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Abstract 
The detection of Oracle Bone Inscriptions (OBIs) is one of the most funda-
mental tasks in the study of Oracle Bone, which aims to locate the positions 
of OBIs on rubbing images. The existing methods are based on the scheme of 
anchor boxes, involving complex network design and a great number of anc-
hor boxes. In order to overcome the problem, this paper proposes a simpler 
but more effective OBIs detector by using an anchor-free scheme, where shape- 
adaptive Gaussian kernels are employed to represent the spatial regions of 
different OBIs. More specifically, to address the problem of misdetection 
caused by regional overlapping between some tightly distributed OBIs, the 
character regions are simultaneously represented by multiscale Gaussian ker-
nels to obtain regions with sharp edges. Besides, based on the kernel predic-
tions of different scales, a novel post-processing pipeline is used to obtain ac-
curate predictions of bounding boxes. Experiments show that our OBIs de-
tector has achieved significant results on the OBIs dataset, which greatly out-
performs several mainstream object detectors in both speed and efficiency. 
Dataset is available at http://jgw.aynu.edu.cn. 
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1. Introduction 

Oracle Bone Inscriptions (OBIs) are of the oldest and the most mysterious an-
cient characters in china, which record a large number of unknown ancestors’ 
lives, thoughts, and social states about 3600 years ago. They are very important 
historical materials for understanding the emergence and development of an-
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cient China. The cues of OBIs’ locations are valuable for the interpretation of 
these ancient characters. Therefore, the detection of OBIs is of the most funda-
mental tasks in the field of Oracle Bone study, which tries to locate the positions 
of OBIs on rubbing images. At present, few people pay attention to the automat-
ic detection of OBIs, and OBI experts have to locate the OBIs only according to 
their knowledges and experiences, which is rather boring and time-consuming. 
In this paper, we mainly focus on the automatic detection of OBIs and attempt 
to explore a simple but efficient method to find out the precise positions of OBIs 
on rubbing images. 

Currently, there are only a few methods for the OBIs detection task in the field 
of image processing. For example, Meng [1] build a single-stage OBIs detector 
via extending SSD300 to SSD1024. Wang [2] introduced a region-based full 
convolutional network and proposed a novel auxiliary detection algorithm based 
on character recognition, which can help the detection model reduce the false 
positive of cracks. In our earlier works [3] [4], we also did some simple explora-
tions on the OBIs detection. We applied several state-of-art object detection 
models on OBIs dataset and compared and analyzed their detection results. 
Later, based on the statistical characteristics of the characters in scale size, we 
redesigned the size and aspect ratio of the anchor and proposed and Spatial Block 
to stabilize the features and alleviate noise interference during training.  

Although these methods have achieved good detection results on the OBIs da-
taset, there are still certain limitations in accuracy and efficiency. First, due to 
the lack of character-level class labels in the OBIs dataset, the semantic informa-
tion of the character is not easily captured through position regression. So, some 
special characters may be mis-detected by the detection model, for example, 
some compound characters composed of multiple parts are easily mis-detected 
as multiple characters, as shown in Figure 1(Left). Similarly, multiple charac-
ters are also easy to be detected as a compound character, as shown in Figure 
1(Right). Second, most algorithms are based on the scheme of anchor boxes, 
which involve complex network design and the need for a large number of anc-
hor boxes, such as the number of anchor boxes in DSSD [6] exceeds 40 k and the 
number in RetinaNet [7] exceeds 100 k. To some extent, it reduces the detection 
efficiency of the detection model. In this work, our main goal is to explore a 
simpler OBIs detector and improve the detection accuracy. 

We are motivated by the recently proposed CRAFT (Character Region Aware-
ness for Text Detection) [8]. This work uses adaptively shaped Gaussian kernel 
to represent character region, where the detection of the text instances is con-
verted to the prediction of the corresponding Gaussian map. Thus, it not only 
bypasses the need for anchor boxes but also enables the detection model to learn 
character spatial regions. In our work, we follow the formulation that represents 
the Oracle Bone Character region by adaptively shaped Gaussian kernel and di-
rectly outputs the Gaussian prediction of character region, as shown in Figure 2. 
However, experiments show that Gaussian kernel representation has good per-
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formance only when dealing with character regions that are not rigidly bounded 
and it is prone to regional overlapping for some tightly distributed oracle cha-
racters, as shown in Figure 3. To overcome this problem, we represent a single 
character using Gaussian kernels of multiple scales simultaneously, where the 
smaller the scale, the larger the margin between the character regions, and then 
based on these kernel predictions, a progressive scale expansion strategy is used 
to obtain accurate character bounding boxes. Experimental results show that, 
compared to some state-of-art object detectors, our character detector based on 
multi-scale Gaussian kernels have achieved more accurate results on the OBIs 
dataset. The main contributions of this work are summarized as follows: 
 

 
Figure 1. Examples of false detection of Faster R-CNN [5]. The red and blue boxes indi-
cate the predicted and ground truth bounding boxes respectively. 

 

 
Figure 2. Visualization of the character detection based Gaussian kernel representation. 
Left: Heatmaps predicated by our proposed framework. Right: Segmentation result based 
on the heatmaps predicated. 
 

 
(a)                                   (b) 

Figure 3. Outputs by our proposed framework when only using single scale Gaussian 
kernel. (a) and (b) indicates Heatmaps with not rigidly bounded and tightly distributed 
between characters. 
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• We firstly propose an anchor-free detector for OBIs detection. The detector 
uses the Gaussian kernel to represent the character spatial region, which not 
only bypasses the need for anchor boxes, but also enables the detection model 
to learn character spatial regions.  

• To overcome the problem of misdetection caused by regional overlapping 
between some tightly distributed oracle characters, we represent character 
region using Gaussian kernels of multiple scales simultaneously, and then 
based on these kernel predictions, character regions with sharp edges are ob-
tained in the way of progressive scale expansion. 

• Experiments show that compared to some state-of-art object detectors, our 
character detector based on multi-scale Gaussian kernels representation has 
achieved excellent detection results in accuracy and efficiency on the OBIs 
dataset. 

2. Related Work 
2.1. Traditional Object Detection Methods 

In the early days, most object detection methods [9] [10], adopted the detection 
routes of Sliding Window or Connected Components Analysis. Based on the 
Sliding Window method, windows of different scales are usually used to densely 
slide on the input image and meanwhile, the content of each window is classified 
by a classifier or rules made by people. The methods based on Connected Com-
ponents Analysis usually first obtain the selected connected regions through a 
variety of ways (e.g., color clustering or extreme region extraction) and then fil-
ter out non-object regions in the candidate region based on some artificially de-
signed rules. As one of the most successful detection methods, [11] uses Haar 
features and Adaboost [12] to train a series of cascaded classifiers for face detec-
tion, achieving high efficiency and satisfactory accuracy. DPM [13] is another 
popular method that had maintained the best results on PASCAL VOC [14] for 
many years. It uses a mixture of multi-scale deformable part models to represent 
highly variable object classes. Later, some methods further improved the accu-
racy of object detection based on knowledge of morphological operations [15], 
conditional random fields [16] and graphs [17]. 

2.2. Object Detection in Deep Learning 

Motivated by the thriving of deep learning-based object [18] or text [19] detec-
tion architectures, we thought that oracle characters as a particular object could 
get benefits from these fields. There are two main trends in the field of object 
detection: two-stage and one-stage. 

Two-stage approaches divide the object detection task into two stages: gene-
rates ROIs (Region of Interesting) and then classify and regress the ROIs.  

Two-stage approach was introduced and popularized by R-CNN [20]. It ge-
nerates ROIs using a low-level vision algorithm and then uses a DCN-based re-
gion-wise classifier to classify the ROIs independently. Later, SPP-Net [21] and 
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Fast-RCNN [22] improve R-CNNs by extracting ROIs from the feature maps. 
However, both still rely on separate proposal algorithms and cannot be trained 
end-to-end. Faster-RCNN [5] is allowed to be trained end-to-end by introducing 
RPN (region proposal network). RPN generates proposals from a set of pre-deter- 
mined candidate boxes, usually known as anchor boxes, which not only makes 
the detectors more efficient but also allows the detectors to be trained end-to- 
end. Mask-RCNN [23] further improves the efficiency of Faster-RCNN by add-
ing a mask prediction branch and can thereby detect objects and predict their 
masks at the same time. Other works focus on the architecture design, the con-
textual relationship, improving speed.  

One-stage approaches remove the ROIs extraction process and directly clas-
sify and regress the candidate anchor boxes. 

YoLo [24] uses a single feed-forward convolutional network to directly predict 
object classes and locations, which is extremely fast. After that, YoLov2 [25] 
further improves YoLo by using more anchor boxes and a new bounding box 
regression method. DSSD [6] and RON [2] adopt networks similar to the Hour-
glass Network [26], enabling them to combine low-level and high-level features 
via skip connections to predict bounding boxes more accurately. RefineDet [27] 
refines the locations and sizes of the anchor boxes twice, exploiting the merits of 
both one-stage and two-stage approaches. CornerNet [28] and CenterNet [29] 
are other keypoint-based approaches that directly detect an object using a pair of 
corners. Although these methods achieve high performance, it still has room for 
improvement. 

2.3. Related Works of OIBs Detection 

Up to now, there are only a few methods for the OBIs detection task in the field 
of image processing. Meng [1] build a single-stage OBIs detector via extending 
SSD300 to SSD1024. Wang [2] introduced a region-based full convolutional 
network and proposed a novel auxiliary detection algorithm based on character 
recognition, which can help the detection model reduce the false positive of 
cracks. In our earlier works [3] [4], we also did some simple explorations on 
OBIs detection. We applied several state-of-art object detection models on the 
OBIs dataset and compared and analyzed their detection results. Later, based on 
the statistical characteristics of the characters in scale size, we redesigned the size 
and aspect ratio of the anchor and proposed the Spatial Block to stabilize the 
features and alleviate noise interference during training. 

However, most of these methods are only a few simple explorations by mi-
grating some classic object detection models slightly modified to the OBIs data-
set. Thus, there are still certain limitations in accuracy and efficiency. As men-
tioned above, most algorithms are based on the scheme of anchor boxes, which 
involve complex network design and the need for a large number of anchor boxes. 
Secondly, some special characters (such as compound characters) may be mis- 
detected by the detection model. In this work, our main goal is to explore a 
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simpler OBIs detector and improve the detection accuracy.  

3. Methodology 
3.1. The Pipeline of Our Character Detection Model 

Our character detection model regards oracle bone characters as special key 
points, which aims to predict complete and separated character regions. The 
overall data stream of the model is shown in Figure 4. Firstly, the rubbing input 
IO passes through a convolutional neural network to predict a feature map  

H W C
FI R × ×∈  that incorporates multi-layer context information of feature maps. 

The feature map IF is mapped to n branches by the region prediction module 
whose output are used to generate n  scale region maps 1 2, , , nS S S� , where 
each iS  represents a character region score map of scale size. 1S  represents the 
character region prediction of the minimal scale, and nS  represents the character 
region prediction of the maximal scale. Finally, based on these obtained mul-
ti-scale Gaussian region predictions, the final accurate character bounding boxes 
are obtained after a series of simple post-processing operations. 

3.2. Architecture of Detection Network 

The OBIs detector uses the Hourglass Network [26] as its basic backbone. The 
Hourglass Network is a fully convolutional neural network with a cascade struc-
ture, which is composed of one or more Hourglass modules. The Hourglass 
module is similar to a lightweight encoding and decoding network, which down 
samples the input features through a series of convolution and maximum pool-
ing, and then restores to the original resolution through a series of up sampling 
and convolutional layers. To reduce the loss of details caused by the max-pooling 
operation, skip connections are used to bring the details back to the up-sampling 
feature. Besides, a single hourglass module can capture global and local features 
in a unified structure. When multiple hourglass modules are stacked in the net-
work, the Hourglass model can reprocess features to obtain higher-level infor-
mation. 

 

 
Figure 4. The overall structure of the OBIs detector based on multi-scale Gaussian kernels. 
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In our character detector, we stack two Hourglass modules and make a few 
modifications to the overall Hourglass network. Specifically, before the features 
are input to the Hourglass module, we use a convolutional layer with stride 2 
and a 3 × 3 convolution to replace the 7 × 7 convolution in the original network, 
which can scale the input image to 1/2 size. Similarly, in the Hourglass module, a 
3 × 3 convolution with stride 2 is used to replace the maximum pooling in the 
original module to down-sample the input features. At the end of the Hourglass 
module, we continue to add an up-sampling layer to restore the output to the 
original input resolution. 

3.3. Loss Functions 

The overall loss function of the OBIs detection model is expressed as follows: 

( )1FullMap ZoomMapL L Lλ λ= + −                     (1) 

where FullMapL  and ZoomMapL  represent the loss of character region instance 
with complete shape and multiple shrinking character region instances respec-
tively, and λ is used to balance the weight of FullMapL  and ZoomMapL . 

