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Abstract 
In this paper, we investigate the dynamics of a stochastic predator-prey model 
with ratio-dependent functional response and disease in the prey. Firstly, we 
prove the existence and uniqueness of the positive solution for the stochastic 
model by using conventional methods. Then we obtain the threshold 0

sR  for 
the infected prey population, that is, the disease will tend to extinction if  

0 1sR < , and it will exist in the long time if 0 1sR > . Finally, the sufficient con-
dition on the existence of a unique ergodic stationary distribution is obtained, 
which indicates that all the populations are permanent in the time mean sense. 
Numerical simulations are conducted to verify our analysis results.  
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1. Introduction 

The research of eco-epidemiology involving ecological and epidemiological mod-
els is a significant field in mathematical biology. To our knowledge, Anderson 
and May were the first to study the spread and persistence of infectious diseases 
by formulating an eco-epidemiological prey-predator model [1]. Recently, a 
large number of researchers have devoted to the study of eco-epidemiological 
models (see [2]-[7]). For example, Chakraborty et al. [2] have investigated the 
positivity and boundedness of the solutions for a predator-prey model with dis-
ease in prey population. Mondala et al. studied the local and global dynamical 
behavior of a predator-prey eco-epidemiological model with disease in predator 
[5]. 
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In predator-prey system, functional response plays an important role in the 
population dynamics. Holling types functional response functions, namely Hol-
ling types I, II, III and IV, have been extensively used and investigated [8] [9]. In 
recent decades, Beddington-DeAngelis and Crowley-Martin type functional re-
sponse are also widely chosen to model the predation [10] [11]. Li et al. [10] 
analyzed a stochastic predator-prey model with disease in the predator and Bed-
dington-DeAngelis functional response. They showed that the stochastic system 
has a similar property to the corresponding deterministic system when the white 
noise is small enough. In many cases where the predator has to seek for the prey, 
the per capita predator growth rate should be a function of the ratio of prey to 
predator abundance in predator-prey model. Thus, the predator-prey models with 
ratio-dependent functional responses have been proposed and mathematically stu- 
died [12] [13] [14] [15]. Based on the literatures, we propose an eco-epidemiolo- 
gical model with infection in the prey and ratio-dependent functional responses 
as follows  
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d ,
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  = − − −  + + 


= − −
+ +


= + − + + + +

               (1) 

where ( )S t , ( )I t  and ( )P t  denote the densities of the susceptible prey, in-
fected prey and predator respectively. Here, the susceptible prey is subject to the 
logistic growth, r is the intrinsic growth rate, and r

k
 denotes the interspecific 

competition rate. The transmission of the disease in the prey is governed by the 
bilinear incidence rate bSI , where b represent the incidence rate of infected 
prey to susceptible prey, ( )S t  and ( )I t  denote the densities of the suscepti-
ble prey, infected prey. Moreover, the parameters α  and β  represent the 
capturing rates of predator to the susceptible and infected prey, respectively; m 
is the so-called half saturation constant; 1d  and 2d  are the natural death rates 
of the infected prey and predator. All coefficients mentioned are positive. 

As a matter of a fact, most realistic ecosystems are affected by environmental 
noise (see [16] [17] [18] [19]. Motivated by the method in [20], we introduce to 
system (1) Gaussian white noise which are directly proportional to S(t), I(t) and 
P(t), and obtain 

1 1

1 2 2

2 3 3

d 1 d d ,

d d d ,

d d d ,

S SPS rS bSI t S B
k mP S I

IPI bSI d I t I B
mP S I

c SP c IPP d P t P B
mP S I mP S I

α σ

β σ

α β σ

   = − − − +   + +  
  = − − +  + + 
  = + − +  + + + + 

        (2) 

where ( ){ } ( )0
1, 2,3i t

B t i
≥

=  are mutually independent standard Brownian mo-
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tions, and ( )1,2,3i iσ =  denote the intensities of the white noise. 
Throughout this article, let { }( )0

, , ,t t
F

≥
Ω   be a complete probability space 

with a filtration { } 0t t
F

≥
 satisfying the usual conditions (i.e., it is increasing and 

right continuous while { }0F  contains all  -null sets) and let ( )iB t  be defined 
on the complete probability space, 1,2,3i = . Denote  

( ){ }1, , : 0,1 .d d
d ix x x x i d+ = = ∈ > ≤ ≤� � �  

In this article, in order to better study the spread of infectious diseases among 
interacting populations, it is more practical to establish a more accurate random 
ecological infectious disease model. We will concentrate on the dynamics of the 
stochastic model (2). The rest of the article is organized as follows. In Section 2, 
the existence and uniqueness of the positive solution is proved for system (2). In 
Section 3, we analyze the extinction and persistence of the infected prey. In Sec-
tion 4, we obtain the conditions on the existence of stationary distribution for 
model (2). In Section 5, numerical simulations are conducted to support the 
theoretical results. A conclusion is given in the last section. 

