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Abstract 
The manufacturing of composite structures is a highly complex task with in-
evitable risks, particularly associated with aleatoric and epistemic uncertainty 
of both the materials and processes, as well as the need for in-situ deci-
sion-making to mitigate defects during manufacturing. In the context of aer-
ospace composites production in particular, there is a heightened impetus to 
address and reduce this risk. Current qualification and substantiation frame-
works within the aerospace industry define tractable methods for risk reduc-
tion. In parallel, Industry 4.0 is an emerging set of technologies and tools that 
can enable better decision-making towards risk reduction, supported by da-
ta-driven models. It offers new paradigms for manufacturers, by virtue of 
enabling in-situ decisions for optimizing the process as a dynamic system. 
However, the static nature of current (pre-Industry 4.0) best-practice frame-
works may be viewed as at odds with this emerging novel approach. In addi-
tion, many of the predictive tools leveraged in an Industry 4.0 system are 
black-box in nature, which presents other concerns of tractability, interpreta-
bility and ultimately risk. This article presents a perspective on the current 
state-of-the-art in the aerospace composites industry focusing on risk reduc-
tion in the autoclave processing, as an example system, while reviewing cur-
rent trends and needs towards a Composites 4.0 future. 
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1. Introduction 

Composite materials are already commonplace in many modern industries, in-
cluding aerospace, automotive, sports goods, construction and many more [1]. 
This is in large part due to their high structural performance (e.g. stiffness-to-weight 
and strength-to-weight ratios), lower manufacturing costs by virtue of co-developing 
the structure’s shape and properties in the same process, and lower maintenance 
costs [2]. This is further exemplified with products that are large with complex 
geometries [1] [3], such as aircraft control surfaces or wing structures. 

However, despite the many benefits and continued successes of composites, 
there are significant challenges that manufacturers must still overcome to realize 
commercially viable and defect-free structures. Part of this is due to the high de-
gree of aleatoric and epistemic uncertainty present within the materials and 
process [4] [5], which limits the ability to fully model and hence control the 
process outcomes of significance ahead of time. Further, the multi-physics nature 
of composites manufacturing, combined with the undelineated approach of form-
ing the shape and material properties of a part at the same time during produc-
tion [6], adds complexity to the task. To address these challenges and associated 
risks, a combination of tools and heuristic-based policies within each factory can 
provide a framework to better understand these systems and embed confidence in 
the decision-making process. Tools may include process models (e.g. Convergent 
Manufacturing Technology© COMPRO [7], ESI© PAM-COMPOSITES [8]), com-
bined with experimental approaches to form frameworks such as structural subs-
tantiation and process certification [9]. However, these approaches are typically 
offline in nature and are not sufficient to address contexts in which rapid deci-
sion-making is needed, such as the “bus stop” autoclave cure cycles employed in 
the aerospace industry.  

Figure 1 provides a visual example of this activity, in which parts with differ-
ent configurations are cured in the same pressure vessel, where different thermal 
and physical responses to the same cure cycle environment are also expected. 
Modern technological advancements have introduced capabilities that allow for 
in-situ data collection, modeling and decision-making at scale, in order to im-
prove factory objectives, such as reducing manufacturing failure rates [10] [11]. 
The aggregation of such data has been forecast to enable significant improve-
ments in net productivity [12] [13], through initiatives such as Industry 4.0, 
which constructs closed-loop systems of data collection, screening, model train-
ing, testing and deployment for in-situ decision-making [11]. 

Industry 4.0 is broadly described as a suite of enabling technologies to facili-
tate better decision-making, predicated on the use of data [10]. This data can be 
sourced from simulated data and/or real production data, and is progressively 
available in larger volumes over time. To date, there has been limited application 
of Industry 4.0 (hereafter referred to as i4.0) to the composites manufacturing 
sector, as concluded by an industrial survey conducted by Black 2017 [15]. Pub-
lished work in the literature offers insight into potential strategies and benefits of  
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Figure 1. An autoclave used to cure structural carbon-fibre reinforced polymer compo-
sites parts. Here, the parts are arranged in a “bus-stop” cure run, where a combination of 
many tools and parts are loaded into the autoclave and subjected to the same cure cycle 
[14]. 
 
applying i4.0 principles to composites manufacturing, such as the tracking of 
materials and consumables throughout the manufacturing cycle [16], but still 
lacks a comprehensive framework for implementation on the scales of automa-
tion and broad decision-making that is seemingly promised. Such systems in-
clude different components that act in concert to collect and store data, maintain 
data integrity, provide predictive capabilities, with validation or qualification 
protocols for deployment [17]. 

