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Abstract 
In this paper, we discuss the driving-response synchronization problem for 
two memristive neural networks with retarded and advanced arguments un-
der the condition of additional noise. The control law is related to the linear 
time-delay feedback term, and the discontinuous feedback term. Moreover, 
the random different equation is used to prove the stability of this theory. At 
the end, the simulation results verify the correctness of the theoretical results. 
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1. Introduction 

In the past 10 years, neural networks have shown great potential application in 
pattern classification, associative memory. Also, the neural memory network has 
attracted extensive attention. In [1] [2] [3], under the influence of memristors, 
the relationship between each single or double neural is replacing the traditional 
one. Dynamical analysis of neural network has been widely studied. The exis-
tence and uniqueness of the equilibrium point are certified. And RMNN (recur-
sive memristive neural network) was proposed in 1990 and is regarded as the 
generalization of the recurrent neural network. When each parent node of a re-
cursive neural network is connected to only one child node, its structure is equiva-
lent to that of a fully connected cyclic neural network. Recursive neural networks 
can introduce a gating mechanism to learn long-distance dependency. 

By comparing with the traditional neural networks, based on the former re-
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search in [4] [5] [6], the micro neural has more information storage capacity 
and can extend the application of neural networks in memory and information 
processing in [7] [8]. In 1990, Pecora and Carroll initiated a coupled chaotic sys-
tem synchronized by the master and slave systems. Since then, researchers from 
different academic directions around the world have studied the synchronization 
of chaotic systems extensively. Due to the occurrence of time delay in a nonli-
near complex system is unavoidable, it is essential to take advantage of the de-
layed memristive neural networks (DMNN) to build a brain-like machine to im-
plement the synapses of biological brains. In [3] [9] [10] [11], it is worth not-
ing that the synchronization of complex dynamic networks has been extensively 
studied and the references. Synchronization control has been using in many dy-
namic control methods, including feedback control, adaptive control, and pulse 
control. Besides, memristive neural network (MNN) extends the control problem 
of neural networks. Because of these characteristics, the memristor becomes a 
switching system with state control. Two synchronous MNN are designing in 
some new control laws. The linearity of the feedback term has been considering 
in control, and the discontinuous feedback term is proposing to ensure the glob-
al synchronization of the two MNNs. Recently, in [12] [13] [14] DMNN has pro-
voked considerable attention for the sake of both theoretical interest and practical 
applications. Numerical theoretical analysis and simulated experiments have 
demonstrated that MNN can possess more computation power and information 
capacity, which would significantly broaden the application of neural networks 
in information processing, associative memory and pattern recognition. Fur-
thermore, in the past decades, the state-dependent nonlinear system family has 
received little attention in DMNN. Considering the developments and applica-
tions of memristors, we will pay more attention to such nonlinear systems with 
its various generalizations to allow the memristors to be widely used in emerging 
technologies. 

In this paper, we continue to discuss the master-slave synchronization of me-
mristor neural network (MNN) with retarded and advanced argument. The 
problem of additional noise in the stochastic differential equation model is stu-
died. First, we design a control law that consists of discontinuous feedback and 
deviating functions. Based on the mean square, the sufficient condition of global 
synchronization is linear matrix inequality (LMI). 

Also, the extended feedback term is constituted by the adaptive control law, it 
makes the control gain which is a discontinuous feedback term. In this paper, as 
described in [15], under the condition of the linear matrix inequality (LMI), it 
will make the results more practical. The surplus of this paper, Section II presents 
MNN (memristor neural network) with random disturbances in some prepara-
tions. Section III concludes the master-slave (or driving-response) synchroniza-
tion of two different control laws with retarded and advanced arguments under 
the condition of the mean square. Section IV, the two numerical examples are 
giving in this part according to the theoretical results. Last, section V includes 
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the conclusion. 

2. Preliminaries and Mode 

Firstly, we present the prepared form of memristor which about the RMNN (re-
cursive memristival neural network) and DMNN (delayed memristive neural net-
works). Besides, we recommend some definitions, remarks, and lemmas. Moreover, 
we define the compression lag feature in [13] [14]. 

