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Abstract 
In this paper, we present a simulation program that allows for the concurrent 
propagation of action potentials in axons coupled via currents, as well as, for 
the first time, the computation of the resultant nodal electric field generated 
as the action potentials traverse the tract of axons. With these fields in hand, 
we inject currents into nodes of axons that depend on these fields and study 
the coupling between axons in the presence of the fields and currents present 
jointly in varying strengths. We find close-to-synchronized propagation in 
three dimensions. Further, we derive for the first time a mathematical equa-
tion for tortuous tracts (as opposed to linear) with such field-mediated 
coupling. The geometrical formulation enables us to consider spacetime per-
turbative effects, which have also not been considered in the literature so far. 
We investigate the case when gravitational radiation is present, in order to 
determine its impact on tract information processing. We find that action 
potential relative-timing in a tract is affected by the strength and frequency of 
gravitational waves and the waning of this influence with weakening strength. 
This latter study blurs the division between what lies inside and outside man. 
As an additional novelty, we investigate the influence of geometry on the in-
formation transmission capacity of the ephaptically-coupled tract, when 
viewed as a discrete memoryless channel, and find a rising trend in capacity 
with increasing axonal inclinations, which may occur in traumatic CNS in-
jury.  
 

Keywords 
Field-Mediated Axon Interaction, Current-Mediated Axon Interaction,  
Metric Perturbations and Axon Interaction, Capacity of Interacting Axons 

 

1. Introduction 

What would your consciousness (or thoughts, more simply) be like when ap-
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proaching a black hole? Or perhaps when your brain is subject to strong elec-
tromagnetic fields? Can we tackle such questions scientifically? If not the subjec-
tive perception itself, then perhaps we may enquire about just the brain state in 
general in such extreme conditions. The premise of this paper is that if we can 
study nerve tracts from the perspective of the four forces (electromagnetic, 
strong, weak and gravitational), then we can perhaps lay our finger on and 
pin-point exactly what makes these tracts enablers of consciousness. 

Though the mind may be more than just a brain state [1], when making a 
connection between brain states and consciousness we rely on the observation 
that brain states are nevertheless a window to the mind [2]. This observation was 
made in the context of EEG signals which are electrical in nature, as being rep-
resentative of the underlying brain state. But consider also the fact that EEG sig-
nals are more than just physical signatures—they carry bits of information via 
communication signals. Neither view, the EEG-physical view nor the informa-
tion-communication view precludes the other. Viewed one way, via an electric 
voltage meter, the brain is generating electric voltages. At this level, there is no 
hint of “bits”. However, when we superpose the picture that certain voltage 
waveforms “mean” particular bit values, then we see bits in all neural signals. In 
Minskian terminology, we have gone from an `agent’ perspective (the physical 
voltages) to an “agency” perspective where the bits can now participate in in-
formation processing which subsequently directs various activities of the organ-
ism. 

The Minskian agent-agency theory is not the only view that can be taken in 
this regard. For example, Landauer [3] uses entirely different arguments to con-
vince the reader that bits are physical, establishing a sort of identity or closer re-
lation between the representation (bits) and the representative (voltages of the 
physical substrate). Regardless of whether one prefers the Minskian view or the 
Landauer perspective, bits are important and thus in this paper we also include 
information as one of the important modalities to be investigated. Further, this 
modality is also important since there is a line of philosophical thinking which 
equates “me” with my brain’s state of information processing [4]. 

The setting in which our work is carried out is as follows. We know that the 
brain is composed primarily of neurons and glial cells. A neuron is often seen as 
a tri-partite structure, with dendritic arbor, cell body and axon. Suppose two 
axons are considered, placed in extracellular space. Action potentials may be 
computed and would hop from node (of Ranvier) to node on each of the axons, 
using the mechanism of saltatory conduction [5], with the action potentials in-
teracting with each other [6]. Concomitant with these action potentials, electric 
fields would be generated at each node of Ranvier. All these fields can be com-
puted and superposed with one another in order to determine the net electro-
dynamics of the tract. In this work, we take our reader through a few accurate 
simulations of such action potential propagation in axon tracts in the presence 
of the concomitant internally generated electric fields (related to Local Field Po-
tentials (LFPs)), which has many implications for improving our understanding 
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of neuroscience. It also has several applications related to the correct assessment 
of diseased conditions of the nervous system, such as multiple sclerosis (MS) and 
autism spectrum disorder (ASD). 

Along the way, we also look at impinging gravitational radiation and issues of 
information processing (channel capacity, in particular) in the context of axon 
tracts, all from the computational angle—bolstered by numerical simulations. 
While there is extant literature on electric and magnetic fields in volume con-
ductors [2], the literature on gravitational waves interacting with biophysical 
systems is rather sparse—or non-existent. Here we will only briefly comment on 
the relationship of our work to [7]. That work is concerned with the representa-
tion of spacetime in the brain, whereas we are concerned first of all with the ac-
tual impact of spacetime perturbations on information processing by the 
three-dimensional axon tract. However, if we model our three-dimensional in-
formation processing along the lines suggested in that paper, by connecting in-
ternal firing activity patterns further to external spacetime reality, then we can 
build a bridge between that work and our present work. This would be interest-
ing since we would be looking at the impact of spacetime perturbations on the 
very perception of that spacetime itself. 

This paper is structured as follows. In the next section, Section 2, we look at 
electric field-mediated interaction between axons. In Section 3, we review cur-
rent-mediated interaction. In Section 4, we introduce the new formalism for 
tract tortuosity. In Section 5, we simulate the field-mediated interaction due to 
sodium effects alone and in Section 6, due to both sodium and potassium ions. 
In Section 7, we turn to gravitational radiation’s impact and in Section 8, we 
look at issues of tract capacity. Finally, we conclude in Section 9, providing di-
rections for future investigation. 

Notational Preliminaries 
We define our notation in Table 1 and Table 2. 

2. Axon-Axon Interaction via Electric Fields 

In this introductory section, we will study the interaction between axons as me-
diated by the electric fields generated by the very axons themselves. This is 
therefore a sort of feedback coupling within the axon tract, and, as our results 
indicate, if the feedback is included positively (by means of a gain which will be 
discussed later), it leads to a dramatic speed up of the action potential propaga-
tion. For background on much of this section, including a few of the results, we 
refer the reader to [8]. 

2.1. Nature of the Current Source at a Single Ion Channel 

We are interested in the current conducted through an ion channel. Though it 
will depend on the voltage across the ion channel, it is useful to look at the ve-
locity of ions in the channel to get an idea as to whether these ions approach 
high speeds or not. From [9], we know that as per classical laws (i.e. not invok-
ing quantum mechanics), there are roughly 3.1 × 107 ions per second flowing  
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Table 1. List of principal symbols and their meanings I. 

Symbol Meaning 

,ρ ρ′  radial distance of the (field point, source point) from the axis of the cylinder 

φ  azimuthal angle 

,z z′  distance of the (field point, source point) along the axis of the cylinder 

I0 magnitude of the current strength at the surface of the node of Ranvier 

p radial distance from the cylindrical axis where the current magnitude vanishes 

1 1,r l  (starting, termination) point in time of the PWM-PPM waveform [8] of the ion 
channel current profile 

( )U ⋅  Heaviside step function 

( )δ ⋅  Dirac delta function 

( ),LFP r tφ   electric potential at spatial (field) position r  and time t 

( ) ( ), ,vI r t I r′   volume source current density produced by an ion channel ring (with, without) 
time variation 

r′  position of the source element 

ε  permittivity of free space 

,φ φ′  azimuthal coordinates of the (field point, source point) 

∇  gradient operator 

channelE


 the net electric field due to the ion channel 

ˆ ˆ,k eρ  two of the three unit vectors in the three-dimensional coordinate system 

1 2,ρ ρ′ ′  two radial distances used to generate the form of the current near the node 

φ′∆  
azimuthal thickness of the first ion channel in the ring of ion channels at the 
node of Ranvier 

, ,,m k m kc g  the membrance (capacitance, conductance) of the k-th axon 

( ),kV x t  the transmembrane potential difference of the k-th axon at spatial position x 
and time t 

Nα  a parameter introduced by Reutskiy, Rossoni and Tirozzi 

N total number of axons in the tract 

r 
“ratio” used in the simulations which indicates the strength of the 
current-mediated coupling between axons 

fr  the resistance per unit length of the axoplasm of each axonal fiber 

axoplasm
,,k m kG G  the conductance of the (axoplasm, myelin sheath) of the k-th axon 

( ),k k zθ θ  the inclination of the k-th axon (without, with) z-dependence 

( ),p pK K z  a combination of parameters introduced by Chawla, Morgera and Snider 
(without, with) z-dependence 

injected
kI  the total injected current at the node, including contributions from ionic 

current, as well as external stimulation 

( )l t  number of ion channels open at the present node at time t 

,γ γ ′  two positive real numbers less than one which determine the fraction of the 
field that contributes towards a nodal current 

L the total number of ion channels distributed uniformly over the nodal surface 
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Table 2. List of principal symbols and their meanings II. 

fields
kI  the additional injected current at the node, due to the ambient superposed 

electric fields near the node 

σ  the local conductivity of the medium near the nodal surface 

impingingE


 
the algebraic sum of impinging fields from relevant nodes, the fields themselves 
depending on the states of those nodes 

( ), ipW W z  the matrix of inter-axonal distances (without, with) z-dependence 

, , ,m n h p  activation and inactivation variables 

,Na KN N  expected number of open (sodium, potassium) pores 

κ  electric field-based coupling gain, based on the sodium ion 

h gravitational strain 

ds invariant spacetime interval 

, , ,x y z t  spatial and temporal coordinates 

c speed of light 

f frequency of the gravitational wave 

 
through a typical sodium ion channel, which corresponds to a sodium current of 
about 5 pico-Amperes. This is close to the value of 2 pico-Amperes as is com-
monly measured using patch clamp techniques. This also means that a single ion 
takes about 32.25 nano-seconds to cross an ion channel pore. The length of such 
a pore is about 5 Angstroms or 0.5 nano-meters. This leads to a mean velocity 
through the pore of 

9
3

9

0.5 10 m m15.5 10
s s32.25 10ionv

−
−

−

×
= = ×

×
, placing the velocity 

firmly in the non-relativistic regime. 

2.2. The Electric near Field Generated by a Sodium Ion Channel  
Ring 

In this section, our goal will be to compute the electric field that results from an 
open sodium ion channel, which permits a peak current of 2 pico-Amperes 
through itself. Since axon fibers are tightly packed in a tract, with very small 
mutual separation, what we are interested in may be considered to be the 
near-field generated by a node of Ranvier. Note that the term near-field is usual-
ly reserved for radiating antennas whose largest dimension and radiation wave-
length can be used to compute the boundary of the near field zone, via the 
Fraunhofer distance [10]. 

For the case at hand the near field boundary is about 2 to 3 microns from the 
surface of the node of Ranvier (see page e4 in [11] for the refractive index of 
brain tissue which can be used to easily compute the Fraunhofer distance). If 
axons are tightly packed, this would imply that they are all within each other’s 
near field. We develop our results for the sodium ion1. The next equation, an 

 

 

1Because the potassium ion is not considered, the results for the impact of the field on conduction 
velocity (Figures 4-8) show a very sharp rise in the conduction velocity. The additional effect of the 
potassium field on the propagation is looked at in Section 6. 
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ansatz based on volume conduction theory (as presented in Chapter 2.2 of [12]), 
models the volume source current density produced by an ion channel ring 
(Figure 1), in cylindrical coordinates. 

( ) ( ) ( ) ( )0 1 1 ˆ, 1vI r t I z U t r U l t
p
ρ δ ρ
′ ′ ′ ′= − − − 

 

             (1) 

Next, to find the electric near field associated with this current density, we 
plug it into [13]  

( ) ( ) 3,1, d
4

v
LFP

I r t
r t r

r r
φ

ε
′

′=
′−π ∫





 

                  (2) 

which gives the LFP as a volume integral involving the current density of the 
source and the distance between the source and the field positions. Next, using 
the quasi-static approximation, E φ= −∇



 gives us (see [14] [15]) the electric 
near field as the negative gradient of the potential computed in Equation (2). To 
justify the use of the previous two equations, we quote [16]:  

A simple solution is to realize that in the near-field world, where the struc-
tures are much smaller than the wavelength, the electric field is mostly unrelated 
to the velocity of light; instead, the dominant component of the electric field is 
longitudinal, i.e., the quasistatic gradient of the Coulomb integral over the in-
stantaneous charge distribution.  

Using vector analysis [17] we have,  

( ) ( ) 3
channel 3

ˆ d
4

I rzE r k r
r rεπ

′
′= +

′−
∫





 



 

                 (3) 

( ) ( )( ) 3

3

cos d1ˆ
4

I r r
e

r r
ρ

ρ ρ φ φ
ε

′ ′ ′ ′−

π

−

′−
∫

 

 

                (4) 

By shifting the ansatz, Equation (1), outward from the origin by an amount 

1ρ′ , we can write: 
 

 
Figure 1. Ion channel ring at a node of Ranvier of an axon. The indentations are the ion 
channels, placed around the ring at various points. 
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( ) ( ) ( )
1

0
2 1 2

2 1

2

0 0

0

I
I r z

ρ ρ

δ ρ ρ ρ ρ ρ
ρ ρ

ρ ρ

 ′ ′< <

′ ′ ′ ′ ′ ′ ′= − < < ′ ′−
 ′ ′>

            (5) 

Next, we note the following standard result on the integral of a Dirac delta 
function:  

( )d 1,z zδ
∞

−∞

′ ′ =∫                          (6) 

a standard result from basic vector calculus:  
3d d d d ,r zρ ρ φ′ ′ ′ ′=
                         (7) 

and an application of the cosine formula from trigonometry:  

( )2 2 22 cos ,r r zρ ρ ρρ φ φ′ ′ ′ ′− = + − − +               (8) 

which, when used in the first term in Equations (3) and (4) yield  

( )

( )

2

1

20
3

2 2 22 1 0 2

d d
.

2 cos

I

z

ρφ

φ ρ ρ

ρ ρ ρ ρ φ
ρ ρ

ρ ρ ρρ φ φ

′′∆

′ ′ ′= =

′ ′ ′ ′ ′−
′ ′−

 ′ ′ ′+ − − + 

∫ ∫           (9) 

Using a similar derivation, the second term in Equations (3) and (4) becomes  

( ) ( )( )

( )

2

1

20
3

2 2 22 1 0 2

cos d d
.

2 cos

I

z

ρφ

φ ρ ρ

ρ ρ ρ ρ φ φ ρ ρ φ
ρ ρ

ρ ρ ρρ φ φ

′′∆

′ ′ ′= =

′ ′ ′ ′ ′ ′ ′− − −

′ ′−
 ′ ′ ′+ − − + 

∫ ∫         (10) 

These two integrals are evaluated at user-input values of ρ , φ  and z. Using 
these evaluations, we compute the electric field, which then leads to coupling as 
will be discussed in Section 4. The more rudimentary means of axon-axon 
coupling is via extracellular currents, and this is reviewed next. 

3. Axon-Axon Interaction via Currents: A Quick Pass 

We begin by noting down the differential equation that we need to simulate, 
examining it, and giving a few remarks on its features. This equation is displayed 
here [6]:  

( ) ( ) ( ) ( )2 2

, 2 2
1

, , ,1 N
k k nN

m k
nf f

V x t V x t V x t
c x

t r rx x
α

=

∂ ∂ ∂
= − −

∂ ∂ ∂∑           (11) 

( ) ( ), ,m k kg x V x t                         (12) 

where 1, ,k N=  . The equation contains partial derivatives of the voltage in 
space and time. It also contains a number of constants. This system can be spe-
cifically classified as a system of coupled second-order linear partial differential 
equations (PDEs) in two independent variables and of the parabolic type, though 
simple parabolic equations do not contain terms like the last term on the right 
hand side of Equation (11) and Equation (12); that term is akin to a forcing term 
for the equation system [18]. 
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In order to derive this equation, the authors of [6] first set up a current-balance 
between the intracellular and extracellular currents. Combining this with trans-
membrane potential differences, gives them a term for the ephaptic current. 
They include this ephaptic current term in the Frankenhaeuser-Huxley equation 
[19] for the nodal regions as well as the internodal regions. These two regions 
have two separate equations, each of which is the governing law for a specific set 
of longitudinal positions along each axon. The nodal equation contains the ma-
chinery for action potential generation via the ionic current term. External sti-
mulation can also be accepted at a node. We refer the reader to [6] for a full un-
derstanding of the derivation of this equation. 

In [20], we extend Equations (11) and (12) to the three-dimensional setting. 
We consider arbitrary inclinations for axons in a 3D coordinate system, but the 
axons are still linear themselves. We also consider arbitrary inter-axonal dis-
tances encoded in a specific matrix, which we label as W. We indicate how the 
new equation2 is a generalization of the Frankenhaeuser-Huxley equation as well 
as Equations (11) and (12). In the next section, we embellish this equation to al-
low for tortuous axons and field-based interactions. 

4. Generalized Ephaptic Equation with Tract Tortuosity and  
Electric Field-Based Coupling 

One of our original goals with the three-dimensional axon tract formulation3 
was to ultimately look at tortuous axons, axons wending their way along splines 
(Figure 2). Tortuosity of axons is a very important feature to be modeled as it 
substantially increases the length and surface area of axons. It has a purpose, not 
yet understood. In the generalized ephaptic equation (GEE) published in [20], if 
we make the angular inclinations and W-matrix z-dependent then that would 
take care of such tortuosity as well. The reasoning which leads us to this insight 
is that regardless of how tortuous a tract’s axons may be, if we cut the tract up 
into small segments of infinitesimal length dz the axons would be linear within 
those segments and have a fairly constant inclination as well. Then, stacking to-
gether these segments of length dz back to back, we would get a reconstruction  
 

 

Figure 2. A spline is a smooth path, not necessarily linear. Axons quite often follow 
splines, and so modeling them as such is essential. 

 

 

2In order to avoid repetition, we note here that this new equation is identical with Equations (13) and 
(14) of the next section, except that we remove the z-dependence in ( )k zθ , ( )ipW z  and ( )pK z . 
3Please see Figure 1 and associated discussion in [20] for the basic underlying setup which is being 
assumed in this paper. 
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of the entire tortuous tract. Segment to segment, the inclination would gradually 
vary with z and so would the W-matrix entries. This leads us to write down the 
following equation for a tract of tortuous, coupled, axons. 

( ) ( ) ( ) ( )
22

axoplasm 2
, 2 2

1
cos

N
pk k

m k k k ip p
p

VV V
c x G z W z K z

t z z
θ

=

 ∂∂ ∂
= − − 

∂ ∂ ∂  
∑     (13) 

injected
,m k k kG V I+                          (14) 

wherein ( )k zθ  is the angular inclination of axon k at the longitudinal position 
z along the tract axis, and ( )ipW z  is the interaxonal distance matrix at the same 
position. ( )pK z  depends on the angular inclination and is therefore also writ-
ten as a function of z. 

Next we modify the tortuous-tract equation to allow variable proportions of 
field-based and current-based coupling. 

( ) ( ) ( ) ( )
22

axoplasm 2
, 2 2

1
cos

N
pk k

m k k k ip p
p

VV V
c x G z W z K z

t z z
θ

=

 ∂∂ ∂
= − − 

∂ ∂ ∂  
∑     (15) 

injected fields
,m k k k kG V I I+ +                      (16) 

In Equation (15) and (16), fields
kI  is computed keeping in mind that there will 

be an induced current at the present axon’s node of Ranvier based on the weak 
impinging field of a distant node and there will be a dependence on the 
open-close state of the ion channels at the present node. Suppose the state of the 
node of Ranvier at time t is ( )l t Lγ=  where 0 1γ< < , then we assume that, of 
the available impinging field-induced current, only a fraction γ γ′ <  will be 
able to enter the node. γ ′  is strictly less than γ  since there is a possibility that 
the currents present at the node oppose the current flow induced by the im-
pinging field. On the other hand there may be a chance that the currents present 
at the node actually aid the induced current, by being in the same general direc-
tion. Thus, as a simple model, if the sign of the impinging current matches that 
of the nodal current, then γ γ′ >  by a small amount ε  and the other way 
round if the signs are opposite4,5. Consequently, the current fields

kI  can be writ-
ten as impingingEγ σ′ . With these two improvements to the prior formulation, we 
are in a position to perform computer simulations, which we take up next. 

5. Joint Simulation of Tracts and Electric Fields 

The two programs developed previously which we utilize for developing the si-
mulations in the present paper are: 

1) Ephaptic Program—this program, published in 2019 [20], is able to com-
pute the current-mediated interaction between axons and show the synchroniza-
tion of action potentials in simple geometries. We refer the reader to that refer-
ence. 

 

 

4In this respect, thinking of the signum function as an activation function, the node itself acts like a 
mathematical “neuron” (see Figure 7 in Chapter 1.3 of [21]).  
5We took the sign variability of γ ′  into account while running the simulations in Section 5.1.  
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2) Electric Field Program—this program, developed in 2016-17 [8], is able to 
compute the electric field generated by an arbitrary number of open ion chan-
nels in a node of Ranvier. Using a quasi-static assumption, the generated field 
was pre-multiplied by a temporal envelope which was trapezoidal in shape, re-
flecting the profile of current flow through a voltage gated ion channel (the cha-
racteristic two picoampere profile [5]). We refer the reader to [8]. 

We next summarize how reference [22] was used to merge the two programs 
described here. Essentially the task is to connect the m, n, h , and p variables 
(also known as the activation and inactivation variables) to the number of ion 
channels open at a node at any given time. [22] tells us the relation between 
these variables and the number of open channels with time. To quote:  

If, at a given time, the numbers of open h , m and n-gates relative to the total 
numbers of these gates are h , m and n, respectively, the expected numbers 

NaN  [... and KN ...] of open Na + [.. and K + ...] pores are close to 3
Nahm N ... 

This information is used to pre-multiply the field magnitude generated at a 
single pore, resulting in the field of the entire node, in its full time-variation, 
even as the action potential is being computed by the main part of the program. 
Here, instead of using the quasi-static assumption, the time-variation comes in 
because ( )m t , ( )n t , ( )h t  and ( )p t  are functions of time. Thereby, as the 
program computes m, n, h  and p, it also completes a computation of the so-
dium field magnitude in a small neighborhood of the node under present con-
sideration. Note that we will actually want the field at various nodal positions of 
other axons. 

5.1. The Program Output 

Next, we outline the output of the synthesized program (cf. the programs out-
lined above). We note that tract-tortuosity, discussed in Section 4, was not con-
sidered in this first simulation of the synthesized program; it will be considered 
in future versions of the program. Instead, we persisted with the formulation 
discussed in Section 3. Figure 3 summarizes the construction of the program 
used in this section. 

First, we present the modified part of the code, shown in Section 5.1.1. We 
first discuss the variables used in this algorithm. 

1) In this code snippet, bundle1 refers to an entire axon tract, which is com-
monly also known as an axon bundle.  

2) Endlength refers to the length of the axon.  
3) Bundle1.N refers to the total number of axons in the bundle.  
4) Bundle1.Ranvier refers to the spatial locations of the nodes of Ranvier, 

within each of the axons in the bundle.  
5) Ismember is a method that tests for set inclusion.  
6) Activationupdate is a method that simply finds the m, n, h and p values at 

the next time step, given their present values, the present transmembrane voltage, 
the temperature-related variable Q, and the time-step size. 
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Figure 3. Outline of the program used for electric field based interaction simulation. 
 

7) Xlim, plot and drawnow enable the MATLAB functionality of plotting used 
here.  

The first part of the algorithm snippet in the next subsection, that is, the two 
nested for loops, were a part of the original [8] current-mediated coupling pro-
gram. These two nested for loops update the m, n, h , p variables. As soon as 
this is done and the loops are exited, we enter into the new part of the program 
which plots the field at the present time at a pre-selected node of Ranvier on the 
axon currently under consideration, the j-th axon, via a call to mainpo-
reAug172020.m, a file which deals with the electric field at the ion channels (see 
the “Nodal Electric Field Computation” block in Figure 3). Thereby, the two 
programs mentioned at the beginning of this section are interwoven. 