2. Existence and Uniqueness 

To begin with, we recall some basic notations in stochastic differential equation. 
let ( )X t  be a regular time-homogeneous Markov process in d  described by 
the stochastic differential equation 

( ) ( )( ) ( )( ) ( )d d d .X t f X t t g X t B t= +                  (3) 

The diffusion matrix of the process ( )X t  is defined as ( ) ( )( )ijA x a x= ,  
( ) ( ) ( )i j

ija x g x g x= . Furthermore, the differential operator L is defined by  

( ) ( ) ( ) ( ) ( ) ( )2
T

1 , 1

1 ,
2

d d

i iji i ji i j

V x V x
LV x f x g x g x

x x x= =

∂ ∂
 = +  ∂ ∂ ∂∑ ∑  

where ( )2 ,dV +∈   . 
To investigate the dynamical behavior of the model, the first concern is whether 

the solution is global and positive. In this section, we show that there exists a 
unique global positive solution of system (2) by constructing an appropriate Lya-
punov function. 

Theorem 2.1. For any initial value ( ) ( ) ( )( ) 30 , 0 , 0S I P +∈ , there exists a 
unique positive solution ( ) ( ) ( )( ), ,S t I t P t  of system (2) on 0t ≥  and the so-
lution will remain in 3

+  with probability one, that is to say,  
( ) ( ) ( )( ) 3, ,S t I t P t +∈  for all 0t ≥  almost surely (a.s.).  

Proof. Since the coefficients of system (2) are locally Lipschitz continuous, then 
for any initial value ( ) ( ) ( )( ) 30 , 0 , 0S I P +∈  there is a unique local solution  

( ) ( ) ( )( ), ,S t I t P t  on [ )0, et τ∈ , where eτ  is the explosion time. Now, let us  
show that this solution is global, i.e., eτ = ∞  a.s.. Let 0 0n >  be sufficiently large 

such that ( )0S , ( )0I  and ( )0P  lie within the interval 0
0

1 ,n
n
 
 
 

. For each in-

teger 0n n≥ , define stopping-times  
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[ ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }
0

1inf 0, : min , , or max , , ,n et S t I t P t S t I t P t n
n

τ τ
 

= ∈ ≤ ≥ 
 

 

set inf ∅ = ∞  (∅  represents the empty set). It is clear that nτ  is increasing as 
n →∞ . Let limn nτ τ∞ →∞= , then eτ τ∞ ≤  a.s.. In the following, it only needs to 
show that τ∞ = ∞  a.s.. If this statement is violated, then there exists a constant 

0T >  and ( )0,1ε ∈  such that { }Tτ ε∞ ≤ > . Consequently, there exists an 
integer 1 0n n≥  such that  

{ } 1for all .n T n nτ ε≤ ≥ ≥                     (4) 

Define a 2C -function 3:V + +→   by  

( ) ( ) ( ) ( )1, , ln 1 ln 1 ln ,SV t V S I P S a a I I P P
a c

 = = − − + − − + − − 
 

� �  

where a is a positive constant to be determined later. The nonnegativity of the 
function can be obtained from 1 log 0u u− − ≥  for any 0u > . 

Let 0n n≥  and 0T >  be arbitrary. Applying Itô’s formula to V� , we obtain 
that  

( ) ( ) ( )

22 2
31 2

3 3
1 1 2 2

1 1 1d 1 d d 1 d d 1 d d
2 2 2

1 d
: d d 1 d ,
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S I c P c
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     = − + + − + + − +     
     

−
= + − + − +

�
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where N is a positive parameter. Thus, we can obtain  
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( ) ( ) ( ) 3 3
1 1 2 2

1 d
d d d 1 d .

P B
V LV t S a B I B

c
σ

σ σ
−

≤ + − + − +� �        (5) 

Interacting and taking the expectation of both sides of (5) yield  

( ) ( ) ( )( )( ) ( ) ( ) ( )( ), , 0 , 0 , 0 .n n nE V S T I T P T V S I P NTτ τ τ∧ ∧ ∧ ≤ +    (6) 

Set n n TτΩ = ≤  for 1n n≥ , then by (4), we have ( )n εΩ ≥ . Noting that 
for every nω∈Ω , there is at least one of ( ) ( ) ( ), , , , ,n n nS I Pτ ω τ ω τ ω  that equals 
to either n or 1

n
, and  

( ) ( ) ( )( ), , ,n n nV S I Pτ τ τ  

is no less than 

1 11 ln or 1 ln .n n
n n

− − − −  

That is, 

( ) ( ) ( )( ) ( ) 1 1, , 1 ln 1 ln .n n nV S I P n n
n n

τ τ τ  ≥ − − ∧ − − 
 

 

By (6), we can obtain 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( )

0 , 0 , 0 1 , ,

, , , ,

1 11 ln 1 ln .

n n n n

n n n n n n n

V S I P NT E V S I P

V S I P V S I P

n n
n n

ω τ τ τ

τ τ τ ε τ τ τ

ε

Ω∞ > + ≥

= Ω ≥

  ≥ − − ∧ − −    

  

Taking n →∞  induces ∞ > +∞ , which is a contradiction. Hence, we have 
τ∞ = ∞ , a.s.. The conclusion is confirmed. 

3. Extinction and Persistence 

According to the theory in [21], the basic reproductive number 0R  is a thre-
shold to control whether the disease will spread. If 0 1R ≤ , the disease disappear; 
If 0 1R > , the infectious population will be persistence in the mean. It is easy to 
conclude the basic reproductive number 0

1

bkR
d

=  and system (1) has the fol-
lowing properties: 
 If 0 1R ≤ , the disease-free equilibria ( )0 ,0,0E k  is globally asymptotically 

stable, the disease disappear; 
 If 0 1R > , the infectious prey population will be persistence in the mean. 

In this section, we turn to establish sufficient criteria on the extinction and 
persistence of infected prey population for the stochastic system (2). Before giv-
ing our main results, we first recall the following lemma. 

Lemma 3.1. ([22]) Let ( ) [ )( )0, ,X t C R+∈ Ω× ∞ . 
1) If there exists 0T > , 0 0λ > , λ  and in  such that  

( ) ( ) ( )0 0
1

ln d a.s., for ,
jt

i
i

X t t X s s n B t t Tλ λ
=

≤ − + ≥∑∫  

then 
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( )

( )

*

0

a.s., if 0;

lim 0 a.s., if 0.
t

X t

X t

λ λ
λ

λ
→∞

 ≤ ≥

 = <

 

where ( ) ( )*
limsup

t
X t X t

→∞
= . 

2) If there exists 0T > , 0 0λ > , 0λ >  and in  such that  

( ) ( ) ( )0 0
1

ln d a.s., for ,
jt

i
i

X t t X s s n B t t Tλ λ
=

≥ − + ≥∑∫  

then 

( ) *
0

a.s.,X t λ
λ

≥  

where ( ) ( )*
liminf

t
X t X t

→∞
= . 

Theorem 3.2. Let ( ) ( ) ( )( ), ,S t I t P t  be the solution of system (2) with any 

initial value ( ) ( ) ( )( ) 30 , 0 , 0S I P +∈ . If 
2
1

2
r σ
> , 

2
3

2 2
d

c

σ

α β
+

+ <  and  

2
1

0 2
2

1

2
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2

s

bk r
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r d
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σ
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 = <
 

+ 
 

, then 
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2
2

1 0

ln
limsup 1 0 a.s.,

2
s
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I t
d R

t
σ

→∞

 
≤ + − < 
 

 

( ) ( )
2
3

2

ln
limsup 0 a.s.,

2t

P t
d c

t
σ

α β
→∞

 
≤ − + − + < 

 
 

and 

( )

2
1

0

21lim d a.s..
t

t

k r
S s s

t r

σ

→∞

 
− 

 =∫  

Proof. By the Itô’s formula, we have  

( )

( )

2
1

1 1

2
1

1 1

d ln d d
2

d d ,
2

r PS r S bI t B t
k mP S I

rr S t B t
k

σα σ

σ
σ

 
= − − − − + 

+ + 
 

≤ − − + 
 

       (7) 

integrating Equation (7) from 0 to t and dividing it by t, we obtain  

( )
( )

( ) ( )2
1 10 01

d d1ln ,
0 2

t t
S s s BS t rr

t S k t t

σ θσ
≤ − − +∫ ∫  

applying Lemma 3.1, we have  

( )

2
1

0

21limsup d a.s..
t

t

k r
S s s

t r

σ

→∞

 
− 

 ≤∫                 (8) 
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Similarly, by the Itô’s formula, we have  

( )

( )

2
2

1 2 2

2
2

1 2 2

d ln d
2

d d ,
2

PI bS d dt B t
mP S I

bS d t B t

σβ σ

σ
σ

 
= − − − + 

+ + 
  

≤ − + +  
   

           (9) 

integrate Equation (9) from 0 to t and divide it by t yields, we obtain  

( )
( )

( ) ( )2
1 20 02

1

d d1ln ,
0 2

t t
b S s s BI t

d
t I t t

σ θσ 
≤ − + + 

 