( )( )
( )( ) ( )
( )( ) ( )

( )( ) ( )

, 0;

, 0;

, 0.

U h t D h t

U h t D h tU h t

U h t D h t

−

−

− −

 ′ <
 ′′ >= 


=

                 (1) 

where ( )h t  presents the voltage which applied to the memristor, ( )( )U h t  is 
related to the memristor (voltage-controlled), the left Dini-derivatisation of ( )h t  
is ( )D h t−  in t, ( )( )U h t−  which is defiled to the left limit ( )( )U h t . ( )( )U h t′  
or ( )( )U h t′′  and ( )( )U h t−  is equal to each other. The memductance function 
may be discontinuous. 

As described in [11] [12], only two kinds of memristive states are needed, among 
which the memristors shows 0R  and 1R  are two completely different equilibrium 
states where 0 1R R�  in [3]. Among them, the high resistive state can be quickly 
switching to the low resistive state, and likewise, the low resistive state can be quickly 
switching to the high resistive state. The low resistive state should consume as lit-
tle energy as possible. Therefore, the memristors with this characteristic can be 
defined as: 

( )( )
( )
( )

( )( ) ( )

, 0;
, 0;

, 0,

U D h t
U D h tU h t

U h t D h t

−

−

− −

 ′ <
 ′′ >= 
 =

                (2) 

where U ′  and U ′′  are constants. 
In the traditional memory neural network, MNN is constructing by a memristor 

instead of resistance in [3]. We consider the dynamic system of recursive memory 
neural network with retarded and advance argument in [15]: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( ) ( )( )( ) ( )

d d

, , d ,

x t Bx t C x t f x t A x t f x t t

t x t x t t

γ

σ γ ω

 = − + + 

+
      (3) 

( ) nx t R∈  is the state of this networks; The active functions of neurons is corres-
pond by ( )f ⋅ ; the deviating function is ( )tγ ; ( ) ( )( ) ( )( )ij j j i

n n
C x c f x t x t

×
 = −   

and ( ) ( )( )( ) ( )( )ij j j j
n n

A x a f x t x tγ
×

 = −   which are the two type of memris-
tive connection weight matrix about the delay feedback. And the functions 

( )ijc ⋅  and ( )ija ⋅  are defined as (2), ijc  means synaptic strengths at time t and 

ija  denote synaptic strengths at ( )tγ . The two different values can be switched 
between connection weight freely. Here, ( )ijc ⋅  and ( )ija ⋅  which is the value of 
the functions, denote as { },ij ijc c′ ′′� � , { },ij ija a′ ′′� � . Besides, { }ˆ max ,ij ij ijc c c′ ′′= � � ,  

{ }min ,ij ij ijc c c′ ′′=� � � , { }ˆ max ,ij ij ija a a′ ′′= � � , { }min ,ij ij ija a a′ ′′=� � � . 
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Let [ ]( )0

2 ,0 ; n
FL r R−  be the the family of nR -valued stochastic process 

( ) [ ]{ }: ,0s s rξ − . And ( )sξ  is 0F -measuarable and 
0 2 d
r
E sξ

−
< ∞∫ , which 

the W�  is the mathematic expectation. 
The initional condition of (3) is ( ]0,t r∈ − , ( ) ( )t x tϕ = , [ ]( )0

2 ,0 ; n
FL r Rϕ ∈ − . 

The ( );x t ϕ  is satisfied in (3) which is continuity. This equality about x which 
is shown ( ) ( );x s sϕ ϕ= , and satisfy to the [ ],0s r∈ − . 