Code Output of Overall Program Inclusive of Algorithm Snippet 
One of the limitations of this program is that we didn’t use exact interaxonal 
distances but rather considered the field at a fixed (relatively large) distance 
from the nodal surface and applied that to the destination node. Considering the 
exact interaxonal distances would have added computational expense. 
 for i = 1:bundle1.endlength; 
 for j = 1:bundle1.N;  
 if ismember (i, bundle1.Ranvier) % Execute the Ranvier nodal code % Up-

date the concentrations m, n, h, p;  
 [axon(j).m(i, t + 1), axon(j).n(i, t + 1), axon(j).h(i, t + 1), axon(j).p(i, t + 1)];  
 =activationupdate(axon(j).m(i, t), axon(j).n(i, t), axon(j).h(i, t);  
 axon(j).p(i, t), (axon(j).Vcoeff(i, t)), Q, bundle1.delT);  
 end % Finish with Ranvier nodes end % Skip myelinated internodes end;  
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 Figure 1; xlim([1, LTminus1]); plot(1:t, axon(j).m(20, 1:t), “b*”); drawnow;  
 Figure 2; plot(1:t, axon(j).n(20, 1:t), “r*”); drawnow;  
 Figure 3; plot(1:t, axon(j).h(20, 1:t), “g*”); drawnow;  
 mainporeAug172020(axon(j).m(20, t);  
 axon(j).n(20, t), axon(j).h(20, t), axon(j).p(20, t), t).  

The variable gain pre-multiplies the field strength and is used to control the 
impact of the field on the other axons. This allows us to model varying condi-
tions such as presence or absence of extracellular organelles, transient changes in 
local ionic concentrations, and the like. The following Figure 4 shows that when 

6 11eκ = −  was used for the fields impinging on other nodes, the overall coupl-
ing was increased, and led to rapid rise in conduction velocity of the action po-
tentials. The next Figure 5 shows the same conditions as the previous Figure 4, 
but with a null gain for the field-based coupling. Comparing these two Figure 4 
and Figure 5, clearly the network topology, interactions and throughput have 
changed due to the additional field-based injections. Next, we reduce the incli-
nations of the axons to 15˚ each, and re-run the high gain setting. We obtain the 
following Figure 6. Penultimately, we repeat the high gain setting, but this time 
with 5kθ =   for all axons. We obtain the following Figure 7. Finally, we mod-
erately lower κ  to 5e−11 instead of 6e−11. We perform the simulations for an  
 

 

Figure 4. Rapid rise in conduction velocity with high 6 11eκ = − . N = 3 axons were 
used, the first one was injected. A moderate current-mediated coupling ratio 0.15r =  
was used. 30kθ =   for all axons k and inter-axonal geometry W as introduced by Chaw-
la, Morgera and Snider was used. At the nodal level, 10 ion channels were used per node, 
in order to demonstrate the principles on which the program is built, while economizing 
computational time. The particular sodium channels to be opened at each time step were 
chosen probabilistically. Only nodes at the same lateral level (facing nodes) interacted 
across axons via their generated fields. 
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Figure 5. Null gain for field based interaction. All of the other conditions match the pre-
vious Figure 4. 
 

 

Figure 6. High gain for the field-based coupling and a lower inclination of 15˚. All other 
conditions remaining the same as in Figure 5. A slight separation between the traces 
representing the final two nodes is visible on the third axon, as compared with the same 
axon, same conditions plot of the previous figure. This would indicate a slightly slower 
conduction velocity on the third axon as compared with the 30kθ =   case. 
 

intermediate 10kθ =   maintaining the same W matrix. We obtain the follow-
ing Figure 8. We can improve the simulations in future, by allowing every node 
to influence every node on the remaining axons, with the contribution  

https://doi.org/10.4236/jamp.2021.94053


A. Chawla et al. 
 

 

DOI: 10.4236/jamp.2021.94053 764 Journal of Applied Mathematics and Physics 
 

 

Figure 7. High gain setting, but with 5kθ =   for the inclinations of the axons. The figure 
is zoomed in on the transitions from resting to firing. This captures the difference in the 
three axons’ voltage profiles. 
 

 

Figure 8. Same as previous figures, but with a moderate 10kθ =   and a lower κ  of 
5e−11. There are clear differences in action potential initiation times at various nodes of 
the different axons, when compared with Figure 7. 
 
appropriately scaled by the actual distance to the other node. This largely con-
cludes our currents and fields program. In the next section, we will include the 
effects of the potassium ions and in Section 7 we will look at a new modality, 
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which can perhaps even lead to interaction between tracts themselves, not just 
within a tract. 

6. Including the Potassium Effect 

In this section, we show that including the “opposing” effect of potassium is cru-
cial. The effect is opposing because the potassium current is inward whereas the 
sodium current is outward. Thus, even though the charge on both the ions is of 
the same sign, the inward flow of the potassium ions is equivalent to a negative 
outward current and hence the potassium-generated field at the target node will 
oppose the sodium-generated field. We verify this intuition via simulations. We 
find that when the potassium “gain” is half of the sodium gain κ , the output is 
the same as obtained without considering potassium at all, seen in Section 5. 
This is shown in Figure 9. 

Next, we increase the contribution of potassium current to three-fourths of 
κ . The response is shown in Figure 10. As per the figure we see that the re-
sponse is extended further in time as compared to the 50 percent case. This is 
significant and shows that it is the potassium current’s field that can lead to a 
reasonable steady-state wherein the axons are coupled, but yet don’t get over-
whelmingly large conduction velocities. This outcome encourages us to further 
raise the contribution of potassium and re-run the simulation. The result is 
shown in Figure 11 wherein we have raised the potassium gain to 85 percent of 
the sodium gain value. Finally, in Figure 12 we raise the gain to 99 percent of 
the sodium gain and re-run the simulation. We find that, as expected, the point  
 

 

Figure 9. Three axons are considered, with field-based interaction. The first one is sti-
mulated and the others show a sympathetic response. The potassium electric field’s in-
fluence is set at half that of sodium. 
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Figure 10. Three axons are considered, just as in the previous figure. However, the elec-
tric field of potassium has an influence three-fourths that of sodium. 
 