∫ ∫  

so 

( ) ( )

2
1

2 2
2 2

1 1 0

2ln
1 0 a.s..limsup

2 2
s

t

bk r
I t

d d R
t r

σ
σ σ

→∞

 
−     ≤ − + + = + − <   

   
 

By the Itô’s formula, we also have  

( )

( )

2
3

2 3 3

2
3

2 3 3

d ln d d
2

d d ,
2

c S c IP d t B t
mP S I mP S I

c c d t B t

σα β σ

σ
α β σ

 
= + − − + 

+ + + + 
 

≤ + − − + 
 

     (10) 

integrating Equation (9) from 0 to t and dividing it by t, one can get  

( )
( )

( )2
3 33 0

2

d1ln ,
0 2

t
BP t

c c d
t P t

σ θσ
α β

 
≤ + − − + 
 

∫  

so we can obtain that 

( ) ( )
2
3

2

ln
0 a.s..limsup

2t

P t
d c

t
σ

α β
→∞

 
≤ − + − + < 

 
 

On the other hand, 

( )
2
1

1 1d ln d d ,
2

r PS r S bI t B t
k mP S I

σα σ
 

= − − − − + + + 
 

since 
( )ln

0 a.s.limsup
t

P t
t→∞

< , there exists an arbitrarily small constant 0ε >  

such that when t T> , we obtain P
mP S I

ε<
+ +

, so  

( )
2
1

1 1d ln d d ,
2

rS r S t B t
k

σ
αε σ

 
≥ − − − + 
 

              (11) 

integrating Equation (11) from 0 to t and dividing it by t, we have  

( )
( )

( ) ( )2
1 10 01

d d1ln ,
0 2

t t
S s s BS t rr

t S k t t

σ θσ
αε≥ − − − +∫ ∫  

applying Lemma 3.1 and the arbitrariness of ε , we get  

( )

2
1

0

21liminf d a.s..
t

t

k r
S s s

t r

σ

→∞

 
− 

 ≥∫               (12) 
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From (8) and (12), we obtain  

( )

2
1

0

21lim d a.s..
t

t

k r
S s s

t r

σ

→∞

 
− 

 =∫  

Theorem 3.3. Let ( ) ( ) ( )( ), ,S t I t P t  be the solution of system (2) with any 

initial value ( ) ( ) ( )( ) 30 , 0 , 0S I P +∈ . If 
2
1

2
r σ
> , 

2
3

2 2
d

c

σ

α β
+

+ <  and 0 1sR > , 

then  

( ) ( )
2
2

1 0

ln
liminf 1 0 a.s..

2
s

t

I t
d R

t
σ

→∞

 
≥ + − > 
 

 

Proof. By the Itô’s formula, one we can obtain  

( )
2
2

1 2 2d ln d d ,
2

PI bS d t B t
mP S I

σβ σ
 

= − − − + 
+ + 

 

according to Theorem 3.2, there exists an arbitrarily small constant 0ε >  such  

that when t T> , we obtain P
mP S I

ε<
+ +

, so  

( )
2
2

1 2 2d ln d d ,
2

I bS d t B tσ
βε σ

  
≥ − − + +  
   

            (13) 

integrate Equation (13) from 0 to t and divide it by t yields, we can obtain  

( )
( )

( ) ( )

( )

2
1 20 02

1

2
1

2
2

1

2
2

1 0

d d1ln
0 2

2
2

1 0 a.s..
2

t t

s

b S s s BI t
d

t I t t

bk r
d

r

d R

σ θσ
βε

σ
σ

βε

σ

 
≥ − − + + 

 
 

−    = − − + 
 

 
≥ + − > 
 

∫ ∫

 

According to Theorem 3.2 and 3.3, 0
sR  is the threshold for the infected prey 

population. The disease will go to extinction if 0 1sR < , and it will exist in the 
long time if 0 1sR > . 

4. Stationary Distribution 

Now we present the following lemma. 
Lemma 4.1. ([23]) The Markov process ( )X t  described by Equation (3) has 

a unique ergodic stationary distribution ( ).µ  if there exists a bounded domain 
dD ⊂   with regular boundary Γ  [(B.1).] There is a positive number M such 

that ( ) 2
, 1

d
ij i ji j a x Mξ ξ ξ

=
≥∑ , x D∈ , dξ ∈ . [(B.2).] There exists a nonneg-

ative C2-function V such that LV is negative for any \d D . Then 

( )( ) ( ) ( )
0

1lim d d 1,d

T
x T

f X t t f x x
T

µ
→∞

 = = 
 ∫ ∫  
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for all dx∈ , where ( ).f  is a function integrable with respect to the measure 
µ .  

