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Abstract 

The fitting of water requirement and yield during the growth period of winter 
wheat can improve yield effectively and improve irrigation water use effi-
ciency with a certain amount of resource input. This paper selects the irriga-
tion amount, precipitation and yield of winter wheat at the Wuqiao Scientific 
Observation and Experimental Station. Fitting the water requirement and 
yield of winter wheat based on three types of artificial neural networks. This 
paper uses support vector machine (SVM), thought evolution algorithm to 
optimize BP neural network (MAE-BP) and generalized regression neural 
network (GRNN) to fit the water requirement and yield of two crops. The 
SVM is the model with the highest fitting accuracy among the three models, 
the RMSE, MAE, NS and R2 between predictive value and true value are 7.45 
kg/hectares, 213.64 kg/hectares, 0.8086, 0.9409 respectively. 
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1. Introduction 

The North China Plain is important food production areas in China (Zhai, 
2017). The effective arable land in this region accounts for up to 21% of the 
country’s total arable land, but it only accounts for 8% of the total water re-
sources, including surface and groundwater. It is the most prominent place 
where the contradiction between the supply and demand of irrigation water in 
china, and the overexploitation of the groundwater level in the North China 
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Plain has made North China the largest low funnel in the world (Zhao, Xiao, Bai, 
& Tang, 2020). Winter wheat and maize are the main food crops in the region. 
The winter wheat planting period is from October last year to June this year, and 
the maize planting period is from mid-June to late September. The precipitation 
from June to September accounts for 65% to 85% of the annual precipitation, 
and the precipitation can basically meet the water requirements of each growing 
period of maize. The average water requirement during the whole growth period 
of winter wheat is about 450 mm. However, the natural precipitation in the win-
ter wheat growing season in this area can only meet about 30% of the normal 
water requirement demand, which cannot meet the healthy growth of winter 
wheat in North China (Bai, Wan, & Kang, 2018). The fitting of water require-
ment and yield during the growth period of winter wheat can increase yield and 
improve irrigation water use efficiency with a certain amount of resource input. 

Relevant scholars have conducted a large number of studies on the water re-
quirement and yield of winter wheat (Hu, Ma, Wu, Sun, Feng, Kang, et al., 
2020), most of which reflect the water requirements and changes of different 
crops under high-yield irrigation conditions (Deng, Zhang, Liang, Li, Yang, 
Wang, et al., 2020). However, a large number of irrigation practices show that 
the crop itself has physiological water saving and drought resistance capabilities 
(Yan, Dong, Li, Duan, Yang, Li, et al., 2019). Crop production function is a 
quantitative description of crop water requirement and yield (Chen, Marek, 
Marek, Porter, Brauer, & Srinivasan, 2021), which can determine the economic 
water demand index of crops scientifically (Wang, Meng, & Chen, 2019). With 
the development of artificial intelligence technology in recent years, a series of 
artificial neural network technologies and algorithms have emerged (Nguyen, 
Nguyen, Vranova, Nguyen, Bui, & Khieu, 2021). These technologies and me-
thods can carry out the construction of non-linear relationships and complex 
logical operations. They are used in prediction, model construction, dynamic 
simulation and pattern recognition (Fan & Zhang, 2021). A strong advantage has 
been exerted in the research. This paper selects the irrigation amount, precipita-
tion and yield of winter wheat at the Wuqiao Scientific Observation and Expe-
rimental Station of the Ministry of Agriculture of the Chinese Ministry of Agri-
culture. Fitting the water requirement and yield of winter wheat based on artifi-
cial neural networks, and choose the best method that fits the water requirement 
and yield of winter wheat. 

2. Material and Methods 
2.1. Overview of Research Sites 

The Wuqiao Scientific Observation and Experimental Station for Crop Water 
Efficient Water of the Ministry of Agriculture was selected as the research sites. 
The experimental station is located in Cangzhou City (37˚41'N, 116˚37'E), Hebei 
Province, China. The station belonging to the Heilonggang Basin of the Haihe 
Plain, average elevation of the station is 14 meters to 23 meters, the groundwater 
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level in the station is about 6 m to 9 meters, the annual precipitation is 550 mm, 
64% of the annual precipitation is concentrated in summer, and the climate type 
is warm temperate monsoon climate, the annual average temperature of the re-
search site is 12.5˚C. The agricultural planting structure is simple relatively, the 
main planting crop is winter wheat and maize rotation. The growing season of 
winter wheat is from October of last year to September of this year, and the 
growing season of maize is from mid-June to the end of September (Zhao, 2014). 