 

Figure 11. Three field-coupled axons are considered and the first one is stimulated, as in 
the previous two figures. The potassium gain is set at 85 percent of the sodium gain κ . 
 

of synchronization6 is pushed further towards positive infinity in time. From 
these studies it is clear that with the potassium current in place we get coupling 
and, more interestingly, synchronization between the axons, despite the 
three-dimensional geometry, with the synchronization being more pronounced 
and early, the weaker the potassium contribution. Since the numbers of  

 

 

6Here it appears that the synchronization is not sustained and propagation halts after synchroniza-
tion—but in fact it just reaches the end of the number of available nodes. Please see Figure 13. 
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Figure 12. Three axons are considered, with the first one being stimulated, as in the pre-
vious figures. Approaching equality, the potassium gain is set at 99 percent that of so-
dium. 
 

 

Figure 13. The output of the program for the potassium gain being 95 percent of sodium 
is shown in this figure. Additional axonal length is appended at the end of the axon. The 
figure clearly shows a nearly synchronized output after a velocity change. κ  is 5e−11. 
 

potassium channels at several species’ nodes of Ranvier are smaller than those of 
sodium channels [9], it is clear that synchronization can take place in axon tracts 
when they have negligible current-based coupling and full-fledged field-based 
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coupling. With this we conclude our electric field-based coupling studies and 
enter into a study involving gravitational waves, which are similar to electro-
magnetic waves in many respects [23]. 

7. Initial Studies of Gravitational Waves Interacting with the  
Tract 

Here we start with the approach of [24] because it simplifies the interaction 
problem to a simple metric perturbation. The general problem of derivation of 
the impact of curvature on the axon tract is left to a future work as it would in-
volve the full machinery of differential geometry [25] on Riemannian manifolds 
[26]. We encourage our readers to tackle that general derivation. [24] starts with 
a partial differential equation, the Klein-Fock-Gordon equation, for the purposes 
of studying Bose-Einstein-Condensates and derives the production of phonons. 
To study the impact of gravitational waves, the author then states the following 
invariant spacetime interval: 

( ) ( )2 2 2 2 2 2d d 1 d 1 d ds c t h x h y z= − − − + −              (17) 

which is for a wave with a fixed positive polarization, propagating in the z+   
direction. For the purposes of our simulations, we will look instead at a wave 
propagating in the +x direction as that wave is likely to have more interaction 
with a tract that is oriented in the z+   direction. However, when fully tortuous 
tracts are considered, this choice of direction would become much less impor-
tant. For such a gravitational wave propagating in the +x direction, the invariant 
interval becomes, by a cyclic permutation (under the assumption of a spacetime 
symmetric in the three spatial directions): 

( ) ( )2 2 2 2 2 2d d d 1 d 1 ds c t x h y h z= − − − − +              (18) 

This implies that every partial derivative with respect to z  must be replaced 
with a term that includes a multiplicative prefactor of ( )1 h+ . If the wave is 
time varying, then h is actually ( )cos 2h ftπ  where f is the frequency of the gra-
vitational wave. Since no other partial derivative actually appears in the GEE 
equation [20], we limit our analysis to this case. This leads to multiplicative pre-
factors on terms containing the inclination, within the simulation program. 

We can investigate a bit deeper into the background of the gravitational wave 
setup—beyond [24]—and thus add rigor to the analysis. On a first glance, for li-
nearized gravitational waves (Section 35.5 of [27]), we need not look at the Eins-
tein field equations (Equation (5.124) in [28]) or the full equation satisfied by the 
gravitational wave (Equation (5.153) in [28]). Following [27], we need only look 
at the Riemann curvature tensor R which is a quantity like a matrix (Equation 
(35.10) in [27]). Based on this tensor, the authors of [27] are able to derive an 
equation which tells us how the position of one of two particles (particles A and 
B), placed away from the origin (particle B), will change with time, in terms of 
the position of the first particle (particle A), placed at the origin. This equation, 
Equation (35.15) in [27], involves R and the Kronecker delta function. 
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We may recall that in this analysis the metric g can be expanded into a Min-
kowski metric term η  summed with a metric “perturbation” term and higher 
order terms. The metric perturbation term is related to the gravitational field but 
not identical with it in general. This is quite convenient for developing an un-
derstanding—that these are two separate things. However, in the so-called tran-
verse-traceless (TT) gauge, which we are using in this analysis, the two turn out 
to be identical [27]. 

Coming back to Equation (35.15), if we assume (call this assumption #) that 
tract dimensions are small such that any distance divided by the speed of light 
will give a very negligible time duration, then the time-varying strain field, will 
not depend on location in the tract. Hence we can evaluate Equation (35.15) 
simply—we will obtain the time varying distance separating the two particles A 
and B, in terms of the metric perturbation. Taking this as a general principle and 
applying it to the geometry [20] we have the following. In our case the tract is 
modeled as a right circular cylinder, increasing in length along the +z axis. Con-
sider an axon in the tract with an inclination θ  to this axis. The coordinate 
along the axon is s and the projection of s onto the +z axis is z. Thus,  

cos .s zθ =                         (19) 

If we consider particle A to be at the origin ( 0x y z= = = ) and particle B to 
be along the +z axis, at a distance z from the origin, then we can use the general 
principle to write down the time variation in z in terms of the metric perturba-
tion. Next, we consider particle B to be at +s along the axon. We would again 
like to use the general principle to find the time variation in s. If we make further 
simplifying assumptions:  

1) The axon lies in the xz-plane7; and  
2) The angle θ  changes negligibly with time.  
Then we obtain the following description. ( ) ( ), , tan ,0,x y zs s s s z zθ= = , with 

the consequent length of s being secz θ . 
Hence, under assumption 2, the time variation in the length of s can be di-

rectly obtained from the time variation in z. There will just be a multiplicative 
pre-factor of secθ . But secθ  is the inverse of cosθ  and so under assump-
tions 1 and 2, the length of s will be in the same relation to z as in Equation (19). 
And so the time varying length of s will be the time varying length of z, divided 
by cosθ  (keeping assumption 2 in mind). The conclusion is that  

( ) ( )1d d
cos

s t z t
θ

= ⋅ . So the same relation holds as before (please see the first re-
lation in Section 2 of [20]), except that there is time dependence from the metric 
perturbation. 