( ) ( )( ),FullMap PixL L S p S p∗=                     (2) 

where p  represents the coordinate position of a pixel. ( )S p  represents the 
predicted character region score with complete shape, and ( )S p∗  represents 
the corresponding ground truth score. 

( ) ( )( ) ( ) ( )
2

2
,Pix pL T p T p T p T p∗ ∗= −∑                (3) 

( ) ( )( )1
1 ,N

ZoomMap Pix i iiL L Z p Z p− ∗
=

= ∑                  (4) 

where N represents the number of scales, ( )iZ p  represents the predicted cha-
racter region score of the scale i , and ( )iZ p∗  represents the ground truth 
score of the scale i . 

In addition to the character features, there is a lot of disturbance on the rub-
bing image that is very similar to character features, such as background noise 
and cracks. To enable the detection model to learn to distinguish these patterns, 
Online Hard Negative Mining [30] (OHEM) is applied to enforce the 1:3 ratio of 
positive and negative pixels in the detection loss FullMapL .  

3.4. Ground Truth Label Generation  

For each training image, we generate the ground truth label of the region score 
with complete shape and n  shrinking using character-level bounding boxes 
provided by the OBIs dataset, as shown in Figure 5. The detailed steps are as 1) 
According to character level bounding boxes provided by the OBIs dataset, fol-
lowing the shrinking principle in [8], setup n  shrinking pixel spacing  

{ }1 2, , , nD d d d= � . 2) Based on the shrinking spacing D, shrink inward along 
the original bounding boxes to obtain n  bounding box sets of different scales. 
3) Prepare a 2D isotropic Gaussian kernel. 4) Calculate the perspective trans-
formation matrixM between the Gaussian kernel and each character box. 5) 
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Based on the perspective transformation matrixM, warp Gaussian map to the 
box area.  

3.5. Inference  

During inference, the detection model finally outputs n  character region maps 
of different scales. In this section, we briefly describe how to predict the accurate 
character level bounding box based on the region score maps. 

The key of the post-processing pipeline is a scale extension algorithm from 
[31], which adopts a novel progressive extension strategy to detect dense scene 
text. It uses the adjacent relationship between Gaussian heatmaps of different 
scales to gradually expand from the text region with the minimal kernel to the 
maximal kernel with complete shape. On this basis, we added some additional 
steps and a few modifications to suit our character detection task. We first per-
form a simple pre-processing on the original multi-scale gaussian map predic-
tion and reduce the noise in the gaussian map through some morphological op-
erations (opening operation, distanceTransform). Secondly, for the separated 
character regions K obtained by the scale extension algorithm, we calculated 
their connected components C and assigned different labels Label. Finally, based 
on these assigned Label, the minimum enclosing rectangle of each connected 
component is calculated to obtain the final accurate bounding box. The func-
tions like connectedComponents, morphologyEx, and minAreaRect provided by 
Opencv can be applied for this purpose. The details are shown in Algorithm 1. 
 

 
Figure 5. The generation process of ground truth label. 
 
Algorithm 1. Post-processing pipeline of detection model. 

Input: Kernel predictions { }1 2, , , nZ Z Z Z= �  
Output: Bounding box list L 
Function prediction (Z) 
1) Initialize a set of zero arrays { }1 2, , , nM M M M= �  
2) While 1i =  to n  do 
3) If ( )iZ p δ>  Then ( )iM p True=  // δ  is a threshold with value of 0.35 
4) ( )M morphologyEx M←  
5) ( )K scaleExpanded M←  
6) ( ),C Label connectedComponents K←  
7) ( ),L minAreaRectByLabel C Label←  
8) return L 
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4. Experiments 

4.1. Oracle Bone Inscriptions Dataset 

In this paper, all experiments are based on the OBIs dataset provided by the Key 
Laboratory of the Ministry of Education for Oracle Information Processing, An-
yang Normal University. The dataset focuses on the task of OBIs detection and it 
mainly includes two parts: the number of oracle bone rubbing image collected 
from the OBIs literature collection using a high-resolution scanner, which is up 
to 9500 pieces, and the bounding box of characters level by hand-made. Differ-
ent from the general natural scene image, the rubbing image mainly has the fol-
lowing characteristics: 

High noises: Oracle bone rubbing, as the main carrier of OBIs, was buried in 
the ruins of Anyang for a long time and was not discovered until 120 years ago. 
Therefore, there is inevitably a certain degradation on the rubbing appearance. 
The most significant of these is a large amount of noise on the rubbing. These 
noises have different rules and are densely distributed on the rubbing image, 
which brings great challenges to the task of OBIs detection. 