A current lack of broader i4.0 systems in research or application settings is in 
part attributed to the need for further developments of the fundamental sup-
porting technologies, including system models [18], cyber-physical systems that 
people can use and interact with [19], methods for model validation and qualifi-
cation for in-situ use [11], among others. This convolution of challenges has led 
to many gaps that remain unsolved, in the development of Industry 4.0 tools and 
systems. Focusing on the present example of bus-stop autoclave processing, the 
goal for a manufacturer using i4.0 would be to select a set of parameters in-situ 
that maximize the likelihood of all member parts passing the run (via qualifica-
tion framework-based key process outcomes or other quality metrics). This may 
be necessary due to changing production priorities, accommodating new part 
production coming on-line, or other logistical changes. In this scenario, it is as-
sumed that only similar parts, with marginal differences in their input configu-
rations, would be candidates for inclusion or substitution in the bus-stop selec-
tion exercise. Such production flexibility can offer savings of time, energy and 
cost, via higher net part throughput rates by fully-stacking the cure vessel, in-
creased equipment load factors that reduce the per-part rate for re-heating of the 
working fluid and autoclave vessel, associated labour, and other factors. This 
combined reduction of risk along with increased general productivity offered by 
i4.0 has made the technology attractive to many other industries such as health 
[20] and automotive [17]. However, despite the ostensible benefits, there remain 
many challenges in the technology’s widespread implementation, especially for 
specific use-cases such as in advanced composites manufacturing. 

The structure of this perspective paper is as follows. Section 2 provides a back-
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ground and literature review to the problem towards Composites 4.0, focusing 
on the fundamentals of autoclave composites manufacturing and the inherent 
need for qualification and explainable frameworks (Section 2.1), followed by a 
broader discussion on the need for model knowledgeability and explainability 
frameworks in machine learning (Section 2.2), and current state-of-the-art that 
uses machine learning models in advanced composites processing (Section 2.3). 
Section 3 includes concluding remarks. 

2. Towards Composites 4.0 
2.1. Process Outcome Prediction towards Risk Reduction in  

Aerospace Composites Manufacturing 

Autoclave composites curing (as a sample process selected for this study) is known 
to be a highly complex, non-linear and multi-physics manufacturing system [1] 
[2], fraught with aleatoric and epistemic uncertainties that ultimately can result 
in risks that undermine the consistent production of high-quality aerospace 
parts. To increase the robustness of this process, a framework of regulations, 
guidelines, best-practice handbooks and other sources currently provide manu-
facturers with a tractable methodology for assessing and deciding on parts accep-
tability [9]. To this end, a key process outcome for epoxy matrix pre-impregnated 
advanced composites for the aerospace industry, is thermal history [9]. It is im-
portant that manufactured composite structures undergo a specific thermal his-
tory, in order to ensure that many properties of the material evolve in a con-
trolled manner throughout the production cycle. Figure 2 provides an example 
thermal envelope for a carbon-epoxy prepreg, consisting of heating ramp, hold 
and cooling ramp segments. This processing window describes the allowable 
range of temperatures that a part can experience at a given time in the processing 
cycle, to achieve minimum performance requirements, as per the associated ma-
terial and processing specification. Two key processing outcomes that can be 
tracked to ensure that quality metrics are maximized from a thermal processing 
perspective are the “peak exotherm” and “steady-state lag” tempertures. The for-
mer describes the hottest temperature experienced by the composite material 
throughout the manufacturing cycle, due to the combination of external thermal 
energy imparted by the working fluid surrounding the part, as well as the inter-
nal heat generation due to cure. Conversely, the latter is the steady-state differ-
ence in temperature between the working fluid and the composite part at the 
end of the ramp, when the difference is at its maximum. 