Theorem 4.2. Assume that 

2 2
3 1

2

0 2
2

1

2 2ˆ 1

2

s
r d c c

mR
r d

bk m

σ σ α α β

σβ

+ + − − − −
= >

 
+ + 

 

, and  

environmental noises are small enough that 2
2 12dσ <  and 2

3 22dσ < . Then for 
any initial value ( ) ( ) ( )( ) 30 , 0 , 0S I P +∈ , there exists a unique stationary dis-
tribution for system (2) and it is ergodic.  

Proof. In order to prove Theorem 4.2, first we need to verify Lemma 4.1. To 
verify B.2, we need to proof there exists a neighborhood 3D +⊂   and a non-
negative C2-function V such that for any ( ) 3, , \S I P D+⊂  , LV is negative. 

Define a C2-function 
2

1

1log log ,
2

r b PV M S I I S I
bk d c

   = − − + + + +   
  

 

where 

( )
{ }1 2 3 1 2 3 1 2 32

2
1 0

max 2 , 2 ,1
ˆ 1

2
s

bkM f f f f f f f f f
r d R

m
σβ

= + + + + + + + + +
 

+ + − 
 

 

and functions 1f , 2f , 3f , 1f , 2f  and 3f  will be determined later. There 
exists a unique minimum point ( ), ,S I P� � �  of V . 

Define a nonnegative C2-Lyapunov function  

( )
2

1

1log log log , , ,
2

r b PV M S I I P S I V S I P
bk d c

   = − − + + + + + −   
  

� � �  

denote 
2

1 2
1

1log log log , .
2

r b PV M S I I P V S I
bk d c

   = − − + + = + +   
  

 

By Itô’s formula, we get 
2
1

1

2
2

1

1
1

2
3

2

1 1
2

1
2

2

S SPLV rS bSI
S k mP S I

rr IPbSI d I
bk I mP S I bk
b IPbSI d I
d mP S I

c S c I d
mP S I mP S I

σα

σβ

β

σα β

  = − − − − +  + +  
 − − − + + + 

 + − − + + 

+ + − −
+ + + +

 

2 2
1 2

1

22
3

2
1

2 2 2 2
3 1 2

2 1
1

2 2

2

,
2 2 2

r r rr S bI S d
m k k bk m

b SI bI c c d
d

r br d c c d SI
m bk m d

σ σα β

σ
α β

σ σ σα βα β

   
≤ − − − + + − + + +   

   

+ − + + − −

   
= − + + − − − − + + + +   
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and 
2

2 2 2 2 2 232
2 1 1 2 2

2 3 2 22 2
1 1

2
2 2 2 2 2 2 231 2

1 22 2

2 3 2 2 2 22
1 12

1
2

1
2

1
2

dP rLV S I rS S d I P S I P
c k c c

d dr r rrS S d SI SP rSI IS d I IP PS
k c k c c

d dr PS PI P S I P
ck c c c

dr rrS S rSI d I PS P S
k c c

σ
σ σ

σ
σ σ

σ σ

   = + + − − − + + +       

= − − − + − − − +

 
− − − + + + 

 

≤ − + − + − + +
2

2 2 23
2 2 ,I P

c
σ 

+ 
 

 

according to Young inequality, 
55
32 325

5
xy frac x y≤ + , so 

55 2 2
2 3 2 21 2 32

2 1

52
23 3

22

2 2 3
5 5 2 2 5

1 3 ,
2 5

r r r rLV rS S S S d I I
k c

rd P P
cc

σ σ

σ

  ≤ − + + + − − +  
   

 
− − + 

 

 

so 

( )

2 2 2 2
3 1 2

2 1
1

5 2 2
3 2 21 22

1

5 52
233 3

22

2 2
2

1 0
1

2 2 2

2 2
5 5 2 2

3 1 3
5 2 5

ˆ 1
2

s

r bLV M r d c c d SI
m bk m d

r r rS S r S d I
k c

r rI d P P
cc

r MbM d R S
bk m d

σ σ σα βα β

σ σ

σ

σβ

    
≤ − + + − − − − + + + +    

    
    − + + + + − −    

     
 

+ − − + 
 

  
= − + + − +  

   

5
3 2

5 522 2
2 2 231 2 3 3

1 22

2 2
5 5

3 1 3 ,
2 2 5 2 5

r r rI S S
k c

r rr S d I I d P P
cc

σσ σ

 − + + 
 

    
+ + − − + − − +    
     

 

where 

( )

2 2
3 1

2

0 2
2

1

5 2
3 212

1

2 2ˆ ,

2

2 2 ,
5 5 2

s
r d c c

mR
r d

bk m

r r rf S S S r S
k c

σ σ α α β

σβ

σ

+ + − − − −
=

 
+ + 

 
  = − + + + +  

   