Throughout this paper, the assumptions are used to support our proof. 
Assumption 1. ( ) ( ) ( )0 0 0 0i i if g σ= = =  { }0il ≥ . And ( ) , ,i if u u Rτ≤ ∈  

0τ > . For ,u v R∈ , there exist a positive constances about this 0iF > , 0iG > , 
0iK >  (K is called as the convergence rate) and this inequality about , ,f g σ  

shown as followed: 

( ) ( ) ,i i if v f u l v u− ≤ −  

( ) ( ) ,i i ig v g u G v u− ≤ −  

( ) ( ) .i i iv u k v uσ σ− ≤ −  

Assumption 2. (G1) There exist a constant * 0θ > , * * *
1k kθ θ θ−− ≤ , for 

k N∈ , 
(G2) ( )22 2

1 2 32 1N N Nθ  + + <  , ( ) ( )2 2 2
1 362 2 2 2

1 2 36 e 1
N N

N N N
θ

θ
+

+ + < , 
(G3) 4 5 0N Nµ− > . Moreover, ( )i if u γ≤  hold for u R∈ , where 0iγ > , 
(G4) The matrix diag ( ) ( )1 2, , , n ij j ij j n n

a a a a F b G
×

− +� , 

( )1 11 1
max ,

n

ij ji n j
N B B G F

≤ ≤ =

 
= − + 

 
∑  

2 21 1
max ,

n

iji n j
N a G

≤ ≤ =

 
=  

 
∑  

{ }3 1
max .ii n

N k
≤ ≤

=  

Assumption 3. { }: n n n nR R R Rϕ ×
+← × × , ϕ  is derived from the inner trace 

product and is a matrix of uniform Lipschitz continuous norm. 

( ) ( )( ) ( ) ( )( )

( ) ( )

T
1 1 2 2 1 1 2 2

2 2
1 1 2 2 1 2

, , , , , , , ,

,

trace t v u t v u t v u t v u

M v v M u u

ϕ ϕ ϕ ϕ − × −  

≤ − + −
 

where 1N  and 2N  are constant matrix, and it has a consist dimension. 
Assumption 4. Based on [ ]( )2,1 , ;nC R r R+× − +∞ . It is connected to the fam-

ily of all the negative function on ( ),V t x  on [ ]( ), nr R− +∞ × , it is twice diffe-
rentiable in x, t is once differentiable. If [ ]( )2,1 , ;nV C r R R+∈ − +∞ × , and LV is 
the weak infinitesimal operators, which is related to the following error system 
(5): 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )

T

,

.

t x

xx

LV t x V V Be t C y t f y t C x t f x t

A y t f y t A x t f x t u t

trace V

γ γ

σ σ

= + − + −
+ − + 

 +  

    (4) 
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which 
( ),

x

V t x
V

x
∂

=
∂

, 
( ),

t

V t x
V

t
∂

=
∂

, 
( )2 ,

xx
i j n n

V t x
V

x x
×

 ∂
=   ∂ ∂ 

 and  

( ) ( )( )( ), ,t e t e tσ γ σ= . 

Remark 1. Relating to k N∈ , [ )1,k kt θ ξ+∈ , ( ) ktγ ξ= , the ( )tγ  is the de-
viating function. The (1) is a retarded system once ( )1, kt ξ θ +∈  satisfy ( )t tγ> . 
The (1) is an advanced system if ( )t tγ<  satisfy [ ],k kt θ ξ∈ . Therefore, the 
deviating function ( )tγ  is influnced by the mixed system (1). In the driv-
ing-response system, the two identical RMN systems with different initial condi-
tions called the driving system of RMNN (recursive memristival neural network) 
and the response system of RMNN. When the state of the variables of the two 
RMN in driving-response system will be synchronized as the mean square ap-
proaches 0 as time elapses. In this article, RMNN (3) is considering a master (or 
driver) system. The slave (or response) system is: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

d d

, , d .

y t By t C y t f y t A y t f y t u t t

t y t y t t

γ

σ γ ω

 = − + + + 

+

� � � �
    (5) 

where ( ) nu t R∈ , and the control vector is U in this system. The initional condition 
which is in (4) shown that: ( ) ( ) [ ], ,0t y t t rφ = ∈ − , and [ ]( )0

2 ,0 ; n
FL r Rφ ∈ − . De-

siging ( )u t  is the control vector. And the core of this article is to synchronize the 
master system with the slave system. So we use this condition ( ) ( ) ( )y t x t e t− =  
and subtract (3) from (4) to get this error system: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

d

d

, , d .