A major reason for the use of thermal history-based specifications is to ensure 
that defects, either physical, chemical, or structural in nature, can be minimized 
and that material property targets are met. For example, to allow for the removal 
of entrapped air and outgassing from the resin for the reduction of porosity, the 
resin viscosity must be sufficiently low for an acceptable amount of time, which 
is primarily a function of temperature and degree of cure [21]. With respect to 
the consequences of porosity on mechanical properties, interlaminar shear  
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Figure 2. An example of a one-hold cure cycle, illustrating the peak exotherm 
and lag temperatures for the composite part, which are considered key process 
outcomes in determining the quality of the process in aerospace manufacturing. 

 
strength can be reduced by approximately 7% for each 1% of void content present 
up to a maximum of about 4% [1], and experimental studies have shown that for 
a 1% increase in void content, the flexural strength, flexural modulus, and in-
ter-laminar shear strength can decrease more than 5% [4]. As primary aerospace 
structures require porosity volume fraction Vf < 1%, it is critical that these 
process bounds be adhered to, as increased porosity causes a significant reduc-
tion in mechanical properties [9]. 

Despite the physics-informed need to measure, identify and control process 
pertinent variables to avoid the generation of defects, the challenge is further 
compounded by realities of the manufacturing and qualification processes them-
selves. Namely, the need for homogeneous heating of the parts, in combination 
with local temperature detection, to deliver the required information for any 
kind of machine learning approach, is severely limited, given the intrusive na-
ture of qualified, yet highly-local, measurement techniques (i.e. thermocouples). 
Chen et al. 2020 employed three years of primary structure production data 
combined with a meta-learning approach composed of seven machine learn-
ing-based models, thus reducing over-fitting of the meta-model, for automatic 
feature extraction and thermal cycle outcome prediction and recommendation, 
representing the volume of data required for such a task [22]. Comparatively, vi-
sion and thermal inspection systems produce data that are prime candidates for 
data analytics and machine learning, given the high volumes of embedded in-
formation that can effectively train, and in turn be exploited, by such models 
[23] [24]. For example, Manohar et al. used high-fidelity spatial scanning histor-
ical data, associated with shims used in component assembly and tolerance-based 
fits, used in 54 representative Boeing commercial aircraft. This data was dep-
loyed to train models that identified the locations of optimal sparse sensors 
(forming optimal measurement sensor ensembles) for predicting gaps to be 
shimmed. These optimal sensor ensembles then maximally inform the lay-up 
patterns used in future aircraft using sparse optimization techniques [25]. Such 
analogously enabling technologies in the context of autoclave cure processing 
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are currently absent and largely underpin the lack of direct progress in this area. 
In pursuit of minimizing defects, the metrics of peak exotherm and peak 

steady-state lag temperatures have been useful as key process outcomes [9]. 
Further, statistical structural performance estimates are provided for design ac-
tivities using the composite material/processing combination, based on data col-
lected via the building-block approach (BBA) method for material and process 
qualification, often in the form of A-basis and B-basis values [9].  

Within the current best practice, the combination of qualification frame-
works, along with the statistically-derived design allowable, forms the static, 
closed-loop approach to address and minimize risk in this complex system, by 
simultaneously constraining the materials, processes and other pertinent fea-
tures. This restriction on the design space for the material, process, equipment, 
tooling, consumables and other elements of the factory process, works to reduce 
variability and uncertainty. However, this approach is typically very onerous 
from a time and cost perspective, while also having limited flexibility once estab-
lished [26]. Such inflexibility can present challenges for shop floor decision-making 
contexts, such as the planning of bus-stop autoclave cures, in which multiple 
parts of similar features (and hence a similar expected thermal response) are 
loaded together into the chamber and cured in the same cycle [26]. There are 
many historical and ongoing efforts in this area that seek to extend and optimize 
the same frameworks, including developing and integrating higher-fidelity nu-
merical models to reduce the cost of the BBA [27], reducing the conservatism 
and hence cost of A-basis and B-basis design allowable [28], developing consor-
tia to share the burdens of e.g. qualifying materials [29] or design best-practices 
[30], among others. 

