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Abstract 

The properties of the first eigenvalue of a class of ( ),p q  Laplacian are in-
vestigated. A variational formulation for the first eigenvalue of the Laplacian 
on a closed Riemannian manifold is obtained. This eigenvalue corresponds to 
a nonlinear, coupled system of p-Laplacian partial differential equations. The 
main idea is to investigate the evolution of the first eigenvalue of the system 
under the Ricci harmonic flow. It is also possible to construct monotonic 
quantities based on them and study their evolution which is done. 
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1. Introduction 

The eigenvalue problem which arises from geometric operators under various 
kinds of geometric flows has attracted a great deal of attention recently, as it is a 
very effective method of studying Riemannian manifolds. This area of investiga-
tion opened up when Perlman [1] showed that a functional depending on scalar 
curvature is nondecreasing along the Ricci flow coupled to a type of heat equa-
tion [2] [3]. This property of the functional implies that the first eigenvalue of a 
geometric operator is nondecreasing under Ricci flow. The geometric operator 

cR−∆ +  has also been studied with regard to its eigenvalues along the Ricci 
flow and Ricci-Bourguignon flow as well. The evolution of the first eigenvalue 
has been looked at in the case of the p-Laplacian along a Ricci-harmonic flow, 
and the Ricci flow and the m-th mean curvature flow respectively [4] [5]. There 
is a generalization of the p-Laplacian to a class of ( ),p q -Laplacian which has 
applications in applied mathematics and physics [6] [7]. 

A geometric flow is an evolution of a geometric structure relevant to a given 
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manifold. Let mM  be a closed, m-dimensional Riemannian manifold that has 
metric g . Hamilton first introduced the Ricci flow by means of the differential 
equation 

( ) ( )( ) ( ) 0Ric , 0 .
g t

g t g g
t

∂
= − =

∂
                 (1) 

In (1), t  is an evolution parameter and Ric  is the Ricci tensor of metric ( )g t . 
Lowered indices are understood to apply in (1) so that ( ) ( )ijg t g t= . Let ( ),mM g  
and ( ),nN σ  be two closed Riemannian manifolds. By Nash’s embedding theorem, 
it may be assumed that nN  is isometrically embedded into Euclidean space 

( ) 1: ,n n
Ni N σ +→  . Identify maps : m nM Nϕ →  with : m d

Ni Mϕ →   for 
sufficiently large d . Then a generalization of Ricci flow can be established as fol-
lows, 

( ) ( )( ) ( )

( )

0

0

2Ric 2 , 0 ,

, 0 .g

g t
g t g g

t

t

α ϕ ϕ

ϕ ϕ ϕ ϕ

∂
= − + ∇ ⊗∇ =

∂
∂

= =
∂


          (2) 

In (2), α  is a positive constant, ( )tϕ  is a family of smooth maps from 
mM  to a closed target manifold nN  and ϕ  is the intrinsic Laplacian of ϕ  

which denotes the tension field of ϕ  with respect to the evolving metric ( )g t . 
This system of evolution equations will be called the Ricci flow coupled to a 
harmonic flow. It has been shown that (2) has a unique solution with the initial 
data ( )0 0,g ϕ . It is also useful to define a normalized Ricci-harmonic flow de-
fined as 

( ) ( )( ) ( ) ( ) ( )

( )

0

0

22Ric 2 , 0 ,

, 0 .g

g t
g t r t g t g g

t m

t

α ϕ ϕ

ϕ ϕ ϕ ϕ

∂
= − + ∇ ⊗∇ + =

∂
∂

= =
∂


     (3) 

The variable ( )r t  in (3) is called the average of 2R α ϕ− ∇  with respect to 
mM , and defined as 

( )2 d
.

d
M

M

R
r

α ϕ µ

µ

− ∇
=
∫

∫
                     (4) 

When integrating over the manifold, we simply write M , and dµ  is the 
volume form or measure on mM . Under normalized Ricci flow, the volume of 
the solution metrics remains constant with respect to t. 

2. Definition of the Eigenvalue Problem 

Let ( ),mM g  be a closed Riemannian manifold and let : mf M →   be a smooth 
function on the manifold so suppose ( )1, pf W M∈ . The Laplace-Beltrami opera-
tor which acts on a smooth function f defined on mM  is the divergence of the 
gradient of f, 
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( )
( )1 det .

det
i jf g f

g
∆ = ∂ ∂                   (5) 

where we have set i
i f f x∂ = ∂ ∂ . The p-Laplacian of f is defined for 1 p< < ∞  

as 

( ) ( ) ( )( )2 2 4div 2 Hess , ,p p p
p f f f f f p f f f f− − −∆ = ∇ ∇ = ∇ ∆ + − ∇ ∇ ∇   (6) 

where ( )( ) ( )( )Hess , ,f X Y f X Y= ∇ ∇ , where ,X Y  are vector fields on mM . 
In local coordinates, 

( )( )Hess , .k
i j i j ij kf f f∂ ∂ = ∂ ∂ −Γ ∂                  (7) 

When 2p =  the p-Laplacian becomes the Laplace-Beltrami operator. Let 

( ),mM g  be a closed Riemannian manifold. To present the problem, consider 
the following nonlinear system of equations on mM  

( ) ( )1, 1,

,

,

, .

p

p

p q

u u v v

v u v u

u v W M W M

α β

α β

λ

λ

∆ =

∆ = −

∈ ×

                    (8) 

In (8), 1p >  and 1q >  and ,α β  are positive real numbers which satisfy 
the condition 

1 1 1.
p q

α β+ +
+ =                         (9) 

It is said that λ  in (8) is an eigenvalue for the system whenever for some 
( )1,

0
pu W M∈  and ( )1,

0
qv W M∈  it is the case that 
2

2

, d d ,

, d d .

p

M M
q

M M

u u u v v

v v u v u

α β

α β

φ µ λ φ µ

ψ µ λ ψ µ

−

−

∇ ∇ ∇ =

∇ ∇ ∇ =

∫ ∫
∫ ∫

            (10) 

The functions ( )1, pW Mφ ∈ , ( )1,qW Mψ ∈  and ( )1,
0

pW M  is the closure of 
( )0C M∞  in the Sobolev space ( )1, pW M . The set of functions ,u v  are called 

the eigenfunctions which correspond to the eigenvalue λ . A first positive ei-
genvalue of (8) can be determined by computing 

( ) ( ) ( ) ( ) ( ){ }1, 1,
0inf , : , , , 1 .p qA u v u v W M W M B u v∈ × =         (11) 

In (11), ( ),A u v  and ( ),B u v  are defined to be 

( )

( )

1 1, d d ,

, d .

p q

M M

M

A u v u v
p q

B u v u v uvα β

α βµ µ

µ

+ +
= ∇ + ∇

=

∫ ∫

∫
           (12) 

Let ( ) ( )( ), ,mM g t tϕ  be a solution of the RHα  flow (1) on the smooth ma-
nifold ( )0 0, ,mM g ϕ  with [ )0,t T∈ . Then 

( ) 1 1d dp q

M M
t u v

p q
α βλ µ µ+ +

= ∇ + ∇∫ ∫             (13) 

defines the solution of an eigenvalue of (8) under the variation of ( ) ( )( ),g t tϕ . 

https://doi.org/10.4236/apm.2021.114015


P. Bracken 
 

 

DOI: 10.4236/apm.2021.114015 208 Advances in Pure Mathematics 
 

The eigenfunctions associated to ( )tλ  are normalized such that ( ), 1B u v = . 
The first eigenvalue of a class of ( ),p q -Laplacians given in (8) is studied 

such that its metric satisfies the flow. Let us denote differentiation with respect 
to t as tu t u u′∂ ∂ = ∂ = , and introduce tensor   and its trace 

2Ric , ,g S Rα ϕ ϕ α ϕ= − ∇ ⊗∇ = − ∇              (14) 

where R is the Ricci scalar curvature. 

3. Variational Formulation 

Some useful evolution equations for ( )tλ  under the Ricci harmonic flow will 
be formulated. In particular, a useful result concerning the variation of the first 
eigenvalue (8) under the Ricci harmonic flow is considered next. 

Theorem 1: Let ( ) ( )( ),g t tϕ  with [ )0,t T∈  be a solution of the Ricci har-
monic flow on the closed manifold mM . Let ( )tλ  be the first eigenvalue of the 
( ),p q -Laplacian along this flow. For any [ )0 1, 0,t t T∈  such that 1 0t t> , we 
have 

( ) ( ) ( ) ( ) ( )( )1

0
1 0 , , d .

t

t
t t g u vλ λ τ τ τ τ≥ + ∫               (15) 

The integrand is given by 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

2

2

, , 1 , , d

1 , , d

1 1d d .

p

M
q

M

p q

M M

g t u t v t u u u u u

v v v v v

u v
p q

α µ

β µ

α βµ µ

−

−

′= + ∇ ∇ + ∇ ∇ ∇

′+ + ∇ ∇ + ∇ ∇ ∇

+ +
− ∇ − ∇

∫
∫

∫ ∫

 