 

( ) ( )
5 522

2 232 3 3
2 1 3 22

3 1 3, .
2 5 2 5

r rf I d I I f P d P P
cc

σσ   
= − − + = − − +  

   
 

We aim to prove that 1LV ≤ − , consider the bounded set D  

( ) 1 1 1, , : , , ,D S I P S I Pε ε ε
ε ε ε

 = ≤ ≤ ≤ ≤ ≤ ≤ 
 

 

then 3
1 2 3 4 5 6\ c c c c c cD D D D D D D+ =� ∪ ∪ ∪ ∪ ∪ , with  
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( ){ } ( ){ }3 3
1 2, , : 0 , , , : 0 ,c cD S I P S D S I P Iε ε+ += ∈ < < = ∈ < <� �  

( ){ } ( )3 3
3 4

1, , : 0 , , , : ,c cD S I P P D S I P Sε
ε+ +

 = ∈ < < = ∈ > 
 

� �  

( ) ( )3 3
5 6

1 1, , : , , , : ,c cD S I P I D S I P P
ε ε+ +

   = ∈ > = ∈ >   
   

� �  

and ε  is a sufficiently small positive constant satisfying the following conditions  

( ) ( ) ( ) ( )
2 2
2

1 0 1 2 3
1

22
2

1
1

ˆ 1 1,
2

1 ,
2 2

sr b MM d R f S f I f P
bk m d

b M d
d

σβ ε

σε

  
− + + − + + + + ≤ −  

   
 

< − 
 

 (14) 

( ) ( ) ( ) ( )
2 2
2

1 0 1 2 3
1

2

1

ˆ 1 1,
2

,
2

sr b MM d R f S f I f P
bk m d

b M r
d k

σβ ε

ε

  
− + + − + + + + ≤ −  

   

<

 (15) 

( ) ( ) ( )
2
2

1 0 1 2

52
23 3

22

ˆ 1
2

1 3 1,
2 5

srM d R f S f I
bk m

rd P
cc

σβ

σ
ε

  
− + + − + +  

   
 

− − + ≤ − 
 

          (16) 

( )
2
2

1 0 3
ˆ 1 1,

2 2
sr rM d R A

bk m k
σβ

ε
  

− + + − + − ≤ −  
   

         (17) 

( )
2 2
2 2

1 0 12

1ˆ 1 1,
2 22

srM d R B d
bk m

σ σβ
ε

    
− + + − + − − ≤ −    

     
      (18) 

( )
22
32

1 0 22 2

1ˆ 1 1,
2 22

srM d R C d
bk m c

σσβ
ε

    
− + + − + − − ≤ −    

     
    (19) 

where 

( )
( ) ( ) ( )

3

552 2
32

1 2 3
, , 1 1

2 3 ,sup
5 5S I P

b M b MA f S f I f P S I
d d

+∈

  = + + + + < ∞ 
  �

 

( )
( ) ( ) ( )

3

552 2
32

1 2 3
, , 1 1

2 3 ,sup
5 5S I P

b M b MB f S f I f P S I
d d

+∈

  = + + + + < ∞ 
  �

 

( )
( ) ( ) ( )

3

552 2
32

1 2 3
, , 1 1

2 3 .sup
5 5S I P

b M b MC f S f I f P S I
d d

+∈

  = + + + + < ∞ 
  �

 

Case 1. If ( ) 1, , cS I P D∈ , ( )21SI I Iε ε< < + , we have  

( )

( ) ( ) ( )

2 2
2

1 0
1

2
2

21
2

1 2 3
1

ˆ 1
2

2 1,
2

sr b MLV M d R
bk m d

d b Mf S I f I f P
d

σβ ε

σ
ε

  
≤ − + + − +  

   
 

− 
+ + − + + + ≤ − 

 
  

 

which follows from (14), where  
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( )
52

2 3
2 1

1 3 .
2 2 5

rf I d Iσ 
= − − + 

 
 

Case 2. If ( ) 2, , cS I P D∈ , ( )31SI S Sε ε< < + , we have  

( ) ( )

( ) ( )

2 2
2

1 0 1
1

2
3

2 3
1

ˆ 1
2

2
1,

sr b MLV M d R f S
bk m d

r b M S f I f P
k d

σβ ε

ε

  
≤ − + + − + +  

   
 

+ − + + + 
 

≤ −

 

which follows from (15), where  

( )
5 2

3 212
1

2 2 .
2 5 5 2
r r rf S S S r S
k c

σ  = − + + + +  
   

 

Case 3. If ( ) 3, , cS I P D∈ , 
55
322 3

5 5
SI S I≤ + , we have  

( ) ( )

( )

52 2
2 2

1 0 1
1

5 522
233 3

2 22
1

2ˆ 1
2 5

3 1 3
5 2 5

1,

sr b MLV M d R f S S
bk m d

b M rf I I d P
d cc

σβ

σ
ε

  
≤ − + + − + +  

   
 

+ + − − + 
 

≤ −

 

which follows from (16). 