2.2. Date Acquisition and Overview 

The yield of winter wheat depends on the water requirement and fertilizer in 
each growth period. The available water for winter wheat in the North China 
Plain mainly comes from irrigation and natural precipitation. From October of 
2013 to June of 2016, there are three complete winter wheat growth periods. The 
irrigation water treatment of winter wheat was divided into single irrigation 
mode, two irrigation mode and three irrigation mode. For the above three win-
ter wheat growth periods, the irrigation water volume from the sowing period to 
the jointing period, the jointing period to the flowering period and the flowering 
period to the maturity period were counted respectively. A total of 41 sets of ir-
rigation water and yield data were obtained (Xu, 2018). The experimental data 
was shown in Figure 1. It can be seen from the figure that the amount of irriga-
tion water from the sowing stage to the jointing stage is the least in winter wheat 
productive period. The amount of irrigation water from the jointing stage to the 
flowering stage is greater generally than that from the sowing stage to the joint-
ing stage. At the same time, for 41 different irrigation treatments, the yield of 
winter wheat ranges from 7000 kg/hectare to 10,000 kg/hectare. 
 

 

Figure 1. Date of irrigation volume and yield of winter wheat 41 groups. 
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Based on meteorological data from China Meteorological Data Network, the 
precipitation in the research station from October of 2013 to June of 2016 was 
counted (Xu, 2018). The precipitation data was shown in Table 1. The table 
shows three precipitation of different period of winter wheat. For three growth 
period, the precipitation between sowing period and jointing period is 19 mm to 
53 mm, the precipitation between jointing period and flowering period is 29 mm 
to 60 mm, the precipitation between flowering period and maturity period is 25 
mm to 50 mm. The precipitation between jointing period and flowering period 
is the most period, the precipitation between sowinging period and jointing pe-
riod is the minimal period. 

3. Model Establishment 

There are many fitting methods for water requirement and yield of winter 
wheat. Support vector machine (SVM) can provide good generalization ability, 
and has the advantages of versatility, robustness, effectiveness, and simple calcu-
lation. The characteristic of the BP neural network optimized by the thought 
evolution algorithm is to divide the group into a winning subgroup and a tem-
porary subgroup, which can memorize multiple generations of information, and 
can adopt a parallel computing structure. The GRNN network structure is rela-
tively simple, and good results can be obtained by using only cross-validation to 
optimize the smoothing parameters of the radial basis function used. This paper 
uses support vector machine (SVM), thought evolution algorithm to optimize 
BP neural network and generalized regression neural network (GRNN) to fit the 
water requirement and yield of two crops. 

3.1. Support Vector Machines (SVM) 

From the perspective of linear separable model classification, the main idea of 
SVM is to select an optimal decision hyperplane to maximize the distance be-
tween the two types of samples on both sides of the plane, thereby providing 
good generalization capabilities for classification problems. When using SVM fit, 
it was necessary to adjust the relevant parameters, including the penalty factor c 
and the kernel function parameter g (Wang, Zhang, & Yao, 2021). 

In order to obtain an ideal prediction classification accuracy rate, the common 
method was the cross-validation method. The original data was grouped, one 
part was used as the training set and the other part was used as the validation 
set. The training set was used to train the classifier and the validation set.  
 
Table 1. Precipitation in different growth periods. 

Date 
Precipitation (mm) 

Sowing -jointing period Jointing-flowering period Flowering-maturity 

2013-2014 48 60 50 

2014-2015 19 38 25 

2015-2016 53 29 40 

https://doi.org/10.4236/gep.2021.94003


W. B. Jia et al. 
 

 

DOI: 10.4236/gep.2021.94003 25 Journal of Geoscience and Environment Protection 
 

The classification accuracy obtained was used as the performance index of the 
classifier. The group of c and g that make the training set verification classifica-
tion accuracy rate was the best, then the group of c and g was selected as the best 
parameters, and when the classification accuracy rate was the same, the smallest 
c was selected first to prevent the over-learning state from occurring, in order to 
realize the classification of different samples, it is usually necessary to use the 
classification hyperplane. Equation (1) is the classification hyperplane of support 
vector machines 

( ) , 0f x w x b= < > + =                       (1) 

Note that , ,n n nx R w R b R∈ ∈ ∈ , w is normal vector of classification hyper-
plane.  