The use of i4.0 seeks to provide manufacturers with opportunities for assess-
ing a dynamic production environment, by leveraging accrued and live data, for 
better in-situ decisions, optimizing factory performance. However, it is recog-
nized that this is at odds with the above addressed statically-driven framework of 
composites materials manufacture design and process qualification. Namely, 
there is a recognized need for testing, validation and qualification of production 
models used in this environment, to ensure confidence in using the predictive 
models at the heart of any i4.0 system. Many such systems also use ma-
chine-learning-based models, which are often black-box in nature and present 
their own challenges in building confidence. This is particularly the case when 
the given actual system is highly complex and direct computational models (e.g. 
using finite element) may be highly complex, time consuming, or low in their 
fidelity for use in practice. 

2.2. Need for Model Knowledgeability Frameworks When Using  
Machine Learning 

Ultimately, machine learning (ML) models created to describe complex systems, 
such as those in composites manufacturing, are intended for use as decision-aid 
tools by operators/designers. Forecasting of future states or designing, such sys-
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tems are very costly, time consuming, and computationally intensive, often due 
to finite project timelines and technical constraints within industry. ML model-
ing can be effectively employed as an inexpensive, rapid and powerful tool to 
address these problems. Once validated they can also be used to reduce the 
number of experiments needed for process optimization, increase safety or relia-
bility, forecast future events under different process configurations, etc. The va-
lidation of the ML models may be achieved with the results of laboratory-scale 
tests or actual industrial data [31] [32], which may also include big data [33]. 
Further, ML models trained from real data can capture higher-order effects, or 
implicitly account for changes in the system unforeseen by human operators 
[34], such as an uncontrolled decrease in the efficiency of inductive heating ele-
ments inside of an autoclave vessel, which would otherwise be neglected from 
the model due to complexity, or remain unaccounted for entirely.  

However, many ML models are black-box in nature; that is, black-box models 
are observation-based, often using experimental or observed data [35]. Unlike 
white-box approaches, the latter models provide low granularity, where only the 
data points used to train the system are considered as ground-truths along with 
the continuous potential predictions, let alone considering the reliability of the 
data used to train the model in the first place. Similarly, the domain coverage for 
predictions can only be reliably extended to the domain of the experimental data 
used to train the model in the first place. Black-box models attempt to encode 
the relationships between variables, by minimizing or maximizing an objective 
function (e.g. mean-squared error between observations and predictions) through 
a training process (e.g. gradient descent implemented through backpropaga-
tion). This relationship may not even be physics-based, depending on the inputs 
and outputs of the system, as chosen by the user. Hence, disparate model inputs 
may be used, which have no inherent direct physical relationship that can be 
quantified, as is characteristic of heuristic models. Additionally, the accuracy of 
such models is subject to many constraints, including the volume, sparsity and 
reliability of the available data. Figure 3 provides an overview of the trade-off 
between different model types, between the black- and white-box regimes. 

Despite the advantages of using black-box ML in production environments, 
significant challenges remain, including their lack of interpretability. As Rudin 
et al. 2019 claim, any model that automatically “learns” from a dataset and is not 
manually constructed, has the potential to be intractable at any point in its do-
main, by virtue of the model builder implicitly not being hands-on in that 
process [36]. This perspective may be particularly relevant for use cases with li-
mited data available, due to there being less embedded statistical information, 
further relying on the performance of increasingly complex and high-fidelity 
models to compensate [37]. Recent developments seeking to retain the advan-
tages of black-box ML, while increasing model confidence, include the strategic 
drafting of federal policy towards fostering scientific machine learning (SciML) 
in which scientific principles can be more tractably encoded into such models  
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Figure 3. An illustration of the continuum between white-box and black-box modeling of 
thermal management in composites manufacturing. White-box models are rooted in 
physics; in this case the prediction of the steady-state temperature lag between the heated 
working fluid and a monolithic and isotropic material can be estimated as a function of 
the material geometry, properties and applicable descriptive dimensionless numbers (i.e. 
here the Biot number). However, black-box models, such as Artificial Neural Networks 
can also be trained to provide predictive capabilities for the same system. 
 
