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Abstract 
Microplastics, plastic pieces of ≤5 mm in size, are ubiquitous in ther envi-
ronment and can be found in both terrestrial and aquatic ecosystems. This 
manuscript reviews the literature on the fate of microplastics in wastewater 
treatment and briefly highlights novel developments in the removal of micro-
plastics from aqueous systems. 
 

Keywords 
Microplastics, Nanoplastics, Wastewater Treatment Plants, Sludge  
Treatment, Plastic Retainment 

 

1. Introduction 

One year has passed since our first review on microplastics and wastewater 
treatment plants [1]. Since then, a number of other reviews on the topic have 
appeared [2]-[11] that complement reviews that had been there previously [12] 
[13] [14] [15] [16]. Nevertheless, the authors felt the need to extend the scope of 
the earlier review as it focused too much on plastic microbeads, an area of our 
research [17] at the time of writing, and too little on other forms of microplastics 
such as microtires [18] [19] and textile fibers [20] [21]. In addition, the contri-
bution of the different sources of microplastics as found in the wastewater is 
changing over time, especially with the gradual phase-out of microplastic con-
tent in rinse-off cosmetics [22] [23] [24] and the ban in certain regions of plastic 
bags [25] and single use plastics [26], both potential materials for microplastics 
due to subsequent degradative fragmentation processes. Furthermore, there is 
continuous development and refinement of technologies to separate microplas-
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tics from wastewater that warrant reporting. It is for these reasons that the cur-
rent review was drafted. 

Microplastics (MPs) can be defined as plastic particles of ≤5 mm in size [27] 
[28] [29]. Also, the term nanoplastic (NP) has been used for particles ≤ 1 μm in 
size [27] [30], although some authors define NPs as particles of up to 100 nm in 
size [31]. Here, the discussion is still ongoing [32]. These plastic particles have 
different sources. Some of the MP particles originate from the abrasive degrada-
tion of larger plastics such as from tyre materials and road-wear [33], clothing 
[34], plastic bags [35] and packaging [36], degradable over longer periods of 
time or even at the time of opening, and other larger pieces of plastic that are 
exposed to wear or weathering [37] [38] (Figure 1). These are called secondary 
MP. Then, there is the primary MP, which is materials that are produced at this 
small size for a specific purpose, micropellets in cosmetic formulations and in 
facial cleaners and body scrubs (median size of 0.2 - 0.4 mm) [16] [39], micro-
spherules in toothpastes (2 - 5 μm in size) [40], microparticles in scrubbers used 
for air-blasting surfaces to remove paints and rust [41] [42] in paints and coat-
ings [43], in detergents [43] and in drilling fluids in oil and gas exploration [1]. 
Recently, plastic micro-/nanoparticles have also been used in drug delivery sys-
tems [44] [45]. The amounts of materials used as primary MP and secondary MP 
stemming from the degradation of meso- and macroplastics on-land have been 
estimated in different studies commissioned by different European countries 
[43] [44] [46] [47] [48] and by the European Community [49]. The release of 
such materials, incl. of tyres, into sewage systems and as run-off into river sys-
tems or directly into the oceans has been estimated by different models, which 
sometimes took the known distribution of products other than MP as the basis 
for the models. Recently, the realization that such commonplace activities as us-
ing a tea-bag [50] or unwrapping a product [36] also lead to MP opens up fur-
ther sources of such particles that need to be taken into account. Also, the at-
mospheric transfer of MP [51], which has been largely neglected until relatively 
recently, has been found to contribute to their accumulation in rivers, lakes [52] 
and oceans [53]. Much of the overall data on MP has been gained from overall a 
limited number of sampling studies at different locations, from which overall 
quantities of MP were derived using different models. It has been shown that 
different sampling techniques can lead to quite different results in the detec-
tion and quantification of MP in the environment [54] [55] and not in all areas 
is a consistent sampling technique for a matrix in use. In recent times, mi-
cro-Raman detection has been used to detect MP particles as small as 1 μm in 
size [56]. This compares well with Fourier-transform infrared spectroscopy, 
where the size limit of the MP is said to be 10 μm. In former times, small micro-
particles and nanoparticles were less easy to detect. Z. Wang et al. have shown 
that in certain regions of the Yangtze delta, 1 - 5 μm sized MPs make up to 58% 
of total, which were formerly left undetected. So, there is still a lot of uncertainty 
about the distribution of MP in the environment, both qualitatively and quanti-
tatively. 
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(B) 

 
(C) 

Figure 1. Various sources of microplastics that may end up in the municipal sewage sys-
tem. (A) Microplastic from a meat-cutting board; (B) Microplastic from road dust; (C) 
Microplastic from rinse-off cosmetics. 

 
Nevertheless, there are numbers in regard to MP that one can work with. One 

of the most extensive studies on MP in the environment has been forwarded by 
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Eriksen et al. [57], where empirical data from 1571 locations taken in the years 
2007-2013 has led to the estimation of 5 trillion (5 × 1012) plastic pieces floating 
on the world’s oceans, amounting to 268,940 tons, with 485 × 1010 particles of 
less than 5 mm in size. Plastic particles, even initially positively buoyant particles 
[58] [59], can sink through the water column to the ocean floor [60], where it is 
generally accepted that the ocean floor serves as a sink for marine plastic [61] 
[62]. There could be as many as 35 times more MP on the ocean floor than on 
the ocean’s surface, amounting to 4.4 million tons of MP in the top 9 cm of se-
diment throughout the world’s oceans [63]. Between 1.15 and 2.41 million tons 
of plastic waste enter the oceans every year from rivers [64], with an estimated 
4.8 to 12.7 million tons of plastic waste entering the oceans from land via all 
methods of transport, as of 2010 [65]. This number has been predicted to in-
crease by an order of magnitude by 2050 [65]. Plastics degrade and mineralize 
very, very slowly [66]. It is known that microbes colonize plastics in an aquatic 
environment [67] [68]. Nevertheless, while they do help to biodegrade plastics, 
especially through the excretion of enzymes that catalyze chemical transforma-
tions in the plastic, even microorganisms (Zalerion maritimum [69], Bacillus 
cereus [70], B. gottheili [71]) specially selected through screening processes lead 
to a weight loss of various MPs consisting of PE, PET, PP or PS by less than 8% 
in 40 days. However, MPs can also serve as a transport for microorganisms that 
can damage ecosystems and/or affect living organisms negatively. In this con-
text, it is interesting to note that the composition of microorganisms on MPs can 
change as they move through wastewater treatment plants (WWTPs) [71]. 

What is without doubt is that one major stream that carries MP and can pass 
them potentially on to the environment is municipal and industrial wastewater. 
Here, WWTPs act as a defense of last resort. Therefore, it is essential to know in 
how far WWTPs can retain MP under different treatment regimes. Published, 
extensive studies on the MP retaining ability of wastewater treatment plants 
started in earnest with the work of Browne et al. in 2011 [72], with data from the 
year before. In the years 2016-2020, a large body of work was published on the 
MP retaining ability of wastewater treatment plants from around the world. 

Sewage sludge as a by-product of the water treatment, released into the envi-
ronment, often carries a significant load of MP as well. It has been estimated that 
between 63,000 and 430,000 tons of MP are added via sewage sludge to Euro-
pean farmlands, annually [73] [74]. Already in 1998, Habib et al. reported on the 
presence of synthetic fibers in agricultural soils treated with sewage sludge [75]. 
This work has been expanded by other groups to non-fiber MP and the distribu-
tion and fate of MP in soils is a matter of pressing interest. 

The current paper aims to review the effect of wastewater treatment plants on 
MP abundance in treated water dis-charged into the environment with a focus 
on the retaining ability of different types of wastewater treatment methods. Also, 
the fate of MPs in wastewater treatment plants is looked at. Furthermore, the re-
view takes into account new methodologies to retain MP from aqueous media, 
developed in laboratories. 

https://doi.org/10.4236/jep.2021.123011


R. Z. Habib et al. 
 

 

DOI: 10.4236/jep.2021.123011 165 Journal of Environmental Protection 
 

2. Wastewater Treatment Plants and Microplastic 
2.1. Major Contributors to Microplastic Waste 

A major share of the microplastics entering the environment does so through 
sewage water. Some of the main contributors are microbeads from cosmetic 
formulations [76], textile fibers [77], and microtires and road wear particles 
(TRWP) [19]. Plastic microbeads in cosmetics are trending downward, as many 
countries have banned MP in many cosmetic products, such as in rinse-off cos-
metics [78]. Nevertheless, products with MP content are still exported to coun-
tries where no ban is in place, even from countries that already have banned MP 
in the formulations [17] [79]. Fibers for the most part come from the shedding 
of particles during the washing process of textiles [72] [77] [80] [81]. Textile fi-
bers are ubiquitous in the environment. We have found them in almost all sam-
ples that we have analysed, be they from lake shorelines, soil samples or even 
from commercially sold meat [82]. Nevertheless, in many regions, released tex-
tile fibers are for the most part natural fibers. Thus, Talvitie et al. have reported 
that the most common fibers emitted from a large wastewater treatment plant 
(WWTP) in Finland were natural (66%), where (natural) cotton and (synthetic) 
polyester made the largest contribution with 44% and 33%, respectively [83]. 
While natural fibers tend to degrade more quickly, organic pollutants can be 
adsorbed equally on synthetic and on natural fibers, where often textile fibers are 
impregnated with flame retardants. This can lead to an additional environmental 
impact. Tire and roadwear particles constitute a main contributor of plastic mi-
croparticles in the environment. While tire and roadwear particles have been 
investigated for a long time from a road safety point of view, their environmen-
tal impact has come to the fore only relatively recently [19]. Models have shown 
that appreciable amounts of microplastics from TRWP are swept into surface 
waters [84] [85], where a recent calculation showed that 8700 - 19,800 tons per 
year of TRWP, amounting to 12% - 20% of the emitted total, reach surface wa-
ter, alone in Germany [86]. Tyres are known to be very complex constructs, in-
corporating many small organic molecules. These are released [87] over time 
when tyre particles are discharged into the environment. A recent study in this 
regard has shown that the slow release of N-(1,3-dimethylbutyl)-N’-phenyl-p- 
phenylenediamine) (6PPD), a globally used tire rubber antioxidant, is most like-
ly to blame for the acute mortality in adult coho salmon on the US west coast 
[88]. Phthalates are also often associated with microplastics as with plastics in 
general [87] [89]. Also of interest to the evaluation of wastewater treatment 
plants is that it has been estimated that 1400 - 2800 tons per year of TWP are 
currently deposited on agricultural areas. Again, this is for Germany, alone [86]. 

2.2. Studies of MP Retainment by Wastewater Treatment Plants  
around the World 

Municipal wastewater treatment facilities are typically designed based upon a 
common schematic (Figure 2), though each facility will differ slightly in the exact  
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Figure 2. Possible set-up of a wastewater treatment plant. 

 
configuration of this same basic design. Pre-treatment and primary treatment 
remove large debris items with screen mesh sizes of 6 mm or larger. Screen of 
mesh size between 3 and 10 mm is called fine screening. This together with the 
grit and primary clarifier can reduce the MP content of the influent by up to 
45%, especially catching MPs with density different from water. Therefore, the 
pre-treatment and primary treatment play a significant role in the removal of 
MPs, especially those of 100 μm - 5000 μm in size [16] [90] [91] [92]. Secondary 
treatment removes suspended and dissolved organic material and nutrients, 
largely through the incorporation of microorganisms within large aeration 
tanks. Extracellular polymer substances (EPS) from microorganisms are capable 
of catching MPs that then become entrapped in the sludge. Flocculates and set-
tling tanks help separate the sewage sludge from the post-processing effluent 
(hereafter simply “effluent”) prior to any disinfection, polishing or advanced 
(tertiary) treatment. Here, about 50% of MPs are caught, trapped by sinking 
flocculates or in floating oil and grease [16] [83] [93] [94]. The tertiary stage can 
include further coagulation or filtration steps. Usually, the resulting effluent is 
discharged into a nearby waterbody. Thus, most MPs end up the sewage sludge 
[14], which in many cases undergoes a digestion process. 

Over the last 7 years, studies on the retainment and release of MP by waste-
water treatment plants have been published for close to 70 locations worldwide 
(Figure 3 and Table 1 [72] [83] [90]-[146]). Again, sampling strategies and 
analytical methods used have an effect on the quantification of MP fluxes 
through WWTPs [147] [148]. Thus, Murphy et al. collected bulk samples and 
then used a sieving step (65 μm mesh size) [90], while Carr et al. [99] fixed 
stacked sieves (400 - 445 μm) in a wastewater stream to sample for MPs. Sam-
pling can vary from grab sampling [72] [83] [90] [96] [100] [101] [103] [127],  
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Table 1. Studies of microplastics (MP) in wastewater treatment plants (WWTPs) around the world. 

Ref. 
MP conc. 

in influents 
MP conc. 
in effluent 

Lower size  
limit for  

fractionation µm 
WWTP type 

Retention/ 
Efficiency 

Analytical  
Method 

Country 

Lares et al., 2018 
[95] 

57.6 MP/L 1.05 part./L 250 
Primary and  

secondary 
98.3% 

FTIR and Raman 
Microscope 

Finland 
(Mikkeli) 

Dyachenko et al., 
2017 [97] 

n.a 0.02 part./L 125 
Primary,  

secondary  
and tertiary 

n.a. n.a USA 

Mason et al., 2016 
[98] 

n.a 0.05 part./L 125 
17 WWTPs,  

Tertiary 
n.a. Microscope USA 

Murphy et al., 
2016 [90] 

15.70 MP/L 0.25 part./L 11 Secondary 98.4% FTIR UK 

Carr et al., 2016 
[99] 

1.10 × 109/day 
(681 million 

L./day) 
0.88 part./m3 45 

Secondary and 
Tertiary 

99.9% 
Visual sorting, 

Microscope 
FTIR 

USA 

Ziajahromi et al., 
2017 [93] 

n.a 0.28 part./L 25 
Primary,  

secondary  
and tertiary 

92% - 99% ATR-FT-IR Australia 

Michielssen et al., 
2016 [100] 

367 MP/L 0.5 MP/L 20 
Tertiary 

(AnMBR) 
99.4% 

Visual sorting, 
Microscope 

USA 
(Northfield ) 

Mintenig et al., 
2014 and 2017 

[94] [101] 
n.a 0.1 to 10.1 MP/L 20 

12 WWTPs: 
mostly secondary 

and tertiary 
97% micro-FT-IR 

Germany 
(Oldenburg) 

Talvitie et al., 
2015 [102] 

610 MP/L 
13.5 MP/L (incl. all 

textile fibers) 
20 

Primary,  
secondary  

and tertiary 
97.6% 

Visual sorting, 
Stereo- 

microscope 

Finland 
Viikinmäki 

Talvitie et al., 
2017 [114] 

6.9 0.005 MP/L 20 4 tertiary WWTPs 99.9% 
Visual sorting, 

Stereo- 
microscope 

Finland 

Leslie et al., 2017 
[104] 

73 MP/L 9 to 91 MP/L 0.7 7 WWTPs 72% 
Visual sorting 

FTIR 
Netherlands 

Browne et al., 
2011 [72] 

n.a 1 MP/L (filtered) 
Primary,  

secondary and 
tertiary 

n.a. n.a Australia 

Dris et al., 2015 
[91] 

n.a 14 to 50 MP/L 100 Secondary 83% - 95% Visual sorting France 

Carr et al., 2016 
[99] 

1 MP/L 90 MP/L 90 - 300 
Primary,  

secondary and 
tertiary 

95% - 99%  USA 

Talvitie and  
Heinonen 2014 

[105] 
627 MP/L 70 MP/L 20 n.a 95.6% 

μ-Raman  
spectroscopy 
Microscope 

Russia 

Gűndoğdu et al., 
2018 [106] 

4,825,697/day 7.02 MP/L n.a. Secondary 73% 
Visual and 
μ-Raman  

spectroscopy 

Turkey  
(Seyhan) 

Gűndoğdu et al., 
2018 [106] 

2,040,639/day 4.11 MP/L n.a. Secondary 79% 
Visual and 
μ-Raman  

spectroscopy 

Turkey 
(Yűreğir) 
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Continued 

Estahbanadi and 
Fahrenfeld 2016 

[118] 
n.a 0.028 to 0.44 MP/L 250-500 

Primary and  
secondary 

n.a. 
Visual sorting, 

Microscope 
USA 

Kalčiková et al., 
2017 [107] 

n.a 0.021 MP/L 37 to 95 
Primary  

(Mechanical and 
Biological) 

87% FT-IR Slovenia 

Simon et al., 2018 
[113] 

7216 MP/L 54 MP/L 10 to 500 - 98.3% FPA-FTIR Denmark 

Sutton et al., 2016 
[92] 

n.a 0.086 MP/L 125 
Primary and  

secondary 
n.a. 

Dissection  
microscope and 

Raman  
spectroscopy 

USA 

Michielssen et al., 
2016 [100] 

133.0 MP/L 5.9 MP/L 20 
Primary and  

secondary 
93.8% 

Visual sorting, 
Microscope 

USA (Detroit) 

Michielssen et al., 
2016 [100] 

367 MP/L 2.6 MP/L 20 
Primary,  

secondary  
and tertiary 

97.2% 
Visual sorting, 

Microscope 
USA  

(Northfield) 

Gies et al., 2018 
[119] 

31.1 MP/L 0.5 MP/L 64 
Primary  

and secondary 
98.3% 

Microscopy and 
FT-IR 

Canada 

Wisniowska et al., 
2018 [120] 

19.4·103 to 
552.2·103 MP/1 m3 

0.028 to 0.96 MP/L n.a. n.a. 95% - 99% n.a Poland 

Yang et al., 2019 
[121] 

12.03 MP/L 0.59 MP/L 50 
Primary  

and secondary 
95% 

Microscopy  
and FT-IR 

China  
(Beijing) 

Bayo et al., 2019 
[122] 

15.70 MP·L−1 0.25 MP/L n.a Primary 90.3% 
Microscopy  
and FT-IR 

Spain  
(Cartagena) 

Long et al., 2019 
[123] 

1.57 - 13.69 MP/L 0.20 - 1.73 MP/L 28.3 
Primary  

and secondary 
97.8% 

Visual sorting 
and  

micro-Raman 
spectroscopy 

China 

Blair et al., 2019 
[111] 

3 and 10 MP·L−1 <1 and 3 MP/L 300 Tertiary 96% FT-IR UK 

Xu et al., 2019 
[124] 

196.00 MP/L 9.04 MP/L 1000 
Primary  

and secondary 
97.2% ATR-FTIR 

China 
(Changzhu) 

Lv et al., 2019 
[125] 

0.28 mp/L 0.13 and 0.05 MP/L 25 n.a. MBR 99.5%, FTIR China 

Liu et al., 2019 
[126] 

80 MP/L 28.4 MP/L 100 
Primary  

and secondary 
64.4% 

Visual inspection 
and FTIR 

China 

Wolff et al., 2019 
[127] 

n.a 59 and 30 MP/L 10 
Primary  

and secondary 
n.a 

Raman  
spectroscopy 

Germany 

Conley et al., 2019 
[112] 

147, 126, 146 MP/L 
3.7, 17.6  

and 17.2 MP/L 
23 

Primary  
and secondary 

97.6%, 
85.2%, 85.5% 

Visual  
Observation and 

stereomicro- 
scope 

USA 

Magni et al., 2019 
[115] 

2.5 MP/L 0.4 MP/L 8 
Primary,  

secondary  
and tertiary 

84% FTIR Italy 

Ren et al., 2020 
[108] 

16.0 MP/L 2.9 MP/L 0.08 - 0.55 mm 
Primary,  

secondary  
and tertiary 

81.9% 
Visual inspection 
and Microscope 

China 
(Zhengzhou) 
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Continued 

Ziajahromi et al., 
2021 [128] 

n.a 
22.1 × 106 to 133 × 106 

per day 
>25 µm n.a 

99.8% - 
98.2% 

Visual  
Observation 
and FT-IR 

Australia 

Wei et al., 2020 
[129] 

430 - 2154 MP/m3. 430 - 2154 MP/m3 0.0308 - 0.1 mm RD-WWTFs 84% 
Micro-Raman 
spectroscopic 

China 
(Hangzhou) 

Petroody et al., 
2020 [130] 

12,667 MP/m3 
12667 ± 668, 

3514 ± 543 and 423 ± 
44.9 MP/m3 

37 - 500 µm n.a 96.7% 

Visual  
Observation and 

Micro-Raman 
spectrometry 

Iran 
(Sari) 

Edo et al, 2020 
[109] 

n.a 12.8 ± 6.3 MP/L 25 to 104 µm 
Primary  

and secondary 
>90% 

Visual inspection 
and FT-IR 

Spain 
(Madrid) 

Ben-David et al., 
2021 [131] 

28.28 MP/L 1.97 MP/L ