 1.65 0.89 43.0 30 25 1.58 0.75 37.0 24 19 

Mtopwa 2017 1.50 1.14 32.0 22 19 1.48 0.56 29.0 8 19 1.53 0.44 28.0 9 12 

Mtopwa 2018 1.67 1.26 32.0 29 19 1.62 0.39 24.0 7 5 1.94 0.34 3.0 2 1 

Mtopwa mean 1.50     1.51     1.57     

Nachingwea 2013 1.57 0.77 19.0 13 5 1.64 0.20 19.0 3 4 1.59 0.47 22.5 11 10 

Nachingwea 2014 1.63 0.48 14.0 10 3 1.64 0.21 16.0 4 2 1.58 0.40 21.0 7 8 

Nachingwea 2015 1.58 0.74 17.0 12 4 1.64 0.19 16.0 2 2 1.59 0.48 23.5 12 11 

Nachingwea 2016 1.56 0.27 8.0 1 2 1.66 0.72 33.0 21 21 1.61 0.77 37.0 28 19 

Nachingwea 2017 1.51 0.81 23.0 15 8 1.52 0.36 25.0 5 8 1.67 0.50 17.0 13 7 

Nachingwea 2018 1.67 0.33 5.0 3 1 1.43 0.07 27.0 1 14 1.76 0.62 21.0 18 8 

Nachingwea mean 1.59     1.59     1.63     

Naliendele 2013 1.47 0.66 24.0 11 9 1.40 0.86 55.0 27 28 1.44 0.71 48.0 23 28 

Naliendele 2014 1.40 0.36 30.5 9 17 1.39 0.86 57.0 28 30 1.40 0.57 45.0 16 25 

Naliendele 2015 1.40 0.35 28.0 8 13 1.40 0.87 56.0 29 29 1.40 0.56 43.0 15 23 

Naliendele 2016 1.49 0.78 25.0 14 11 1.45 0.38 28.0 6 17 1.46 0.41 32.0 8 13 

Naliendele 2017 1.43 0.84 30.0 16 15 1.59 0.64 29.0 10 19 1.51 0.45 32.0 10 13 

Naliendele 2018 1.70 1.61 31.0 30 18 1.59 0.81 43.0 25 25 1.78 0.97 32.0 30 13 

Naliendele mean 1.48     1.47     1.49     

Segera 2013 1.30 1.17 54.4 26 28 1.60 0.72 27.0 19 14 1.52 0.68 36.5 19 16 

Segera 2014 1.38 1.15 48.5 24 26 1.76 0.72 25.0 17 8 1.55 0.75 45.5 25 26 

Segera 2015 1.04 1.14 52.5 22 27 1.48 0.68 24.5 14 6 1.54 0.68 36.5 20 16 

Segera 2016 1.64 1.20 54.5 28 29 1.88 0.72 25.0 17 8 1.58 0.68 36.5 20 16 

Segera 2017 1.36 1.17 54.5 26 29 1.70 0.72 27.0 19 14 1.57 0.69 38.5 22 21 

Segera 2018 1.32 1.15 47.5 24 25 1.66 0.68 25.5 15 11 1.52 0.75 46.5 26 27 

Segera mean 1.34     1.68     1.55     
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Table S3. Mean, AMMI stability value (ASV), Genotype stability index (GSI) and rank (r) of root necrosis, root weight and dry 
matter content for genotypes and sites. 