e t Be t C y t f y t C x t f x t

A y t f y A x t f x t u t t

t e t e t t

γ γ

σ γ ω

= − + −
+ − + 

+

       (6) 

It is obvious to see that the system (6) is equivalent to the following integral 
equation: 

( ) ( ) ( ) ( ) ( )( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( ) ( ) ( )( ) ( )

0

0

0 1 2 3

d , , d .

t
i i t

t
it

x t x t B G e s G e s G sign e s

C y s f y s C x s f x s A y s f y s

A x s f x s u s s s e s s w s

γ

γ

γ σ γ

= + − − + +

+ − +

− + +

∫

∫

   (7) 

For ( )1,2, ,i n= � , { }0t t≤ , we have this equation: 

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( )( )( )
( ) ( )( )( ) ( )

0

0

0 d

, , d .

t
i i i it

t

t

y t y t By s C y s f y s A y s f y s I s

s y s y s B s

γ

σ γ

 = + − + + + 

+

∫

∫
 

Remark 2. Since the right-hand side of the system (1) at nθ ∈  is disconti-
nuous, the deviating function of ( )tγ  that does not apply to stochastic diffe-
rential equations. One of the solution ( ) ( ) ( ) ( )( )T

1 2, , , nx t x t x t x t= �  in system 
(1) is a continuous function. Each point ,k k Nθ ∈  exists one-side derivative of 
( )x t , and each one is exist in the [ ]1,k kθ θ + , which exists in the derivation of 

https://doi.org/10.4236/jilsa.2021.131001


R. X. Xian 
 

 

DOI: 10.4236/jilsa.2021.131001 6 Journal of Intelligent Learning Systems and Applications 
 

( )x t , where ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )( ), , , , , ,x t x t y t y t t e t e t tσ γ σ γ σ γ= − . 
[ ],0t r∈ − , ( ) ( ) ( )t t e tφ φ ψ− = =  is the initional condition of (5) is 

[ ]( )0

2 ,0 ; n
FL r Rψ ∈ − . ( )U t  (control vector) represents the synchronization 

problem associated with RMNN (3) and (4) for this ( )U t . In the mean square 
is t → +∞  and ( ) 0e t → . The influence of noise is considering. Next, we will 
define the mean square stability as follows: 

Lemma 1. , nx y R∈  and define matrix n nS R ×∈ , the inequality matrix are 
shown: T T T 12x y x Sx y S y−≤ + . 

3. Main Results 

In this part of the paper, we are giving a control law that is discontinuous. The 
response systems in RMNN (4) with time-delay feedback and in RMNN (3) are 
globally synchronized exponentially. 

A Time-Delay Control Law with Constant Feedback Gains 

The ( )D t  (control vector) is designed in this equation: 

( ) ( )( ) ( )( )( ) ( )( )1 2 3 .D t G e t G e t G sign e tγ= + +              (8) 

where 1 2,G G  and 3
n nG R ×∈  are constant gain matrix which will be defined 

laterly. 3G  is a diagonal matrix and { }3 31 32 3,d ,iag , nG g g g= � . Subtituting (9) 
into error system (5), the result is shown: 

( ) ( ) ( ) ( )( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( ) ( ) ( )( )( ) ( )

1 2 3d

d , , d .

e t D G e t G e t G sign e t

C y t f y t C x t f x t A y t f y t

A x t f x t u t t t e t e t w t

γ

γ

γ ϕ γ

= − + +

+ − +

− + +

    (9) 

We can define two matrix { }1 2,d ag , ,i nQ q q q= � , { }1 2,d ag , ,i nJ j j j= �  
with ( )12 n

i ij ij ij ij jjj c c a a γ
=

′ ′′ ′ ′′= − + −∑ , ij n n
C c

×
 =  
���  with ij n n

A a
×

 =  
��  which 

the first one with ˆ,ij ij ijc c c ∈  
��  and the second one with ˆ,ij ij ija a a ∈  

� . We 
have shown the theorem as followed. 