    (16) 

Proof: Let us put 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 1, , d d .

p q
g tg t g tM M

G g t u t v t u t v t
p q

α βµ µ+ +
= ∇ + ∇∫ ∫   (17) 

suppose that at 1t  we assign ( ) ( ) ( )( )1 1 1 1, ,u v u t v t=  be the eigenfunctions cor-
responding to the eigenvalue ( )1tλ  for the ( ),p q -Laplacian. Define the fol-
lowing smooth functions along the Ricci harmonic flow as follows, 

( )
( )( )
( )( )

( )( )

( )
( )( )
( )( )

( )( )1 2 1 1 2 1

1 1
1 1

det det
, .

det det
ij ij

ij ij

g t g t
h t u k t v

g t g t

α β α β+ + + +
   
   = =
   
   

  (18) 

Furthermore, functions ,u v  can be defined along this flow according to the 
equations 

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )( )

1

1

,
d

.
d

p

M

q

M

h t
u t

h t k t h t k t

k t
v t

h t k t h t k t

α β

α β

µ

µ

=

=

∫

∫

             (19) 

In (19), the functions ( )u t  and ( )v t  are smooth functions under the Ricci 
harmonic flow and they satisfy the condition 
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d 1.
M

u v uvα β µ =∫                       (20) 

Now ( ) ( )( )1 1,u t v t  are the eigenfunctions of the eigenvalue ( )1tλ  for the 
( ),p q -Laplacian at time 1t , that is, ( ) ( ) ( ) ( )( )1 1 1 1, ,t G g t u t v tλ = . The follow-
ing formula will be needed, which arises from the fact that 

.
jk

ij jk
ij

ggg g
t t

∂∂
= −

∂ ∂
                     (21) 

With (21), (3) can be expressed in components using (14) as 

2 .
lk

ijli jk li jk
ij

gg g g g g
t t

∂∂
= − =

∂ ∂
                  (22) 

Hence, if f is a smooth function with respect to t, then along the Ric-
ci-harmonic flow, we find that 

( ) 2d 2 .
d 2

p pij ij
i j i j

pf g f f g f f f
t t

−∂ ′∇ = ∇ ∇ + ∇ ∇ ∇ ∂ 
       (23) 

Substituting the result from (22), we have 

( ) ( )( )2d , , .
d

p pf p f f f f
t

− ′∇ = ∇ ∇ ∇ + ∇ ∇            (24) 

The measure dµ  also depends on t through g and has derivative 

1d Tr d d .
2 g

g S
t t
µ µ µ∂ ∂ = = − ∂ ∂ 

                 (25) 

Since ( )u t  and ( )v t  are smooth functions so too is ( ) ( ) ( )( ), ,G g t u t v t  
with respect to t. Let us write 

( ) ( ) ( )( ) ( ) ( ) ( )( )d, , , , .
d

g t u t v t G g t u t v t
t

=             (26) 

Using (24) and (25) with f replaced by u and v, it follows that, 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

2

2

, , 1 , , d

1 , , d

1 1d d .

p

M
q

M

p q

M M

g t u t v t u u u u u

v v v v v

u S v S
p q

α µ

β µ

α βµ µ

−

−

′= + ∇ ∇ + ∇ ∇ ∇

′+ + ∇ ∇ + ∇ ∇ ∇

+ +
− ∇ − ∇

∫
∫

∫ ∫

 

    (27) 

Integrating both sides of (26) with respect to t between 0t  and 1t , it follows 
that 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1

0
1 1 1 0 0 0, , d , , , , ,

t

t
g u v G g t u t v t G g t u t v tτ τ τ τ = −∫   (28) 

where [ )0 0,t T∈  and 1 0t t> . since it is the case that  
( ) ( ) ( )( ) ( )0 0 0 0, ,G g t u t v t tλ≥ , then setting ( ) ( ) ( ) ( )( )1 1 1 1, ,t G g t u t v tλ =  in 

(28), it is seen that (15) follows immediately with ( ) ( ) ( )( ), ,S g t u t v t  satisfying 
(16).  