Genotype 
Root necrosis Root weight Dry matter 

Mean ASV GSI rASV rGSI Mean ASV GSI rASV rGSI Mean ASV GSI rASV rGSI 

Albert 4.11 1.34 13.0 12 3 17.36 4.92 27.0 11 14 27.18 2.65 25 10 14 

KBH 2002/26 2.22 1.36 18.0 13 9 36.56 1.66 10.0 1 3 27.88 1.67 19 8 11 

KBH 2002/477 1.58 0.56 17.0 7 8 42.86 3.60 12.0 6 4 28.69 0.46 5 2 2 

KBH 2002/482 1.72 0.41 12.0 4 2 40.20 4.74 18.0 10 8 28.18 1.14 16 6 5 

KBH 2002/494 1.58 1.23 22.0 11 15 43.23 5.54 16.0 12 7 28.77 0.13 2 1 1 

KBH 2002/66 2.04 2.23 21.0 15 13 30.71 4.62 20.0 9 13 28.55 0.46 8 3 3 

KBH 96/1056 1.46 0.75 24.0 9 16 44.18 17.59 19.0 16 11 28.40 3.14 17 11 6 

Kiroba 1.53 0.50 19.0 6 12 40.83 4.10 15.0 8 6 28.37 1.39 14 7 4 

Mahiza 3.08 1.11 13.0 10 3 20.03 2.86 18.0 3 8 28.62 3.53 17 13 6 

Mkumba 2.29 1.54 18.0 14 9 22.60 7.54 28.0 14 15 27.35 3.64 27 14 15 

Naliendele 134 3.52 2.57 18.0 16 9 27.50 8.10 28.0 15 15 28.21 1.92 18 9 9 

NDL 2003/111 1.50 0.16 15.0 1 5 51.86 3.15 6.0 5 2 28.30 3.43 20 12 12 

NDL 2003/31 1.36 0.42 21.0 5 13 51.55 1.67 4.0 2 1 26.95 1.02 21 5 13 

NDL 2005/1471 1.53 0.36 15.0 3 5 42.89 5.89 18.0 13 8 27.27 0.84 18 4 9 

NDL 2005/1472 1.92 0.63 15.0 8 5 35.59 3.07 14.0 4 5 27.63 4.19 28 16 16 

Pwani 1.59 0.33 11.0 2 1 29.87 3.66 19.0 7 11 28.71 3.99 17 15 6 

Grand mean 2.06     36.1     28.1     

CV 36.2     43.8     16.9     

Environments                

Chambezi 2013 2.31 0.92 28.0 19 12 45.45 2.01 19.0 10 3 24.29 0.55 34.0 13 20 

Chambezi 2014 1.56 0.17 30.0 2 14 25.57 1.38 26.0 4 8 27.62 0.92 35.0 18 22 

Chambezi 2015 2.42 1.20 32.0 25 18 43.79 4.50 34.0 24 21 23.29 1.35 41.0 19 26 

Chambezi 2016 3.06 1.51 31.0 30 16 60.27 7.06 29.0 26 10 16.96 0.31 38.0 8 24 

Chambezi 2017 2.58 0.92 20.0 17 4 42.10 2.83 26.0 15 8 34.78 1.82 32.0 25 16 

Chambezi 2018 2.10 1.06 33.0 22 19 54.05 7.24 33.0 27 17 36.35 0.82 20.0 17 3 

Chambezi mean 2.33     45.21     27.21     

Mtopwa 2013 1.79 0.12 25.0 1 10 29.70 1.72 23.0 7 6 27.38 1.66 42.0 24 28 

Mtopwa 2014 1.68 0.42 34.0 8 21 24.47 2.08 36.0 12 25 29.15 1.94 41.0 26 26 

Mtopwa 2015 1.92 0.96 38.0 20 23 36.02 1.59 21.0 6 4 18.34 0.10 29.0 2 11 

Mtopwa 2016 2.54 0.51 16.0 11 2 67.39 3.98 24.0 22 7 17.45 0.18 32.0 3 16 

Mtopwa 2017 1.90 0.65 33.0 14 19 14.03 1.40 32.0 5 15 32.92 1.65 31.0 23 13 

Mtopwa 2018 1.21 1.30 57.0 27 29 25.06 2.06 34.0 11 21 36.12 0.18 8.0 4 1 

Mtopwa mean 1.84     32.79     26.89     

Nachingwea 2013 2.25 0.54 22.0 12 7 20.32 3.41 46.0 21 28 26.89 0.19 25.0 6 6 

Nachingwea 2014 1.96 0.18 20.0 3 4 45.65 5.77 33.0 25 17 39.81 6.93 31.0 30 13 
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Continued 

Nachingwea 2015 2.06 0.31 19.5 6 3 68.36 12.72 31.0 30 14 18.42 0.05 27.0 1 9 

Nachingwea 2016 2.50 1.06 29.0 23 13 58.85 9.47 32.0 28 15 17.78 0.31 37.0 9 23 

Nachingwea 2017 2.08 1.49 41.0 29 26 28.68 2.67 33.0 14 17 31.97 0.71 25.0 15 6 

Nachingwea 2018 1.49 1.34 57.0 28 29 13.14 2.44 43.0 13 26 32.41 0.74 25.0 16 6 

Nachingwea mean 2.06     39.17     27.88     

Naliendele 2013 2.06 1.24 39.5 26 24 27.60 1.75 30.0 9 12 22.47 0.44 33.0 10 19 

Naliendele 2014 2.56 0.76 20.0 16 4 36.63 2.86 30.0 16 12 20.92 0.55 38.0 14 24 

Naliendele 2015 1.85 0.92 41.0 18 26 18.97 1.74 34.0 8 21 35.98 3.97 34.0 29 20 

Naliendele 2016 2.00 1.03 36.0 21 22 29.18 1.28 21.0 3 4 26.74 1.62 42.0 22 28 

Naliendele 2017 1.67 0.62 40.0 13 25 29.30 0.43 18.0 1 2 30.52 0.19 19.0 5 2 

Naliendele 2018 1.75 1.12 49.0 24 28 38.02 3.16 33.0 20 17 30.77 1.41 31.0 20 13 

Naliendele mean 1.98     29.95     27.90     

Segera 2013 1.87 0.47 31.5 10 17 13.56 3.14 47.5 19 30 30.72 0.53 23.5 11 4 

Segera 2014 1.90 0.29 25.0 5 10 39.83 3.04 29.0 17 10 28.01 2.55 44.0 28 30 

Segera 2015 1.87 0.47 30.5 9 15 13.56 3.14 46.5 18 29 30.72 0.53 24.5 12 5 

Segera 2016 2.60 0.25 6.0 4 1 28.26 4.00 43.0 23 26 19.08 0.20 32.0 7 16 

Segera 2017 2.39 0.71 23.0 15 8 57.18 9.61 34.0 29 21 38.13 1.99 29.0 27 11 

Segera 2018 1.98 0.32 23.0 7 8 48.41 0.75 9.0 2 1 35.89 1.48 27.0 21 9 

Segera mean 2.10     33.47     30.43     
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