Case 4. If ( ) 4, , cS I P D∈ , 
55
322 3

5 5
SI S I≤ + , 3 3

2 2
r rS
k k

ε− < − , we have  

( ) ( )

( ) ( )

( )

52 2
2 2

1 0 1
1

52
33

2 3
1

2
2

1 0 3

2ˆ 1
2 5

3
5 2

ˆ 1
2 2

1,

s

s

r b MLV M d R f S S
bk m d

b M rf I I f P
d k

r rM d R A
bk m k

σβ

ε

σβ
ε

  
≤ + + − + +  

   

+ + + −

  
= − + + − + −  

   
≤ −

 

which follows from (17). 

Case 5. If ( ) 5, , cS I P D∈ , 
55
322 3

5 5
SI S I≤ + ,  

2 2
22 2

1 12

1 1
2 2 22

d I dσ σ
ε

   
− − < − −   

   
, we have  

( ) ( )

( ) ( )

( )

52 2
2 2

1 0 1
1

52
33

2 3
1

2 2
2 2

1 0 12

2ˆ 1
2 5

3
5 2

1ˆ 1
2 22

1,

s

s

r b MLV M d R f S S
bk m d

b M rf I I f P
d k

rM d R B d
bk m

σβ

ε

σ σβ
ε

  
≤ − + + − + +  

   

+ + + −

    
= − + + − + − −    

     
≤ −
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which follows from (18). 

Case 6. If ( ) 6, , cS I P D∈ , 
55
322 3

5 5
SI S I≤ + ,  

2 2
23 3

2 22 2 2

1 1<
2 22 2

d P d
c c

σ σ
ε

   
− − − −   

   
, we have  

( ) ( )

( ) ( )

( )

52 2
2 2

1 0 1
1

5 22
33

2 3 22 2
1

22
32

1 0 22 2

2ˆ 1
2 5

3 1
5 22

1ˆ 1
2 22

1,

s

s

r b MLV M d R f S S
bk m d

b Mf I I f P d
d c

rM d R C d
bk m c

σβ

σ
ε

σσβ
ε

  
≤ − + + − + +  

   
 

+ + + − − 
 

    
= − + + − + − −    

     
≤ −

 

which follows from (19), where ( )
52

23 3
3 22

1 3
2 52

rf P d P P
cc

σ 
= − − + 

 
. 

The proof of B.2 in Lemma 4.1 is completed. We get the conclusion that  
1LV ≤  on 3D +⊂  . 

Direct computation shows that the diffusion matrix of system (2) is given by  
2 2
1

2 2
2

2 2
3

0 0
0 0 .
0 0

S
A I

P

σ
σ

σ

 
 

=  
 
 

 

It is clearly that the matrix A is positive definite for any compact subset of  
3
+ . The proof of B.1 in Lemma 4.1 is verified. According to Lemma 4.1, we 

know system (2) admits a stationary distribution.  

5. Numerical Simulations 

In this section, we conduct Example 1 - 3 numerical simulations to show the ef-
fect of noise on the dynamics of the system. Applying Milstein’s higher-order 
method [24] to system (2), we obtain the corresponding discretization equation 
as follows  

( )

( )

2
1 21

1

2
1 22

1 2

1
2 3

1 ,
2

,
2

k k k
k k k k k k k

k kk k k

k k
k k k k k k k

k kk k k

k k k k
k k k

k k k k k k

S S PS S rS bS I t S t S t t
k mP S I

I PI I bS I d I t I t I t t
mP S I

c S P c I PP P d P t P
mP S I mP S I

σα σ ξ ξ

σβ σ η η

α β σ

+

+

+

  
= + − − − ∆ + ∆ + ∆ −∆   + +  

 
= + − − ∆ + ∆ + ∆ −∆ + + 

 
= + + − ∆ + 

+ + + + 
( )

2
23 ,

2
k k

k kt P t t
σ

ς ς









 ∆ + ∆ −∆


 (20) 

where the time increment 0t∆ > , kξ , kη  and kς , 1,2,3, ,k n= � , are inde-
pendent Gaussian random variables with normal distribution ( )0,1N , and iσ ,  
1 3i≤ ≤ , are noise intensities. The unit of all time is days, the unit of the popula-
tion ( ) ( ) ( ), ,S t I t P t  are the individual. 
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Example 1. Choose the initial value ( )0 5S = , ( )0 5I = , ( )0 2P = , and  
0.1r = , 9k = , 0.007b = , 1m = , 0.02α = , 0.02β = , 0.8c = , 1 0.1d = ,  

2 0.05d = . 
By simple computations,  

2
3

2

0 0
20.63 1, 0.04 0.075 , 0.5925 1.s

d
R R

c

σ

α β
+

= < + = < = = <  

The numerical simulation is shown in Figure 1, from which one can see that 
the susceptible prey is persistent, the infectious prey and predator will die out. 