Theorem 2: Let ( ) ( )( ), ,mM g t tϕ  be a solution of the Ricci-harmonic flow 
on the smooth, closed manifold ( )0 0, ,mM g ϕ  and let ( )tλ  denote the evolu-
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tion of the first eigenvalue under the flow. Suppose that { }min ,p qκ =  and on 
[ )0,mM T×  it holds that 

1 0.Sg
κ

− ≥                         (29) 

If ( )min 0 0S ≥  then ( )tλ  is nondecreasing and differentiable almost eve-
rywhere along the Ricci-harmonic flow (2) on [ )0, .T  

Proof: For any [ )1 0,t T∈  let ( ) ( )1 1,u t v t  be the eigenfunctions corres-
ponding to the value ( )1tλ  of the ( ),p q -Laplacian. Then there is the norma-
lization condition 

( ) ( ) ( ) ( ) ( )1 1 1 1 d 1.g tM
u t v t u t v t

α β
µ =∫               (30) 

Thus (16) is given by 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

2
1 1 1

2

, , 1 , , d

1 , , d

1 1d d .

p

M
q

M

p q

M M

g t u t v t u u u u u

v v v v v

u v
p q

α µ

β µ

α βµ µ

−

−

′= + ∇ ∇ + ∇ ∇ ∇

′+ + ∇ ∇ + ∇ ∇ ∇

+ +
− ∇ − ∇

∫
∫

∫ ∫

 

   (31) 

Differentiating the normalization condition and using (25), we get 

( ) ( )1 d 1 d d 0.
M M M

u v u v u v uv u v uvα β α β α βα µ β µ µ′ ′+ + + − =∫ ∫ ∫   (32) 

The results in (10) imply that by replacing function φ  by u′  and ψ  by 
v′ , one obtains 

( )

( )

2
1

2
1

, d d ,

, d d .

p

M M
q

M M

u u u t u v u v

v v v t u v uv

α β

α β

µ λ µ

µ λ µ

−

−

′ ′∇ ∇ ∇ =

′∇ ∇ ∇ =

∫ ∫
∫ ∫

          (33) 

Multiply the first equation in (33) by 1α +  and the second by 1β +  and 
then add the two, then we obtain that 

( )( ) ( )( )

( ) ( )
1 1

2 2

1 d 1 d

1 , d 1 , d .
M M

p q

M M

t u v u v t u v uv

u u u v v v

α β α βλ α µ λ β µ

α µ β µ− −

′ ′+ + +

′ ′= + ∇ ∇ ∇ + + ∇ ∇ ∇

∫ ∫
∫ ∫

    (34) 

Multiply (32) by ( )1tλ  and then subtract the resulting expression from (34), 

( ) ( )

( )

2 2

1

1 , d 1 , d

d 0.

p q

M M

M

u u u v v v

t u v Suvα β

α µ β µ

λ µ

− −′ ′+ ∇ ∇ ∇ + + ∇ ∇ ∇

− =

∫ ∫
∫

     (35) 

Substituting (35) into   given in (31), we have 

( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )

1

2

2

, , d

11 , d d

11 , d d .

M

p p

M M

q q

M M

g t u t v t t S u v uv

u u u u S
p

v v v v
q

α βλ µ

αα µ µ

ββ µ µ

−

−

=

+
+ + ∇ ∇ ∇ − ∇

+
+ + ∇ ∇ ∇ + ∇

∫

∫ ∫

∫ ∫







  (36) 

Substitute the hypothesis given in (29) into (36) to yield the inequality 
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( ) ( ) ( )( )

( )

( ) ( )

( )

1 1 1

2
1

2

1

, ,

1d d

1 1 1d d d

1 1d 1 d

1 11 d .

pij
i jM M

p q qij
i jM M M

p

M M

q

M

g t u t v t

t S u v uv Sg u u u

p pu S Sg v v v v S
p q

t S u v uv u S
p

v
q

α β

α β

αλ µ µ
κ

α µ µ µ
κ

λ µ α µ
κ

β µ
κ

−

−

+
≥ + ∇ ∇ ∇

+ + +
− ∇ + ∇ ∇ ∇ − ∇

 
= + + − ∇ 

 
 

+ + − ∇ 
 

∫ ∫

∫ ∫ ∫

∫ ∫

∫



 (37) 

Using the definition of   from (14) and the two known results 

2 2 212 2 , ,ij g ij
S S S
t m

α ϕ∂
= ∆ + + ≥

∂
               (38) 

it follows that since 0α >  the last term in (38) is positive the lower bound re-
sults 

22 ,S S S
t m

∂
≥ ∆ +

∂
                       (39) 

Thus S is a supersolution of the partial differential equation  
( ) 22Q t Q m Q∂ ∂ = ∆ + . To be able to use the maximum principle, it has to be 

observed that the solution to the equation 

( ) ( ) ( ) ( )2
min

d 2 , 0 0 ,
d
y t

y t y S
t m

= =                (40) 

is exactly the function 

( ) ( )