Equation (2) is the corresponding classifier of support vector machines 

( ) ( ), , sgn ,f x w b w x b= < > +                    (2) 

Note that sgn is symbolic function. Overall flow chart of SVM regression 
model was shown in Figure 2. First select the dependent variable and the effect 
variable according to the model assumptions, then cross-validation selects the 
best parameters for regression, then train SVM with the best parameters, the last 
fit prediction. 

3.2. Generalized Regression Neural Network (GRNN) 

The generalized regression neural network has a strong nonlinear mapping abil-
ity, a flexible network structure and a high degree of Fault tolerance and robust-
ness, suitable for solving nonlinear problems. The neural network is suitable for 
standardizing the detection data. Diagram of generalized regression neural net-
work structure was show in Figure 3. 
 

 

Figure 2. Overall flow chart of SVM regression model. 
 

 

Figure 3. Diagram of generalized regression neural network structure. 
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The generalized regression neural network protects the input layer, model 
layer, summing layer and output layer (Krutikov, Meltsov, Lapitsky, & Rostovt-
sev, 2020). The dimension of the input layer is n, and the linear function is the 
transfer function. The pattern layer is fully connected with the input layer, and 
there is no connection in the layer. The number of neurons in the pattern layer is 
equal to the number of samples, that is, n and the transfer function is a radial 
basis function. The summation layer outputs the sum of the nodes of each mode 
layer. The output layer is the final output of the network. 

3.3. Thinking Evolutionary Algorithm Optimizes BP Neural  
Network (MEA-BP) 

The BP neural network has a multi-layer feedforward neural network, the signal 
is propagated forward, and the error is transmitted backward. According to the 
predicted error, the weight and threshold of the network are adjusted in real 
time, so that the predicted value is constantly close to the expected value. The 
core of the Mind Evolutionary Algorithm (MEA) is similar to the evolutionary 
process of human thinking. It is a new type of evolutionary algorithm derived 
from the genetic algorithm. On the basis of retaining the genetic algorithm, two 
new types of convergence and alienation are proposed. The operator of through 
convergence, alienation and other operations, continuous iteration makes the 
predicted value and the expected value gradually approach (Feng, Wei, Zhang, 
Zhang, Zhang, & Jia, 2019). 

Evolutionary algorithm optimizes BP neural network was show in Figure 4. 
After obtaining sample data, the algorithm will generate an initial population, a 
winning subpopulation, and a temporary subpopulation. The subpopulations 
perform convergence operations to obtain mature subpopulations, and then 
perform alienation operations to obtain the overall situation. The optimal indi-
vidual uses this individual as the weight and threshold for training the BP neural 
network, so that the BP neural network obtains the predicted value at a faster 
rate and accuracy. 
 

 

Figure 4. Diagram of evolutionary algorithm optimizes BP neural network structure. 
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4. Results 

To verify the generalization capability of the three different constructed model, 
Error，Relative Error，Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), Nash-Sutcliffe (NS) and R Squared (R2) were selected to indicate the 
performance of the different models.  

4.1. Fitting Results Based on SVM 

The 29 sets of water requirement and yield data were used for data preprocess-
ing. Through cross-validation, the best parameters of c and g were 11.3137 and 
0.50 respectively. The best parameter SVM is used for training and fitting pre-
diction. The fitting error and relative error obtained are shown in Figure 5 and 
Figure 6, respectively. It can be seen from the figure that the change trend of the 
fitted value and the actual value is basically the same, but there is a sample with a 
large deviation between the predicted value and the actual value. The maximum 
error is 851.38 kg/hectares, the minimal error is 23.15 kg/hectares, and the 
maximum relative error is 9.78%, the minimal relative error is 0.25%. The rela-
tive error of fitting for 89% of the samples is controlled within ±5%. 
 

 

Figure 5. Fitting error based on SVM. 
 