Based on Equation (35.15), this time dependence is (under assumption #) of 
the form ( ) ( )( )1 cosz t z h tω⋅ + . Thus, after a bit more analysis where we 
study the places where cosθ  appears in Equation (9) of [20], regrouping and 
collecting the appearances, we find that wherever in the code we have a cosθ , it 
should be multiplied by ( )( )1 cosh tω+ . With modifications to the program 

 

 

7The analysis can be repeated similarly for the yz-plane.  

https://doi.org/10.4236/jamp.2021.94053


A. Chawla et al. 
 

 

DOI: 10.4236/jamp.2021.94053 770 Journal of Applied Mathematics and Physics 
 

along these lines, we obtain the figures shown in this section. The key assump-
tion is assumption 1—a constraint on the arrangement of axons, which is not 
too restrictive. 

Next we use the thus rederived GEE equation in order to allow x-flowing gra-
vitational waves to have an impact on the tract. In what follows, we present the 
results of our simulation. Figure 14 shows the state of affairs before any gravita-
tional radiation has arrived. Figure 15 shows what happens when a x-propagating 
gravitational-wave with a strain value h of 1e−21 is present. Figure 16 shows 
what is the output if we make the strain level unrealistically high—a value of 
0.1—which it might perhaps take near a black hole collision that is emitting the 
gravitational waves. The conduction velocity changes on axon number 2, but the 
effect is moderate. From these simulations we can see the effect of piecewise 
constant strain fields, while gravitational waves actually have time varying strain 
fields ( )h t . Such fields are investigated in Subsection 7.2. 

7.1. Discussion on the Time-Frame of the Evolution of  
Anthropomorphic Brains 

We are interested in the evolution [29] of human-like brains [30], traced to its 
primordial cause at the Big Bang. Thus we take a cosmological perspective [28]. 
Coming to the Earth stage after the appearance of vertebrates, suppose we could 
establish that an appearance of a spike in coupled axon number 2 at 2.3 millise-
conds was crucial to a particular function of the corresponding nerve tract, such 
as execution of the “fight-or-flight” response. Then, it is clear that gravitational 
radiation may play a very important and delicate role in the survival of the ver-
tebrate with a nervous sytem. 
 

 

Figure 14. The inclination is 10kθ =   for all axons and the same W matrix as in Figure 4. No gravitational radiation is present. 
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Figure 15. A constant value of h = 1e−21 is used. With such a low strain, typical of gravitational waves observed on the Earth (as 
indicated by Thorne), there is no change as compared with Figure 14. 

 

 

Figure 16. Near a source of strong gravitational waves. The time traces are altered. In particular, there are more action potentials 
visible in the plots, which indicates a rise in conduction velocity. A very large strain h = 0.1 is used. 

 
As suggested by Thorne [31], many of the effects of gravitational waves would 

be important near the Planck era of the Big Bang and not very significant much 
after that. Given the above discussed coupling between gravitational waves and 
action potentials, it may be that consciousness-processing entities such as the 
brain might not even be possible near the Big Bang (they would be precluded by 
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a host of other reasons too) since the ambient gravitational radiation would 
scramble neuronal signals to a great extent in that era. Thus the time evolution 
of the universe from the Big Bang onwards sets a lower limit to the time when 
conscious entities with stable information-processing nervous systems could 
have evolved. 

It may thus seem that the present paper develops a negative result. However, 
one of the additional motivations of this paper is to blur the division between 
what lies inside and outside man. What is inside the brain is deeply tied with 
what is outside, a realization that would dawn upon a study of this paper, and 
not be summoned by simply viewing the brain as a black box to which the senses 
report, with an ego sitting inside which processes that information. Rather the 
picture painted by this paper is that the ego may be universal in its reach. In a 
certain sense, Wheeler’s image of the universe as a self-excited “quantum” cir-
cuit ([32] [33]) is supported by this paper (though we don’t investigate the 
quantum mechanical aspect) as we propose the “oneness” of the universe, inclu-
sive of the brain of the perceiver, and (hence) “consciousness”. 

7.2. Variation of Gravitational Wave Frequency and Its Impact on  
Relative Time of Initiation of Impulses 

In this section, we introduce time variation into the strain and simulate the cor-
responding modified GEE equation. Figure 17 may be called the geometric fre-
quency response of the tract. If we treat the signal as being encoded in the time  
 

 

Figure 17. We vary the frequency of a h = (0.1-red, 0.09-blue) strain value gravitational wave and pass it through the tract and 
record the time gap of sympathetic intiation on axon 3 with respect to axon 2. The presence of the wave scrambles the timing re-
sponse. Some frequencies are suppressed, and others are magnified. If any important information is time coded, it would be mod-
ified. Rate coded information may survive better. 
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difference of the responses of axons 2 and 3, then we are seeing the response of 
the system8. With certainty, this signal reflects the geometric properties of the 
tract and encodes its geometric data, such as the axonal inclinations and the W 
matrix. So it is the geometric signature of the tract. As the figure shows, there 
exist gravitational wave frequencies for which the signal is magnified and those 
for which the signal shows abatement. 

So in the presence of the metric perturbation of a specific frequency, the tract 
input (the stimulation on axon 1) leads to a specific time gap between ephaptic 
coupling on the other two axons, which can be treated as the output. In simpler 
terms, the sensory or other neural stimualtion to the axon combines with the 
gravitational wave perturbation signal to generate a specific time lag. Thus local 
processing as well as gravitational processing are simultaneously encoded in the 
tract’s response. This may be thought of as cross-modal integration, the two 
modes being gravitational and electromagnetic, modes of the external world in-
fluencing the tract. It is also akin to a transfer function between gravitational 
radiation and electromagnetism with the tract representing a coupling between 
these two forces. 