( )
min

min

0
,

21 0

S
y t

S t
m

=
−

                    (41) 

for [ )0,t T ′∈ , where ( ){ }minmin , 2 0T T m S′ = . Applying the maximum prin-
ciple to (39), it must be that ( )S y t=  along the Ricci-harmonic flow. If 

( )min 0 0S ≥  the nonnegativity of S is preserved along the flow and (37) has the 
property, 

( ) ( ) ( )( )1 1 1, , 0.g t u t v t ≥                    (42) 

In any small neighborhood of 1t  then it also holds that  
( ) ( ) ( )( ), , 0g t u t v t ≥ . So it follows that for any 0 1t t<  sufficiently close to 1t , 

( ) ( ) ( )( )1

0
, , d 0.

t

t
g u vτ τ τ τ >∫                   (43) 

Since [ )1 0,t T∈  is arbitrary, the first part of the claim is complete. For diffe-
rentiability of ( )tλ  note that as ( )tλ  is increasing and continuous on the in-
terval [ )0,T , the Lebesgue theorem implies that function ( )tλ  is differentia-
ble almost everywhere on [ )0,T . Thus the proof is complete.  

4. Ricci Flows 

A smooth eigenvalue function can be introduced along the Ricci harmonic flow. 
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Evolution equations can be developed for this. Let mM  be an m-dimensional 
closed Riemannian manifold and let ( )g t  be a smooth solution of the flow. In-
troduce a function which depends on u, v and ( )g t  which satisfy the three 
integral constraints 

d 1, d 0, d 0.
M M M

u v uv u v v u v uα β α β α βµ µ µ= = =∫ ∫ ∫      (44) 

In terms of u and v, let us introduce the function 

( ) 1 1, , d d .p q

M M
u v t u v

p q
α βλ µ µ+ +

= ∇ + ∇∫ ∫            (45) 

With respect to the variable t, ( ), ,u v tλ  is a snooth eigenvalue type function. 
In the case where ,u v  are the corresponding eigenfunctions corresponding to 
the first eigenvalue ( )1tλ , then ( ) ( )1, ,u v t tλ λ= . In this case, (45) gives the ei-
genvalue directly without going through the process indicated in (11). This leads 
us to formulate the following Proposition which can be proved along exactly the 
same lines as the two proceeding results. 

Proposition 1: Let ( ) ( )( ), ,mM g t tϕ  be a solution of the Ricci harmonic 
flow on the smooth closed manifold ( )0 0, ,mM g ϕ . If ( )tλ  denotes the evolu-
tion of the first eigenvalue under this flow, then 

( ) ( )

( ) ( )

( ) ( )

1

2

2

d , , d
d

11 , d d

11 , d d .

M

p p

M M

q q

M M

u v t t S u v uv
t

u u u u S
p

v v v v S
q

α βλ λ µ

αα µ µ

ββ µ µ

−

−

=

+
+ + ∇ ∇ ∇ − ∇

+
+ + ∇ ∇ ∇ − ∇

∫

∫ ∫

∫ ∫





   (46) 

Here u and v are the associated normalized evolving eigenfunctions.  
At this point we can start to study the evolution of ( )tλ  under the norma-

lized flow (3), which is similar to what has already been done. 
Theorem 3: Let ( ) ( )( ), ,mM g t tϕ  be a solution of the normalized Ricci 

harmonic flow on a smooth closed manifold ( )0 0, ,mM g ϕ . If ( )tλ  denotes the 
evolution of the first eigenvalue under the flow (3), then 

( ) ( ) ( ) ( )

( ) ( )

( )

( )

1

2
1

2

1

1

, , d 1 , d

11 , d d

1 1d d

1 d ,

p
t t M M

q q

M M

p p

M M

q

M

u v t t S u v uv u u u
t

v v v v S
q

u S r t u
p m

r t v
m

α βλ λ µ α µ

ββ µ µ

α αµ µ

β µ

−

=

−

∂
= + + ∇ ∇ ∇

∂
+

+ + ∇ ∇ ∇ − ∇

+ +
− ∇ − ∇

+
− ∇

∫ ∫

∫ ∫

∫ ∫

∫




  (47) 

in which ,u v  are the associated evolving, normalized eigenfunctions for the 
problem. 