 

Figure 6. Fitting relative error based on SVM. 
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4.2. Fitting Results Based on GRNN 

The data was preprocessed using 41 sets of water requirement and output test 
data. Through cross-validation, the best spread value was obtained as 0.1. GRNN 
was established with the best parameters and fitted predictions were made. By 
comparison the actual value and the fitted value, the fitting error and relative 
error of 16 sets of test data were show in Figure 7 and Figure 8. It can be seen 
from the figure that except for one of the fitted values is smaller than the actual 
value, the others are larger than the actual value, and the trend of the fitted value 
and the actual value is basically consistent. The maximum error is 812.50 
kg/hectares, the minimal error is 48.85 kg/hectares, and the maximum relative 
error is 10.23%, the minimal relative error is 0.55%. The relative error of fitting 
for 87.5% of the samples is controlled within ±5%. 

4.3. Fitting Results Based on MEA-BP 

Optimized the BP neural network based on the thought evolution algorithm, 
using 25 sets of water requirement and output test data to randomly generate in-
itial populations, cross-convergence operation to obtain the winning subpopula-
tion and temporary subpopulation, obtain the optimal weight or threshold value  
 

 

Figure 7. Fitting error based on GRNN. 
 

 

Figure 8. Fitting relative error based on GRNN. 

https://doi.org/10.4236/gep.2021.94003


W. B. Jia et al. 
 

 

DOI: 10.4236/gep.2021.94003 29 Journal of Geoscience and Environment Protection 
 

and perform BP neural network training, and then pass the trained BP neural 
network, the fitting of 17 sets of water requirement and production was per-
formed. 

The error and relative error of the 17 sets of test data fitting and the compari-
son of the actual value and the fitted value are shown in Figure 9 and Figure 10 
respectively. It can be seen from the figure that the change trend between the fit-
ted value and the actual value is similar. The fitted value is generally larger than 
the actual value, but there are several samples with larger deviations from the 
fitted value than the actual value. The maximum error value is 1132.54 
kg/hectares, the minimal error is 7.89 kg/hectares. The maximum relative error 
is 13.32%, and the minimal relative error is 0.08%. The relative error of fitting 
for 76.5% of the samples is controlled within ±5%. 

4.4. Performance Comparison of Different Models 

The results of performance comparison for three artificial neural networks mod-
els are shown in Table 2. The RMSE of the predicted and true values of the three 
models are 7.45 kg/hectares, 346.21 kg/hectares and 431.10 kg/hectares respec-
tively. The MAE of the predicted and true values of the three models are 213.64 
kg/hectares, 346.21 kg/hectares and 431.10 kg/hectares respectively. The NS of 
predicted and true values of the three models are 0.8086, 0.6844 and 0.5431 re-
spectively. The R2 of predicted and true values of the three models are 0.8086, 
0.6844 and 0.5431 respectively. Consideration of four model evaluation indica-
tors, it can be known that the performance indicators of the SVM algorithm  
 

 

Figure 9. Fitting error based on MAE-BP. 
 
Table 2. Comparison of fitting accuracy of three models. 

Model type 
Fitting accuracy 

RMSE MAE NS R2 

SVM 7.45 213.64 0.8086 0.9409 

GRNN 346.21 275.16 0.6844 0.7810 

MAE-BP 431.10 361.81 0.5431 0.5600 
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Figure 10. Fitting relative error based on MAE-BP. 
 
model are better than those of GRNN and MAE-BP neural network. SVM model 
can predict the non-linear relationship between winter wheat water requirement 
and yield very well. 

5. Conclusion 

This paper takes winter winter wheat from the Wuqiao Scientific Observation 
and Experiment Station in the North China Plain as the research crop. The win-
ter winter wheat in the experiment station was irrigated once, irrigated twice and 
irrigated three times throughout the growth periods from October 2013 to June 
2016. A total of 41 sets of winter wheat irrigation and yield data were obtained 
from these experiments. At the same time, A total of 9 sets of precipitation were 
obtained from the meteorological data. Finally, 41 sets of winter wheat water 
requirement and yield data were obtained. 

The support vector machine, generalized regression neural network and 
thought evolution algorithm optimize the BP neural network were constructed. 
Three neural models were used to fit 41 groups of winter wheat water require-
ment and yield, and the fitting accuracy of the three models was obtained. A 
comprehensive comparison of the four fitting accuracy indicators shows that the 
support vector machine is the most suitable model for the winter wheat water 
requirement and yield fitting of the experimental station. 
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