[38]. Iten et al. 2020 demonstrated this approach by leveraging observational 
data to encode a deep ANN, parameterize the data via a latent representation 
layer, followed by decoder ANN, called SciNet [39]. This approach has been em-
ployed in process modeling for manufacturability assessments in the preliminary 
design of autoclave-cured composite laminates, which provided greater predic-
tion accuracy of the thermal processing outcomes compared to traditional me-
thods [40] [41]. Giving model designers the ability to direct models to learn 
from datasets predicated on physics-based relationships (e.g. non-dimensional 
numbers) allows for greater tractability and interpretability in how the model 
constructs its representations of the complex curing scenario. 

Beyond capturing physics-based phenomena, mathematical processes com-
puted by an ANN developed by Lample et al. 2020, are able to symbolically 
compute function integrals and solve complex differential equations [42]. AI in-
terpretability tools have also emerged as methods for application-based investi-
gation of black-box ML, leveraging approaches such as constructing local mod-
els, or Shapley values (solution concept in cooperative game theory) to provide 
users with expected values or losses attributed to changes within the feature 
space [43] [44] [45] [46]. Further, the integration of heuristic methods with clas-
sical machine learning algorithms has offered higher model performance in var-
ious applications. For example, Geirhos et al. 2019 demonstrated that in com-
puter vision classification-based tasks, ImageNet-trained CNNs are strongly bi-
ased towards using information from textures, rather than edges and shapes. 
This is a fundamentally different strategy for classification, when compared to 
human behavioral evidence, whereby incorporating strategies more in line with 
the latter ultimately improved model performances [47]. This provides further 
impetus for deeper user involvement in the construction and evaluation of 
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black-box models. 

2.3. Current State-of-the-Art for Machine Learning in Composites 

With the emergence of increasingly robust and versatile machine learning mod-
els and open-source tools for their implementation, there has been growth in the 
volume of publications in the open literature that investigate the use of ML 
models in composites manufacturing and design. Here, a selection of the re-
search has been reviewed and the results discussed, in the context of this study. 
It should be noted that research into the application of ML specifically in com-
posites manufacturing is sparse. As such, select systems have been successfully 
modeled using this strategy and few critical comparisons between studies can be 
made. Studies include modeling the production of carbon fibre [48] [49], opti-
mization of the automated fibre placement process [50], modeling of the dy-
namic cure process [51], as well as the assessment of defects for quality control, 
namely fibre orientation [52] and delamination [53] [54]. 

Khayyam et al. studied the use of various predictive models that were applied 
to the carbon fibre production process, specifically the stabilization step of the 
process. Gaussian-Newton, Levenberg-Marquardt Neural Network (LM-ANN) 
and Taylor series methods were used to model and predict the Carbon Fibre heat 
of reaction and modulus, as process outcomes from the stabilization step [48]. 
This study was extended to include the polyacrylonitrile (PAN) precursor fabri-
cation process [49] [50], with Support Vector Machine (SVM)-based models al-
so studied in [51]. The latter studies demonstrated that the machine learning 
model choices can be well relevant to the larger distributed supply chains. Fur-
ther, the inclusion of multi-objective design optimization techniques under con-
siderations of uncertainty extended these models to broader industrial applica-
tions [52] [53]. 

Brüning et al. 2017 proposed a method towards the optimization of the auto-
mated fiber placement processes, using ML predictive models. The process va-
riables considered include temperature, compaction pressure and lay-up head 
velocity. Multiple linear regression models were used for any predictive work, 
which was supported by the development of an XML database for in-situ process 
monitoring [54].  

Modeling of the autoclave cure process using black-box approaches has re-
ceived some attention. Namely, Carlone et al. 2018 showed that dynamic predic-
tions of the process can be made using Recurrent Neural Networks (RNNs), us-
ing the Long-Short Term Memory (LSTM) architecture [55]. This model was 
trained on pseudo-experimental (virtual data) and was able to capture the 
time-dependent nature of this complex system. This was performed in the con-
text of the composite parts containing complex 3D geometries and having dif-
ferent fibre-volume fractions, where the thermal history of the composite through-
out the cure cycle, is the model output. In their study, the Levenberg-Marquardt 
(LM), Bayesian Regularization (BR), Resilient Backpropagation (RP), and Scaled 
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Conjugate Gradient (SCG) training functions were compared, where the ANN 
model based on BR provided the best performance. 