Proof: In the normalized case start by differentiating the first integrability 
condition in (44) with respect to the parameter to find 
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( ) ( )

( )

1 d 1 d

d .

p q p q

M M
q q

M

u v u v u v uv

r t S u q uv

α µ β µ

µ

′ ′+ + +

= − +

∫ ∫
∫

          (48) 

To get the right-hand side, Equation (25) has to be modified to 

( )1 1 2d Tr d Tr d d .
2 2 ij ij

g S r g r S
t t m
µ µ µ µ∂ ∂   = = − + = −   ∂ ∂   

      (49) 

Hence the t derivative of λ  is given by 

( )

( )

( )

( ) ( )

1

2

2

, ,

1 22 , 2 , ,
2

d

1 (2 , 2 , d .
2

t t

p

M

p

q q

M

u v t
t

p u u u u u r u u
p m

u r S

q v v v v v v r S
q

λ

α

µ

β µ

=

−

−

∂
∂

+   ′= ∇ ∇ ∇ + ∇ ∇ − ∇ ∇  
 

+ ∇ − 


+  ′+ ∇ ∇ ∇ + ∇ ∇ + ∇ − 
 

∫

∫





   (50) 

For the normalized Ricci flow, the following relation holds, 

( ) ( )

( ) ( ) ( )

2

1 1 1

1 , d 1 , d

d .

p q

M M

M

u u u v v v

t r t t S u v uvα β

α µ β µ

λ λ µ

−′ ′+ ∇ ∇ ∇ + + ∇ ∇ ∇

= − +

∫ ∫
∫

      (51) 

Now replacing (51) in (50), we obtain the result 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

1

2 2

2 2

1 1 1

1

11 , d d

11 , d d

1 1d d

d .

p p

M M
t t

q q

M M

p q

M M

M

ru u u u S u
t m p

rv v v v S v
m q

r t u v t r t
p q

t S u v uvα β

λ αα µ µ

ββ µ µ

α βµ µ λ

λ µ

−

=

−

∂ + = + ∇ ∇ − ∇ − ∇ ∂  

+ + + ∇ ∇ − ∇ ∇ − ∇ 
 

 + +
+ ∇ + ∇ − 

 

+

∫ ∫

∫ ∫

∫ ∫

∫




 (52) 

The first term of the third line in result (52) is just ( )1tλ , so this term cancels 
with the second in that same line and what remains is exactly the desired result 
(47).  

Theorem 4: Let ( ) ( )( ), ,mM g t tϕ  be a solution of the Ricci harmonic flow 

on the smooth closed manifold ( )0 0, ,mM g ϕ  and ( )tλ  denotes the evolution 

of the first eigenvalue under the flow. If { }min ,p qκ =  and 

1 0,S g
κ

− >                         (53) 

on [ )0,mM T×  with ( )min 0 0S > . Then the quantity ( ) ( )
2

min
21 0

m

t S t
m

λ  − 
 

 

is nondecreasing along the flow on [ )0,T  where ( ) ( ){ }minmin 2 0 ,T m S T= . 

Proof: It has been shown that 
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( ) ( )

( ) ( )

( ) ( )

1 1
d , , d
d

11 , d d

11 , d d .

t t M

p p

M M

q q

M M

u v t t S u v uv
t

u u u u
p

v v v v
q

α βλ λ µ

αα µ µ

ββ µ µ

=
=

+
+ + ∇ ∇ ∇ − ∇

+
+ + ∇ ∇ ∇ − ∇

∫

∫ ∫

∫ ∫





   (54) 

Using condition (53), the following bound is produced 

( )

( ) ( )

( )

1

1

2

1

d 1 1d d d
d

1 1d d

1 1d 1 d

1 11 d .

p p

M M M
t t

q

M M

p

M M

q

M

t S u v uv S u S u
t p

S v S v
q

t S u v uv S u
p

S v
q

α β

α β

λ α αλ µ µ µ
κ

β βµ µ
κ

λ µ α µ
κ

β µ
κ

=

+ +
> + ∇ − ∇

+ +
+ ∇ − ∇

 
= + + − ∇ 

 
 

+ + − ∇ 
 

∫ ∫ ∫

∫ ∫

∫ ∫

∫

 (55) 

If ( )min 0 0S >  then (41) implies that positivity of S persists under this type of 
flow. Using (20) we have therefore, 

( ) ( ) ( )

( )

( ) ( )

( )

1

min
1

min 1

min
1

min 1

0d , , d
2d 1 0

0
.

