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Abstract 

It is customary to apply Newton’s cooling as the standard model investigating 
the temperature profile of a hot substance exposed to a cool ambient. The rate 
of change of temperature in Newton’s model is simplistically related to li-
near-temperature difference of the two e.g. [1]. In our research flavored in-
vestigation, we consider a fresh model, cooling that depends to the difference 
of temperature-squared conducive to similar results. Utilizing a Computer 
Algebra System (CAS), especially Mathematica [2] we show the equivalency 
of the two. 
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1. Introduction, Motivations and Goals 

We consider a thermo-physics problem that its proposed solution augments the 
traditional methodology routine providing a variant analyzing the cooling 
process in general. The proposed practical problem poses as: How long it takes a 
hot object exposed to cold ambient reach a certain temperature? The traditional 
solution of this problem relies on Newton’s cooling as discussed in textbooks 
and frequently online published references e.g. [1] [3] [4]. The rate of change of 
temperature is set in proportion to the linear-temperature difference of the time 
varying temperature of the hot object and the ambient. The simplicity of the 
model is appealing. Its mathematical analysis conducive to a reasonable temper-
ature profile is convincing as well. Textbooks and published articles are flooded 
with hypothetical numeric man-made examples. The lack of correspondence 
between the model and data makes the model less unique. In other words, alter-
native cooling mechanisms may also be proposed. In this research flavored ar-
ticle, we have considered a fresh logical model. As it is shown in the next section 
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the output of the analysis is as good as the Newton’s cooling. Although on the 
face our model mathematically is different from the Newton’s model but in the 
conclusions section, we show within a reasonable approximation these two may 
be considered comparable. 

2. Physics of the Problem and Its Proposed Solution 

We begin with the well-known Newton’s cooling model. The scenario is a hot 
object with initial given temperature is exposed to a colder surrounding at lower 
constant temperature. The temperature difference of the two runs the heat flow 
changing the temperature over time. To determine the temperature profile, it is 
written,  

Model 1, Newton’s cooling 

( ) ( )
d

d a

T t
k T t T

t
= − −   ,                     (1) 

where T(t) is the time-dependent temperature of the hot object, Ta is the cooler 
constant ambient temperature and k is the proportionality constant. Straight 
forward solution of this trivial ODE without utilizing a CAS is,  

( ) ( )e kt
a i aT t T T T −= + − ,                    (2) 

here, Ti is the initial temperature of the hot object. 
The value of the k may be determined e.g., utilizing Equation (2) by assigning 

temperature to the hot object at a certain intermediate state. This is a routine 
procedure practiced in references. For instance, the hot object is a brownie or a 
pie with initial temperature hot out of the oven at 350˚F. The ambient tempera-
ture, e.g., kitchen is at 75˚F. Furthermore, we envision the brownie within 15 
minutes cools to a 150˚F. Equation (2) utilizing this data yields the k-value of k = 
0.086 minutes−1. To determine the time needed to cool the brownie to eatable 
temperature, e.g., 80˚F, we set T(t) = 80 and applying Mathematica solving Equ-
ation (2) we arrive at t = 46.6 minutes. 

values={Ti→350, Ta→75, Tf→80}; 
rightSide1=(Ta + (Ti − Ta)E−k1t)/.k1→0.086/.values; 
t1=Solve[rightSide1==Tf/.values,t]; 
{{t→46.59}}. 
So, the time needed to wait to eat the brownie is 46.6 minutes. The values is 

the list of the mentioned temperatures needed to run the Mathematica code. To 
furthering the analysis, it is insightful plotting the temperature profile conducive 
to visual display of the temperature profile and the graphic solution of the Equa-
tion (2). 

plotT1=Plot[{80, rightSide1}, {t, 0, 120}(*, AxesOrigin→{0, 60}*), PlotS-
tyle; 

→{{Black, Dashing[0.01]}, Black}, AxesLabel; 
→{"t(minutes)", "Tem(F)"}, GridLines; 
→Automatic, PlotRange→{0,All}]. 
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Figure 1 displays the exponential decay temperature of the cooling object. It 
also shows the crossing of the expression given by Equation (2) with the aimed 
80 degrees temperature. The abscissa of the intersection is about 46 minutes. The 
tail of the profile is flat with the value approaching to the ambient ultimate tem-
perature.  

The numeric waiting period, 46.6 minutes is the result based on the applied 
assumed mentioned intermediate state namely, { }15 minutes,150 F . Of course, 
one might assign different set of temperature and time to the intermediate state 
leading to different waiting periods. We craft a robust code capable of striving 
the same final desired temperature, Tf utilizing various intermediate states. 
These are tabulated in Table 1.  

The second column is the desired targeted common Tf, the third column is 
the coordinate of the paired intermediate states, {time, temperature} yielding 
evaluating the k-value. And the fourth column is the required waiting period. As 
shown and logically making sense the waiting period (fourth column) increases 
as the time coordinate of the intermediate state increases with its paired lowered 
temperature. 
 

 
Figure 1. Plots of the temperature profile of cooling of the hot object (solid black), and 
the constant final aimed temperature (dashed black), respectively. 
 
Table 1. Waiting periods and their associated intermediate states. 