Example 2. Choose the initial value ( )0 5S = , ( )0 5I = , ( )0 2P = , and  
0.1r = , 9k = , 0.015b = , 1m = , 0.02α = , 0.02β = , 0.8c = , 1 0.1d = ,  

2 0.05d = . 
By simple computations,  

2
3

2

0 0
21.35 1, 0.04 0.075 , 1.2214 1.s

d
R R

c

σ

α β
+

= > + = < = = >  

The conclusion of Theorem 3.3 holds, and the numerical simulation is shown 
in Figure 2. We note that the susceptible prey and the infectious prey will persist 
and the predator is going to die out. 
 

 

Figure 1. Numerical simulation of the solution of system (1) and (2) for Example 1, re-
spectively, where 1 2 30.05, 0.1σ σ σ= = = . 
 

 

Figure 2. Numerical simulation of the solution of system (1) and (2) for Example 2, re-
spectively, 1 2 3 0.1σ σ σ= = = . 
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Example 3. Choose the initial value ( )0 5S = , ( )0 5I = , ( )0 5P = , and  
0.1r = , 9k = , 0.007b = , 1m = , 0.02α = , 0.02β = , 0.8c = , 1 0.01d = ,  

2 0.01d = , the (a) of Figure 3, 1 2 3 0.02σ σ σ= = = , the (b) of Figure 3,  

1 2 3 0.01σ σ σ= = = . The red, black and blue dotted line represent the solution  
( ) ( ) ( ), ,S t I t P t  of model (2); the red, black and blue solid line represent the 

solution ( ) ( ) ( ), ,S t I t P t  of model (1) for the same initial value ( )0 5S = ,  
( )0 5I = , ( )0 5P = . 
Under this condition, by simple computations, (a) and (b) of Figure 3 satisfy  

2 2
0 2 1 3 2

ˆ 1.2099 1, 0.0004 0.02 2 , 0.0004 0.02 2 .sR d dσ σ= > = < = = < =  
2 2

0 2 1 3 2
ˆ 1.2160 1, 0.0001 0.02 2 , 0.0001 0.02 2 .sR d dσ σ= > = < = = < =  

The numerical simulation is shown in Figure 3, which is consistent with our 
conclusion in Theorem 4.2. The difference between (a) and (b) of Figure 3 is the 
intensity of white noise. We can conclude that with the noise intensity decreases, 
the dynamics of stochastic system (2) is getting close to the deterministic system 
(1). Figure 4 shows the simulation of density functions, where system (2) has a 
unique stationary distribution. 
 

 

Figure 3. Numerical simulation of the solution of system (1) and (2) for Example 3, re-
spectively, picture(a) 1 2 3 0.02σ σ σ= = = , picture(b) 1 2 3 0.01σ σ σ= = = . 
 

 

Figure 4. The density functions of ( )S t , ( )I t , and ( )P t , respectively. Subfigures (a), 

(b), (c) 1 2 3 0.02σ σ σ= = = . Subfigures (d), (e), (f) 1 2 3 0.01σ σ σ= = = . 
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6. Conclusions 

A stochastic predator-prey model with ratio-dependent functional response and 
disease in the prey population is investigated. We have shown that the existence 
of a unique positive global solution of the stochastic model (2). The threshold 

0
sR  between stochastic persistence in the mean and extinction for infectious  

prey population is given. If 
2
1

2
r σ
> , 

2
3

2 2
d

c

σ

α β
+

+ <  and 0 1sR < , we obtained 

that the population of the infected prey and the predator will die out in time 

mean sense. If 
2
1

2
r σ
> , 

2
3

2 2
d

c

σ

α β
+

+ <  and 0 1sR > , we note that the sus-  

ceptible prey and the infectious prey are persistent and predator is going to die 
out. By constructing some suitable Lyapunov function, the existence of statio-
nary distribution for both populations is established under certain parametric 
restrictions. If 0

ˆ 1sR > , and environmental noises are small enough that  
2
2 12dσ <  and 2

3 22dσ < , then for any initial value ( ) ( ) ( )( ) 30 , 0 , 0S I P +∈ , there 
exists a unique stationary distribution for system (2) and it is ergodic.  
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