In [31], Figure 9.6, the characteristic amplitudes and frequencies of gravita-
tional waves from several postulated periodic sources have been indicated. All 
the sources studied have very small amplitudes, in the range 10−18 to 10−28 and 
frequencies in the range 10−6 to 104 Hertz. The frequencies we study are about 
10−3 Hertz but the amplitudes we need for getting significant effects are very 
large. It is to be noted however that in works such as [31] or [34], the authors are 
interested in the minimum amplitude that is detectable at Earth. They are typi-
cally not interested in, and do not mention, large amplitudes and their detecta-
bility and sources. Thus the absence of mention of amplitudes around 10−1 in the 
literature, as studied in the present paper, cannot be construed as their physical 
impossibility of occurrence. 

This concludes our study of gravitational radiation and its impact on the tract, 
and with it, we conclude the physical layer study of the tract. In the next section, 
we will look at the data or information layer of the tract where it acts as a carrier 
of information in bits. 

8. Channel Capacity of the Tract 

The capacity of a neuronal link has been of long-standing interest to neurophy-
siologists [35]. Ikeda and Manton also have a paper where they look at the ca-
pacity of a single neuronal channel [36]. Interesting questions arise when the 
neuronal link has substructures within it, such as individual axons. Will the in-
ter-axonal connectivities and geometry have an impact? Likely yes, but how 
strong of an impact on capacity? Within the ambit of our program of further 
developing the same simulation software as used in the previous sections, we 
develop a meta-function that is able to numerically find the capacity of an  

 

 

8A related consideration is: what is the sensitivity of brain information processing to precise timing? 
Here timing codes would be the more relevant codes (as opposed to rate codes) 
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Figure 18. Variation of tract capacity with axonal inclinations. Three axons are considered with the W matrix as in the previous 
figures. By changing which ones are stimulated we get 8 possible input conditions. The output is measured at a particular down-
stream node on each of the three axons. With the inputs and outputs in hand, we can compute the capacity using the Bla-
hut-Arimoto algorithm, by first finding the channel transition matrix via repeated runs of the program, for each of the inclina-
tions studied. Sources of channel randomness are within the tract itself, at the ion channels, as in the previous sections. 

 
ephaptic tract, treating it as a discrete memoryless channel, using the standard 
Blahut-Arimoto algorithm [37] [38]. We study the variation of the capacity with 
tract geometry. In particular, as shown in Figure 18, we may vary the angular 
inclination of the axons, keeping the W matrix constant, and study the resulting 
tract capacity. 

We find an overall increase in tract capacity with the inclinations of the axons. 
Since the simulations are numerical, this increase is not directly explainable, but 
may be due to the fact that with increasing inclinations, parts of the axons come 
much closer to each other and this effect dominates over the other longitudinally 
opposite parts which tend to move further apart. Perhaps, on coming closer, 
they are able to allow hopping points for impulses to cross over to their neigh-
bors. 

A deeper investigation of this effect would have bearing on our understanding 
of MS wherein there is a deterioration of information carried by the axon tract 
with disease progression. Are the inclinations changing in MS? Likely not, but 
an equivalent transformation must be occurring such as increasing demyelina-
tion and the suggestion is that decreasing demyelination is similar in its effect on 
capacity, to increasing inclinations. 

9. Conclusion, Limitations and Future Work 

In this work we have viewed the brain as an arena for the interplay of universal 
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forces. In particular, we have looked at axon-axon interaction mediated via elec-
tric fields, when the fields influenced the other axons via nodal current injections. 
We found a dramatic increase in conduction velocity on the coupled axons 
which was due to the positive feedback in the coupling of the axons. This indi-
cates that electric fields can be a significant mechanism for the change in velocity 
required for synchronization between axons. With the potassium correction in 
place, such synchronization was nearly observed. 

We also studied what happens when weak and strong gravitational radiation 
is applied to the axon tract and found effects were present, though small. These 
latter results simply represent the fact that gravitational interaction is a very 
weak interaction. Unless the nervous system approaches a singularity, the effects 
on consciousness via changes in information processing ought to be negligible. 
Nevertheless, to have a concrete inter-relationship, illumined by simulations, is a 
step forward in showing the interconnectedness of all systems, particularly, in 
this case, living systems and the structure of spacetime. Via the gravitational 
wave, we may even have coupling between different nervous systems. Thus, 
though the gravitational investigation has yielded largely a negative result, it is 
nevertheless a pointer to the importance of geometrical studies. Perhaps 
brain-wide geometrical formulations would yield more interaction with gravita-
tional radiation, even weak waves. 

Coming to a discussion of limitations of our work, we may postulate a general 
stochastic noise related to both the electric field generation mechanism at the 
ion channels and the gravitational radiation (via stochastic gravity). These to-
gether are then biophysical sources of noise in the nervous system—the first one 
was included here while the second one was not. Another limitation of our work 
is that none of the simulations presented were carried out for really tortuous 
tracts. In the presence of tortuosity, even weak gravitational waves may have a 
significant impact. A further important limitation is that the , , ,m n h p  variables 
evolve dynamically with time at a given node of Ranvier. However since in a 
general relativistic view, spacetime is one unified entity, one ought to include the 
impact of curvature and gravitational radiation on the evolution of the , ,m n h  
and p variables as well. This is left for future investigation. Another study that 
merits future investigation is to perform the investigations of this paper with 
axons of varying inclinations rather than identical inclinations. 

As a further extension, we can study synchronization between axons in a tract 
in the presence of gravitational radiation and investigate the entropy amplifica-
tion between tract input and tract output in comparison to that without gravita-
tional radiation. The difference between the two cases, with and without gravita-
tional radiation, may be denoted as gravitational information, measured in bits. 
These bits would be part of the information flowing in the nervous system of 
organisms that have a nervous sytem. They would be the signature of the remot-
est regions of the cosmos in the information processing of each organism. 

In summary, the fields, tortuousity, gravitational waves, and capacity investi-
gations of the present paper have advanced the state of the art in the simulation 
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domain, providing new insights into axon tracts at both the physical layer level 
as well as the data layer level. These investigations have opened up a number of 
theoretical questions and inter-relationships among modalities.  
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