 80˚ F data time (minutes) 

1 80 15,150 46.26 

2 80 16,148 48.34 

3 80 17,143 48.75 

4 80 18,139 49.47 

5 80 20,130 49.79 
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Model 2, A fresh Idea. 
Intrigued by the simplicity of the Newton’s cooling model we propose a va-

riant cooling mechanism. The lack of data justifying the validity of the Newton’s 
model sets opportunities considering alternate models. We consider a scenario 
where the rate of change of temperature is in proportion to the squared-temperature 
difference of the specimen and the surrounding.  

( ) ( )2 2d
d a

T t
k T t T

t
 = − −  ,                    (3) 

Notations are the same as Equation (1). At the first attempt applying Mathe-
matica to solving Equation (3) yields a complicated symbolic output; it is a 
hyperbolic trigonometric function! However, by inspection it is obvious that it 
can be manipulated to a solvable expression. Replacing the RHS of Equation (3) 
applying partial fraction we write,  

2 2

1 1 1 1
2 a a aa T T T T TT T

 
= − − +−  

,                 (4) 

therefore, each term of the RHS may be integrated directly yielding an expres-
sion for the k, and T(t), namely, 

( )
( )

1 1 ln
2

a i a

a a i a

T t T T T
k

t T T t T T T
 − +

= −  
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,                (5) 
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,                      (6) 

where the two constants are, 

{ }, , 2i a
a

i a

T T
kT

T T
 −

=  
+ 

β α ,                   (7) 

Utilizing the same input data as used in Model 1, Equation (5) yields the value 
for ( ) 10.00029 minutes Fk −= ⋅ . Applying the k value, we then determine the 
values of the two constants given by Equation (7) yielding the temperature pro-
file, Equation (6). Solving Equation (6) applying the same coordinate used in 
Model 1 applying Mathematica we arrive at t = 67.8 minutes.  

T=Solve[Evaluate[Ta(1 + βE−αt)/(1 − βE−αt)==Tf/.values], t]. 
{t→67.81}. 
This shows according to our model it will take 21.2 minutes longer than the 

Model 1 to get to the target temperature.  
It is insightful plotting the temperature profile of the Models together to observe 

the similarities and the differences of the models. This is shown in Figure 2.  
It appears our model, Model 2, has a little sharper decay rate at the beginning 

and later on it decays somewhat softer vs. the Model 1. Overall, the temperature 
profile as shown has the correct mathematical behavior, it decays exponentially, 
and its tail asymptotically reaches the ambient temperature as expected. This is 
an important feature. More on this in the Conclusions. These two models also  
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Figure 2. The solid red curve is the temperature profile of Model 2, Equation (5). The 
black curve is the profile of Model 1, Equation (2). 
 
have the same common coordinate at the imposed intermediate state shown by 
the crossing coordinate of the two. Figure 2 may be utilized reading off the in-
tersection of the temperature of Model 2 with the targeted Tf, the dashed black 
line yielding to the approximate time given by the code of the last paragraph. 

3. Discussions and Conclusions 

We began by considering the Newton’s cooling mechanism as being the “gold 
standard” of cooling process within the context of the problem at hand. In this 
model the rate of change of temperature of a hot specimen is set in proportion to 
the linear-temperature difference between the specimen and the ambient. Solu-
tion of the simple ODE describing the process is conducive to temperature pro-
file, i.e., the graph of the temperature of the hot specimen vs. time. Literature 
search reveals the same cooling mechanism identically is applied to the same 
physics problem at least twice. What distinguishes the difference of these refer-
ences is the applied CAS to solving the implied ODE! Reference [5] applies Ma-
thematica while [6] utilizes Maple! However, neither one of these references as 
well as e.g. [1] [3] [4] suggest a fresh, new physical cooling mechanism. This 
“gold standard”, The Newton’s cooling mechanism needs to be tested against 
data! The lack of data makes the mechanism vulnerable to establishing basis to 
proposing fresh mechanisms. Our current proposal falls in the latter category.  

Inspired by the simplicity of Newton’s process we assume the rate of change 
of temperature of the specimen is in proportion to the squared-temperature dif-
ference of the two. 

As mentioned in the text we think the compatibility of these two models 
should have been expected. The reason is the RHS of our model given by Equa-
tion (3) can be written as, 

( ) ( )a aT t T T t T− +                              (8) 
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The first term of Equation (8) is the Newton’s cooling model and the second 
term may be considered as an “average”. To a degree and for the sake of argu-
ment if we assume the “average” does not fluctuate severely utilizing our model 
should yield to about the Newton’s result, as it does. Although tempted to apply 
a CAS to solve the needed equation, i.e., Equation (3) as we have shown with 
straight forward algebraic manipulation, we were able to solve the equation 
longhand deducing a simple analytic equation describing T(t), i.e., the tempera-
ture profile. Our investigation shows alternate potential models such as, 

( ) aT t T−  and ( )n n
aT t T−  for n > 2 yield to non-physical temperature pro-

files. Also, we note that a common assumption about the unchangeable temper-
ature of the ambient because of its large heat capacity is just. Our proposed 
model gives an acceptable temperature profile, yielding to agreeable result as the 
Newton’s model. Especially, the temperature profile decays exponentially, and 
its tail asymptotically reaches the ambient temperature. The other tested men-
tioned models lack these features. In our analysis we have shown simple long-
hand calculation yields the needed output. The numeric computation and 
graphs are carried out utilizing Mathematica. To this end interested readers may 
find [7] [8] resourceful.  
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