21 0

t t M

S
u v t t u v uv

t S t
m
S

t
S t

m

α βλ λ µ

λ

=
≥

−

=
−

∫

        (56) 

Then in any sufficiently small neighborhood about the value 1t t= , it can be 
concluded that 

( ) ( ) ( )

( )
min

min

0d , , , , .
2d 1 0

S
u v t u v t

t S t
m

λ λ≥
−

              (57) 

This is a separable equation, so integrating inequality (57) with respect to t 
over the interval [ ]0 1,t t I⊂ , 

( )

( )
1 1

0 0

min

min

0d d .
21 0

t t

t t

S
t

S t
m

λ
λ

>
−

∫ ∫                   (58) 

Integrating we obtain 

( ) ( )( )
( ) ( )( )

( )

( )

min 11 1 1

0 0 0
min 0

21 0, ,
log log .

2, , 1 0

S tu t v t t m
u t v t t S t

m

λ

λ

 −   
  ≥       − 

 

          (59) 

Since ( ) ( )( ) ( )1 1 1 1, ,u t v t t tλ λ=  and ( ) ( )( ) ( )0 0 0 0, ,u t v t t tλ λ≥ , it is con-
cluded that 

( )
( )

( )

( )

2

min 1
1

0
min 0

21 0
log log .

21 0

m

S tt m
t S t

m

λ
λ

−
 −  

≥        − 
 

             (60) 
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This implies that the function ( ) ( )
2

min
21 0

m

t S t
m

λ  − 
 

 is nondereasing on 

any sufficiently small neighborhood of 1t . Since 1t  is arbitrary, we conclude 

that ( ) ( )
2

min
21 0

m

t S t
m

λ  − 
 

 is nondecreasing along this flow over the interval 

[ )0,T .  

Now if α  is taken to be zero, then the Ricci harmonic flow reduces to the 
Dirac flow and the theorem implies that the following Corollary can be stated. 

Corollary 1: Let ( )g t  for [ )0,t T∈  be a closed Riemannian manifold mM  
such that ( )tλ  denotes the first eigenvalue of the ( ),p q -Laplacian With 

{ }min ,p qκ =  and condition (53) in effect along the Ricci flow, then (a) If 
( )min 0 0R ≥  then ( )tλ  is nondecreasing along the Ricci flow for any [ )0,t T∈ . 

(b) If ( )min 0 0R >  then the quantity ( )( ) ( )min1 0R t tλ−  is nondecreasing along 
the Ricci flow for any [ )0,t T ′∈  where we define ( ){ }minmin ,1 0T T R′ = .  

If we simply work with two-dimensional manifolds or surfaces, then the fol-
lowing result must hold. 

Theorem 5: Let ( ) ( )( ),g t tϕ  with [ )0,t T∈  be a solution of the Ricci har-
monic flow on a closed Riemannian surface mM  and let ( )tλ  denote the first 
eigenvalue of the ( ),p q -Laplacian (8). (1) Suppose that { }min ,p qκ =  and 

( )Ric 0R gκ− ≥  along the Ricci flow. If ( )min 0 0S > , the function 
( )( ) ( )min1 0S t tλ−  is nondecreasing along the flow for any [ )0,t T∈ . If 

( )min 0 0S > , the function ( )( ) ( )min1 0S t tλ−  is nondecreasing along the Ric-
ci-harmonic flow on [ )0,T ′  where ( )( )minmin ,1 0T T S′ ′= . (2) Suppose that 

2ϕ κ ϕ ϕ∇ ≥ ∇ ⊗∇ . If ( )min 0 0S ≥  then ( )tλ  is nondecreasing along the Ric-
ci-harmonic flow for any [ )0,t T∈ . If ( )min 0 0S >  the quantity  

( )( ) ( )min1 0S t tλ−  is nondecreasing along this flow on [ )0,T ′  where 
( ){ }minmin ,1 0 .T T S′ ′=  

Proof: In the case of two dimensional manifolds, the tensor Ric takes the sim-
ple form, 

.
2ij ij
RR g=                          (61) 

Consequently, we can calculate that 

( )2

2

1
2

1 1 .
2

ij ij ij ij i j ij

ij i j ij

S Rg g R g

Rg g

α ϕ ϕ α ϕ
κ κ

αα ϕ ϕ ϕ
κ κ

= − = − ∇ ∇ − − ∇

 = − − ∇ ∇ + ∇ 
 

 
       (62) 

For any vector w, then we can contract ij  with the iw  to get 

( )22 2 2

2 2 2

1 1
2
1 1 1 1 .
2

i j i
ij iw w R w w w

R w w

αα ϕ ϕ
κ κ

α ϕ
κ κ

 = − − ∇ + ∇ 
 
   ≥ − + − ∇   
   


         (63) 

If Ric ε ϕ ϕ≥ ∇ ⊗∇  where ( ) ( )2 1 2ε α κ κ≥ − − , then 2R ε ϕ≥ ∇ , hence 
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using ε  and simplifying, we have 