There has been greater interest in the use of ML for in-situ defect estimation 
for quality control purposes in composites manufacturing, which is reflected by 
the greater volume of papers in this area. For example, Schmitt et al. [56] studied 
the feasible production of fiber-reinforced composites through inline inspection 
with machine vision. This work used a Fourier transform approach to classify 
local regions of an image, to determine the fibre/textile type, in order to catch 
lay-up errors, where technicians or other soft factors may have led to the defect. 
The study was set-up as a preface to the future application of ML models, as no 
ML algorithms were performed. Later, the work in this area was further devel-
oped by Hernán et al. [57], by detecting delamination-based defects using infra-
red thermography. Using the thermography images of composites as model in-
puts, dynamic PCA and K-NN models were used in an unsupervised learning 
regime to determine structure in the data as a dimensionally-reduced input into 
further ML models. Specifically, the Radial Basis Function was used as the kernel 
function in a trained SVM model, to detect and quantify the defect depth in the 
composite parts. Further, Fernandes et al. [58] recently investigated defect cha-
racterization in infrared thermography-based non-destructive testing (NDT), 
supported by ML for the prediction of fibre orientation. Pulsed thermal ellipso-
metry was the NDT method employed to capture images of internal features of 
the composite, which was combined with ANN models to estimate the fiber 
orientation on the surface of inspected parts. The authors commented on the 
good accuracy and speed of their approach, which in the context of the current 
industrial landscape, is a core requirement for the successful implementation of 
Industry 4.0. 

2.4. Future Perspectives 

Research in the wider literature has demonstrated successful applications of 
machine learning as a means for the modeling of composites production processes, 
for both prognostic design or in-situ defect characterization purposes. While this 
provides basic confidence in the capabilities of this approach, there remains 
concerns with model tractability and explainability for use in industrial applica-
tions, resting in a user’s ability to independently demonstrate how and why 
black-box ML models generate their outputs. In this context, many gaps and 
opportunities remain for further research in building ML-based models for use 
in composite manufacturing environments, which meet the human-interpretable 
needs for tractable risk reduction. Recent advances in pre-processing datasets, such 
as physics-informed ML [40], has provided increased interpretability for model 
designers by directly influencing the learning process in a common physics-based 
framework, towards using models for interpolation-based predictions. Further, 
with the recent emergence of AI explainability tools such as Local Interpretable 
Model-Agnostic Explanations (LIME)-based toolboxes, or the Shapley val-
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ue-based approach used by Fiddler Labs [43], there is an opportunity for further 
research in this field to address the above concerns, in both the construction and 
evaluation of models, and associated datasets for advanced manufacturing. 
These advanced, combined with government-led strategic efforts to actively fos-
ter applied research in this area, has supported the framework and impetus for 
integrating Industry 4.0 principles in advanced composites manufacturing. 

3. Conclusion 

Aerospace autoclave composites manufacturing is a highly complex process, 
which is guided by a framework of risk-based decision-making (which is done 
often off-line using process numerical models) for qualification and proper use 
of materials and tools, and ultimately arriving at defect-free parts. This frame-
work is meant to introduce some measure of inflexibility (tight tolerances) into 
the underlying industrial process parameters (e.g. to stay within allowable peak 
exotherm and lag temperatures), in exchange for providing higher confidence in 
delivering high-quality (defect-free) parts. Industry 4.0 is a broadly-defined suite 
of technologies and tools that are used to the same end of reducing risk and in-
creasing the likelihood of success in production, albeit in a dynamic and in-situ 
role, to be used to inform decision-makers on the manufacturing shop floor. 
This may be viewed at odds with the traditional qualification framework, espe-
cially given that models at the core of i4.0 are data-driven and updatable in 
real-time. Current trends and future opportunities in the wider research have il-
lustrated both the potential and the need for introducing new methods that ul-
timately reduce the risk of advanced manufacturing activities under the new In-
dustry 4.0 paradigm. Within this trend, emphasizing the interpretability of the 
prediction models, and pre-assessment of “knowledgeability” of given data prior 
to training are deemed central to successful implementations of Industry 4.0. 
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