Theorem 1. Let 1G  and 2G  hold, which is for any solution  
( ) ( ) ( ) ( )( )T

1 2, , , ny t y t y t y t= �  of (9). And we have the inequation: 

( )( ) ( )
2 2

.E y t E y tγ µ≤  

And [ )0,t∈ +∞ , where µ  is defined as it in (2). 
Proof. Fix k N∈ , [ )1,k kt θ θ−∈ , it follows that 

( ) ( ) ( ) ( ) ( )( )( )
( ) ( )( )( )( )

( ) ( )( )( ) ( )

0

d

, , d .

t

k

t
i i i

k i

t

y t y t By s C y s f y s

A y s f y I s

s y s y s B s

ξ

ξ

γ ξ

σ γ

= + − +

+ + 

+

∫

∫

 

then 
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( ) ( )

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

0

2
2

1

1 1 1

2

1 1

2

2 1 3

2 22 2 2
2 1 3

d , d

d d

3 1 3 d ,

k

k

k k

k

n

i
i

n n nt
i k i ij j j

i i j

n n t
ij k i

j i

t t
k k

t
k

E y t E Z t

E y Cy s C y s f y s

A y s f y s y s s B s

E y y N y t s N y s B s

E y N N E y s s

ξ

ξ

ξ ξ

ξ

ξ

γ ξ σ γ

ξ θλ ξ

θλ ξ θ

=

= = =

= =

 =  
 

 ≤ + − + 


 + + 
 

≤ + + +

≤ + + +

∑

∑ ∑ ∑∫

∑ ∑ ∫

∫ ∫

∫

 

( ) ( ) ( ) ( ) ( )
2 2

1 332 22 2
23 1 e ,k kE y t E y E y

λ λ
λ ξ ζ ξ

+
≤ + =  

hence, 

( )
( ) ( )

( ) ( )2 2 2

2 2 2 2
2 1 3

6 .
1 6 3

kE y E y t E y t
N N N

ξ µ
θ θ

≤ =
− + +

 

Theorem 2. Let Assumptions 1 - 3 hold. In mean square, under the control 
law (7) and the RMNN (3)-(4) can achieve global asymptotical synchronization 
if there existed a ρ  (positive real number), define positionality diagonal matrix 

{ }1 2,d ag , ,i nH h h h= �  and { }1 2,d ag , ,i nR r r r= � , and we define two positive 
matrix ij n n

P P
×

 =   , ij n n
O O

×
 =   , it is shown in this equation: 

( )

1 2

2 0 0
0,

2 0
1

HG HC HR HA

N
P R

p P

 Π +
 
∗ Π = < ∗ ∗ −

 
∗ ∗ ∗ − −  

�� ��

            (10) 

3 0,G M+ <                          (11) 

.Q Iρ<                            (12) 

( )

1 2

2 0 0
0,

2 0
1

HG HC HR HA

N
P R

p P

 Π +
 ∗ Π = < ∗ ∗ −
 
∗ ∗ ∗ − −  

�� ��

            (13) 

3 0,G M+ <                         (14) 

.Q Iρ<                           (15) 

where ( ) ( )( )T T
1 1 1 1 1H C G C G H O M MρΠ = − + + − + + +  and  

( )T
2 2 1M P OρΠ = − − . 
Consider the Lyapunov functional in this equation: 

( ) ( )
3

1
,i

i
V t V t

=

= ∑                        (16) 

where 

( ) ( ) ( )T
1 .V t e t Pe t=                       (17) 

https://doi.org/10.4236/jilsa.2021.131001


R. X. Xian 
 

 

DOI: 10.4236/jilsa.2021.131001 8 Journal of Intelligent Learning Systems and Applications 
 

and H, O and P are given matrices. ( )tx x t s= + , and [ ]{ }0, 0,t s r≤ ∈ − . The 
weak infinite operator of random process L is the operator at ( )1V t . 

According to the control law (7) of Definition 2, this definition only applies to 
the specificity of the system (8): 

( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )( )

( )( )( ) ( )( ) ( )( )( ) ( )( )
( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )

T
1 1 2

3

T

2

, , , , .