2 21 1 1 1 0.
2

i j
ij w w wε α ϕ

κ κ
    ≥ − + − ∇ ≥        

           (64) 

Now with Ricij ij i jα ϕ ϕ= − ∇ ∇  and 2S R α ϕ= − ∇ , 

( ) ( )

2

2 2 2

2 2 2 2 2

2 2

1Ric

1 1 0.
2

i j i j
ij ij

i j i
ij i

i j
ij

i j
ij

Sw w w w w

w w w R w

RR w w w w w

RR w w w R w

κ

α ϕ α ϕ
κ

α αϕ ϕ
κ κ κ

κ κ

= −

= − ∇ − − ∇

≥ − ∇ − + ∇

 = − = − ≥ 
 

 

       (65) 

To get the second last inequality in (65), use has been made of ijR  in (61) for 
the two-dimensional case. The result now follows by using Theorems 2 and 4.  

Corollary 2: Let ( )g t , [ )0,t T∈  be a solution of the Ricci flow on a closed 
Riemannina surface mM  and ( )tλ  denotes the first eigenvalue of the ( ),p q - 
Laplacian (8). (1) If ( )min 0 0R ≥  then ( )tλ  is nondecreasing along the Ricci 
flow for any [ )0,t T∈ . (2) If ( )min 0 0R > , then the quantity ( )( ) ( )min1 0R t tλ−  
is nondecreasing along the Ricci flow for any [ )0,t T ′∈  where  

( ){ }minmin ,1 0T T R′ ′= .  
As an illustration of these ideas, let ( )0,mM g  be an Einstein manifold so 

there exists a constant β  such that ( )0 0Ric g gβ=  and suppose  

( ) ( )0, ,n mN M gσ =  so 0ϕ  is the identity map. Assuming that ( ) ( ) 0g t c t g= , 
( )0 1c =  is a function and the fact ( ) ( )0tϕ ϕ=  is a harmonic map for all 
( )g t , then the Ricci-harmonic flow reduces to 

( ) ( )2 2 , 0 1.
c t

c
t

β α
∂

= − + =
∂

                  (66) 

The solution for ( )c t  of the initial value problem is given by 

( ) ( )2 2 1.c t tβ α= − + +                     (67) 

The solution of the flow remains Einstein and so we have, 

( ) ( ) ( ) ( )

( )
( )

0

2

Ric ,
2 1

.
2 1

g t g g t
t

m
S R

t

β αα ϕ ϕ β α
β α

β α
α ϕ

β α

−
= − ∇ ⊗∇ = − =

− − +

−
= − ∇ =

− − +



     (68) 

By (46), we find that 

( ) ( ) ( ) ( )( )
1

d , , 1 d 1 d .
d 2 1

p q
t t M M

u v t u v
t t
λ β α α µ β µ

β α=

−
= + ∇ + + ∇
− − + ∫ ∫   (69) 

If it is assumed that p q≤  then for α β≤  and [ )1 0,t T ′′∈  where  
( )( ){ }min 1 2 ,T Tβ α′′ = − , we have 

( ) ( ) ( )
1 1

1

d , , .
d 2 1t tu v t t

t T
λ β α λ

β α=

−
≥
− − +

              (70) 
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In any sufficiently small neighborhood of 1t , 

( ) ( )d , , .
d 2 1

u v t
t t
λ β α λ

β α
−

≥
− − +

                 (71) 

Integrating this inequality with respect to t on [ ]0 1,t t , we find that 

( ) ( )( )
( ) ( )( )

( )
( )

2
1 1 1 1

00 0 0

, , 2 1
ln ln .

2 1, ,

pu t v t t t
tu t v t t

λ β α
β αλ

−
 − − +

≥   − − + 
          (72) 

As [ )1 0,t T ′′∈  is arbitrary, ( ) ( )( ) ( )1 1 1 1, ,u t v t t tλ λ=  and  
( ) ( )( ) ( )0 0 0 0, ,u t v t t tλ λ≥ . It can be concluded from this that  

( ) ( )( ) 2
2 1

p
t tλ β α− − +  is nondecreasing along the Ricci-harmonic flow on  

[ )0,T ′′ . 

5. Summary 

The main results here have been to define a p-Laplacian eigenvalue problem and 
to find a way to study the evolution of the first eigenvalue under the Ricci flows 
established in Equations (2) and (3). It has also been found that flows for some 
related quantities can also be studied. This work will provide a foundation for 
the study of similar problems in the future. 
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