Cracks: Due to the burial environment and private excavations, many of the 
unearthed oracle bone rubbing have been broken, and various cracks have ap-
peared on the surface of the rubbing. These cracks are very similar to character 
characteristics in texture, and it is easy to mistake for oracle bone characters. 

Distribution: The characters on the same rubbing image are of different sizes, 
different directions, and random distribution. Besides, in the 56,743 oracle bone 
rubbing, there are 1425 words. Among them, there are 366 common characters, 
500 not usually used, and 559 rare.  

There are up to 9500 oracle rubbing records on OBIs dataset. In this experi-
ment, the training set, validation set, and test set contain 8287, 436, and 411 data 
records respectively. 

4.2. Experimental Environment 

In this experiment, the source code of all models is based on the Pytorch deep 
learning framework and trained on the four Nvidia TITAN X GPUs. Especially, 
due to the lack of character category information in the OBI dataset, the class- 
agonistic strategy is adopted. By default, all characters are treated as a single 
category, and the same category label is assigned. During training, the rubbing 
image is scaled to 512 × 512 resolution, and the Adam optimizer is used to up-
date and optimize the parameters. We start Adam at the learning rate of 0.0001, 
and use 0.9 momentum and 0.0001 weight decay empirically.  

4.3. Evaluation Indicators 

We mainly evaluate the overall performance of the character detection model 
from the perspective of efficiency and accuracy. The three indicators of network 
weight parameters, floating-point calculation, and inference speed are used to 
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evaluate the overall detection efficiency of the model. Precision (P), Recall (R), 
and F-Measure (F) has commonly used measurement indicators in mainstream 
object detection methods to measure the detection accuracy of the model. The 
calculation formulas of these indicators are as follows: 

TPP
TP FP

=
+

                           (5) 

TPR
TP FN

=
+

                           (6) 

2 P RF
P R
∗ ∗

=
+

                           (7) 

where TP, FP and FN represent Ture Positive, False Positive, False Negative re-
spectively.  

4.4. Ablation Experiments 

The validity of Gaussian kernel representation: In addition to Gaussian 
kernels that can be used to represent character regions, binary mask is another 
option. To compare the difference between the two represents, we simply com-
pare the character detection model (using only a single scale Gaussian kernel) 
with the state-of-art semantic segmentation model DeepLabv3 [32]. Specifically, 
we roughly divide the rubbing image into foreground and background regions 
according to the principle that whether the pixels are inside the character level 
box annotation provided by the OBIs dataset and then use the trained segmenta-
tion model directly to predict the foreground character regions. The visualiza-
tion of these models’ output results is shown in Figure 6. The binary mask 
represents the character regions using discrete values without distinction and the 
obtained prediction results have more regional overlapping. On the contrary, the 
Gaussian kernelencodes the character region based on the distance relationship 
with the center pixel, and the obtained character regions are clearer on the 
boundary.  

After obtaining these binary and Gaussian region predictions, we use some 
simple post-processing operations (including connectedComponents, minArea-
Rect) to get the character bounding boxes and then calculate their P, R, F indi-
cators respectively. The quantitative results are shown in Table 1. The method 
based on Gaussian kernel is significantly higher than the binary mask represen-
tation on all indicators. This shows once again that the Gaussian kernel repre-
sentation has obvious advantages and is more conducive to expressing the 
tightly distributed character region.  
 
Table 1. The quantitative results based on binary mask and Gaussian kernel represent. 

Methods Precision (P) Recall (R)  F-Measure (F) 

DeepLabv3 [32] 0.626 0.638 0.632 

Gaussian(our) 0.776 0.646 0.705 

https://doi.org/10.4236/am.2021.123014


G. Y. Liu et al. 
 

 

DOI: 10.4236/am.2021.123014 234 Applied Mathematics 
 

Is multi-scale Gaussian kernel necessary? To answer this question, we re-
train the detection model, when the number of scales is different. The assess-
ment results are shown in Figure 7, from which we can find that with the grow-
ing of n , the F-measure keeps rising and begins to go down when 6n > . The 
informative result suggests that it is not that the larger the number of scales, the 
better. When 6n = , the detection model achieves the highest F-measure, thus, 
it is more beneficial to achieve better detection results for the task of OBIs detec-
tion when the number of scales is 6. Besides, although with the growing of n , 
F-measure shows a certain decline, but compared to using a single-scale Gaus-
sian kernel, when 1n > , the value of F-measure is significantly higher. This 
shows to some extent that the design of multiple kernel scales is essential and ef-
fective. 

4.5. Accuracy Comparison 

To better evaluate the detection effect of our character detection model, we com-
pare our model with several mainstream object detection models, which not only 
include two-stage object detectors such as Faster RCNN [5], but also single-stage 
object detectors such as YoLov3 [35], RBFNet [34]. 
 

 
(a)                          (b)                          (c) 

Figure 6. Comparison results based on the binary mask and Gaussian kernel represent. 
(a) Rubbing input; (b) Binary mask prediction by DeepLabv3 [32]; (c) Gaussian region 
prediction by our model.  

 

 
Figure 7. Ablation study on the number of scales n. 
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Table 2 shows the quantitative results with these state-of-art detection mod-
els. In terms of accuracy, our detector achieved the highest score of 89.7%,which 
is significantly better than the second place with a gap of 12%. However, in 
terms of recall rate, our model performed relatively weakly, almost at the bottom 
of all the models. For this phenomenon, we believe that the possible reason lies 
in the fact that for the detection methods based on anchor boxes, the non-maxi- 
mum suppression (NMS) operation uses a manually set threshold to filter out 
some invalid candidate boxes, which may have some missed candidate boxes, 
resulting in a high recall rate. To more accurately evaluate the detection effect, 
we continue to compare the F-measure that is the balance of indicators of preci-
sion and recall. Similarly, our model still achieves the best results, far better than 
the second place by 5%. Therefore, this reflects the advantage of our model in 
accuracy to some degree. Also, it is not difficult to imagine that our model can 
capture more semantic information about the characters and has character area 
awareness by using directly Gaussian kernels to represent the character regions, 
so it can get more accurate detection results. 

4.6. Efficiency Comparison 

We evaluate the detection efficiency of our character detector by measuring its 
inference speed, weight parameters, floating-point operations and then com-
pared them with several state-of-art detectors. 

Table 3 shows the efficiency comparison with these models. In inference 
speed, our model achieved the fastest inference speed of 23FPS, which 5FPS 
higher than the second place YoLov3 [35]. In weight parameters, our model re-
quires fewer parameters, occupying only 12.73M, which is much lower than the 
26.29M of the suboptimal model SSD [19]. In terms of floating-point operations, 
our model is only weaker than YoLov3 [35] and won the second position. Nev-
ertheless, the number of floating-point operations is only 57.34 GMac, which is 
far lower than other state-of-art detection models. It is comprehensively known 
that our model can achieve faster inference speed while Has a lighter computing 
burden. 
 
Table 2. Accuracy quantitative results with state-of-art detection models. 

Methods Precision (P) Recall (R) F-Measure (F) 

FasterRCNN [5] 0.754 0.778 0.766 

SSD [19] 0.748 0.758 0.753 

RefineDet [33] 0.752 0.805 0.778 

RBFNet [34] 0.761 0.789 0.775 

YoLov3 [35] 0.776 0.784 0.78 

Ours 0.897 0.775 0.832 

https://doi.org/10.4236/am.2021.123014


G. Y. Liu et al. 
 

 

DOI: 10.4236/am.2021.123014 236 Applied Mathematics 
 

Table 3. Comparison results of detection efficiency with state-of-art detection model. 

Methods Speed(FPS) Parameters(M) Flops(GMac) 

Faster RCNN [5] 3 41.37 129.27 

SSD [19] 9 26.29 90.4 

RefineDet [33] 14 34.44 97.94 

RBFNet [34] 15 36.64 103.65 

YoLov3 [35] 17 61.92 50.06 

Ours 23 12.73 57.34 

5. Conclusion 

In this paper, we first propose an anchor-free OBIs detector for OBIs detection. 
The detector uses adaptively shaped Gaussian kernel to represent the spatial re-
gion of the characters, which not only bypasses the need for anchor boxes but 
also enables the detection model to learn character spatial regions. Furthermore, 
to address the problem of misdetection caused by regional overlapping between 
some tightly distributed characters, the character region is simultaneously repre- 
sented by multiscale Gaussian kernels to obtain character regions with sharp 
edges. Finally, based on these kernel predictions of different scales, a novel post- 
processing pipeline is used to obtain accurate bounding box predictions. The 
experimental results show that our OBIs detector has achieved good detection 
results on the OBIs dataset. 
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