LV t e t H C G e t G e t

G sign e t Cg e t Ag e t

C y t C f y t C C x t f x t

A y t A f y t A A x t f x t

trace t e t e t P t e t e t

γ

γ

γ γ

σ γ σ γ

= − + +

+ + +

+ − + −

+ − + − 
 +  

   (18) 

The ( )if ⋅  (activating function) is bounded, we have this result includes equ-
ation and inequation: 

( ) ( )( )( ) ( )( )

( ) ( )( )( ) ( )( )

( )

T

1 1

1 1

2

2

2 .

n n

i i ij ij j j
i j

n n

i ij ij i i
i j

e t H C y t C f y t

e t h c y t C f y t

h c c e tγ

= =

= =

−

= −

 
′ ′′≤ − 

 

∑∑

∑ ∑

��

��               (19) 

We can similatively expect the gain in these inequations: 

( ) ( )( )( ) ( )( ) ( )T

1 1
2 2 ,

n n

i ij ij j i
i j

e t H C C x t f x t h c c e tγ
= =

 
′ ′′− ≤ − 

 
∑ ∑��       (20) 

( ) ( ) ( )( ) ( )T

1 1
2 2 ,

n n

i ij ij j i
i j

e t H A A f y t H a a e tγ γ
= =

 
′ ′′− ≤ − 

 
∑ ∑��        (21) 

and 

( ) ( )( )( ) ( )( ) ( )T

1 1
2 2 .

n n

i ij ij j i
i j

e t H A A x t f t h a a e tγ γ
= =

 
′ ′′− ≤ − 

 
∑ ∑�� ��      (22) 

Besides, we have that 

( ) ( )( ) ( )T
3 3

1
2 2 .

n

i i i
i

e t HG sign e t h g e t
=

= ∑                (23) 

Based on the Assumption 2 and (15): 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

( ) ( ) ( )( ) ( )( )

T

T

T T T T
1 1 2 2

, , , ,

, , , ,

.

trace t e t e t H t e t e t

trace t e t e t t e t e t

e t M M e t e t M M e t

σ γ σ γ

ρ σ γ σ γ

ρ γ γ

 
 

 ≤  
 ≤ + 

           (24) 

Related to Assumption 1, we can easily obtain these equations and inequa-
tions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )T 2 T

1 1
,

n n

i i i i i i
i i

g t DLe t g t d l e t d g t g t Dg t
= =

= ≥ =∑ ∑      (25) 

which implies that 
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( ) ( ) ( )( )T Tg t Dg t g t t≤                     (26) 

Let ( ) ( )( ) ( )( ) ( )( )( ) TT T T T, , ,e t e t g e t g e tη γ γ =    and combining (11)-(12) 
and (16)-(22), basing on this above that we can obtain this inequation: 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
T

1
T

32 0.

i T
i

LV LV t g t DLe t g t Dg t

N H G J e tρ ρ
=

≤ + −

≤ + + ≤

∑
           (27) 

Related on the (24) and Itô Formula, it is showing in this equation: 

( ) ( ) ( )1

0
1 0 d .WV WV W LV s s− = ∫                 (28) 

Based on the (14), there exists a positionality of constant λ  shown in these 
inequations: 

( ) ( ) ( )

( ) ( )
0

2
max 0

0 d

0 d .

t

t

e t WV W LV s s

LV W e s sλ

≤ +

≤ +

∫

∫
               (29) 

Related on [13] [14] [15] [16], the equilibrium point in the error system (8) in 
mean square, which is globally asymptotic stabilized, and in [17] that we dis-
cussed. 

Remark 1. In [17] [18], the analysis technique ignores the excitability and the 
inhesion effect of neurons. If given G1, G2, G3 the form of LMIS is derived syn-
chronization, considering the conditions, considering the two properties of 
neurons one is excitability, the other is inhibition, derivation synchronization is 
a feature of LMIS. Besides, we have two advantages in this case. First, by solving 
the value LMIS, it can verify the conditions of G1, G2 and G3. Second, global 
synchronization cannot be achieved by adjusting any matrices or parameters. 

Remark 2. We adopt the following decomposition technique in Theorem 2. 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ,

A y t f y t C x t f x t

Cg e t A y t C f y t C A x t f x t

−

= + − + −�� �� ��
     (30) 

and 

( )( ) ( )( )( ) ( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( ).

A y t f y t A x t f x t

Ag e t A y t A f y t A A x t f x t

γ γ

γ γ γ

−

= + − + −�� �� ��
 (31) 

The results show that by using the decomposition technique, it is worthwhile 
to consider the previous results in the synchronization of the memristor neural 
network models in [19]. 

Remark 3. When the drive system and the response system have different 
states, the system is also different. MNN depends on the switching system. In the 
proof of Theorem 2, the discontinuous term in the control law is using to offset 
the difference between the two RMNS resulting in the anti-synchronization ef-
fect. Moreover, the discontinuous feedback controls are using to reduce interfe-
rence. 

Remark 4. To eliminate the chattering caused by the discontinuous control 
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law (7), (7) can be modified as: 

( ) ( ) ( )( )( ) ( )
( )1 2 3

1

,
e t

D t G t G e t G
e t

γ
ε

= + +
+

 

where 

( )
( )

( )
( )

( )
T

1 1

1 11 1

= , , .
e t e t e t

ee t e t εε ε

 
  ++ + 

�  

For 1,2,3, ,i n= � . The iε  is a small enough constant. We have these corol-
laries, let nH I=  in Theorem 1, and shown in the following corollary: 

Corollary 1. Assumption 1 - 3 is valid. Under the control law, in the mean 
square RMNN (3) and (4) can achieve the global asymptotic synchronization if 
there is a matrix R that is positive diagonal matrix, { }1 2,d ag , ,i nR r r r= � , and 
positionally of definientia matrix ij n n

P p
×

 =   , ij n n
O o

×
 =   , it is shown in this 

equation: 

( )

1 2

2 0 0
0,

2 0
1

G C QR A

N
P R

h H

 Π +
 
∗ Π = < ∗ ∗ −

 
∗ ∗ ∗ − −  

� �

            (32) 

3 0,G J+ <                         (33) 

where ( )T
1 1 1 1 1

TD G D G O M MΠ = − + + − + + +  and ( )T
2 2 2 1M M P OΠ = − − . 

Corollary 2. In the mean square, under the control law (7), the RMNN (3) 
and (4) can achieve global asymtotic synchronization which let assumption 1 - 3 
hold, if there exist a positive real number ρ , positioning defile the diagonal 
matrix { }1 2,d ag , ,i nH h h h= �  and { }1 2,d ag , ,i nR r r r= �  and define positive 
matrix n nP R ×∈ , and diagonal matrix 3

n nG R ×′ ∈ , it is shown in this equation: 

( )

1 2

2 0 0
0,

2 0
1

G PC QR HA

N
P R

p P

 Π +
 
∗ Π = < ∗ ∗ −

 
∗ ∗ ∗ − −  

�

           (34) 

3 0,G J′ + <                         (35) 

and 

,H Iρ≤                          (36) 

where T T
1 1 1 1 12HD G G R M Mρ′Π = − + + + +  and ( )T

2 2 2 1M M p OρΠ = − − . 
Moreover, 1

1 1G H G− ′= , 1
2 2G H G− ′= , and 3 3G G′= . 

Proof. This corollary can be directivity verified by letting 1
1 1G H G− ′= , 

1
2 2G H G− ′=  and 3 3G G′= . 
Remark 5. Besides, if we set 2 0G′ = , and the control law (7) is consistent 

with this paper, it also can synchronize both MNN with random disturbance on 
the mean square. Therefore, it provides retarded and advanced argument in the 
drive-response systems of MNNs, and the results will change. Furthermore, MNNs 
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(with driving-response system) will be more meaningful due to the deviating func-
tion ( )tγ . 

Without the random disturbance, we using the MNNS (with driving-response 
system) in this equation: 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )d
,

d
x t

Bx t C x t f x t A x t F x t
t

γ= − + +         (37) 

and 

( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )
d

.
d
y t

By t C y t A y t f y t u t
t

γ= − + + +          (38) 

Based on Theorem 2, we associate Corollary 3 with the following corollary: 
Corollary 3. Let Assumption 1 and 3 hold, we established under the control 

law (7) as well as (36) and (37), global asymptotic synchronization can be achieved 
if exist positive definite diagonal matrix { }1 2,d ag , ,i nH h h h= � ,  

{ }1 2,d ag , ,i nR r r r= � , which define positively matrix ijH h =   , ij n n
O O

×
 =   , 

it is shown in this equation: 

( )

( )

1 2

1 0 0
0,

2 0
1

HG PC QR HA
h O

N
P R

p P

 Π +
 
∗ − − = < ∗ ∗ −

 
∗ ∗ ∗ − −  

��

          (39) 

and 

3 0,G J+ <                           (40) 

where ( ) ( )T
1 1 1H C G C G H OΠ = − + + − + + . 

Corollary 4. Based on the matrix { }1 11 1,iag ,d nG g g= �  and 2 0G =  in (7), 
if Assumption 1 holds the control law (7), it can achieve the global synchroniza-
tion exponention of MNN (36) and (37), if there exist positive define martix 
( )1,2, ,ir i n= � , it is shown in this inequation: 

( )1
1

,
n

j
i i i ji ji

j i

r
g c l c a

r=

> − + +∑ �� ��                   (41) 

and 

3
1

2 .
n

i ij ij ij ij j
j

g c c a a γ
=

′ ′′ ′ ′′≤ − + −∑                   (42) 

Proof. Considering a function defined by this equation: 

( ) ( ) ( )( )( )
1 1

, d .
n n tt i

t j ji i it
i j

V t e e r a g e s e sδ δ
γ

+

= =

= ×∑∑ ∫��           (43) 

As noted in Remark 2, following this proof of Theorem 1, and using this de-
composition technique in Theorem 2, it can quickly verify the corollary. 

Remark 6. This system can identify the retarded and advanced system, unlike 
traditional neural networks that need to be identifying in the system (1). Mean-
while, the comparative analysis of [8] shows that the function of behavior devia-
tion Theorem 1 is more aggravated in the first than in the second. 
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Remark 7. By sorting out Theorem 2 and Theorem 3, it is noting that these 
two parameters do not need to deal with MNN, additive noise, and deviation 
function. Also, the uncertain disturbance can be determined by this method. 

Remark 8. Retarded and advanced arguments can describe harmonized non-
linear systems with internal mechanisms. By using the theory of these differen-
tial equations, the substitutable, hysteresis, and advanced parameters are intro-
ducing. 

4. Conclusion 

This paper studies a class of neural memory networks with discontinuous neu-
ronal activation and constant variables. Based on the non-smooth analysis 
theory, the generalized Lyapunov functional method and equivalent transforma-
tion method are adopted to design the state feedback controllers napping control 
scheme. The neural memory network’s global synchronization results with dis-
continuous neuron activation based on drive response are obtaining. It is worth 
pointing out that these controllers and non-smooth Lyapunov functional func-
tions in this paper are new. For neuron memory networks with unbounded in-
termittent neuron activation, synchronization research’s main problem is to 
process amplification signals, and the equivalent variation method is using to 
process amplification functions. Unlike the previous paper, [3] [7] [8], the new 
approach is also applicable to continuously activated neural networks. Some 
numerical examples further illustrate the feasibility of the results obtained. Using 
the Filippov solution and Lyapunov function, the chain rules included in diffe-
rentiation are derived. Sufficient conditions are giving to ensure the complete 
asymptotic synchronization of the model under consideration. Numerical simu-
lation verifies the validity of the theoretical results when a discontinuous active 
drive-response control system to the presence of parameter mismatch between 
the neural networks. Besides, we also briefly discussed pinning strategy; for ex-
ample, we should first peg which neurons. We can choose how much control 
gain discrete neural networks were achieving by pinning a control scheme of fi-
nite-time synchronization. 
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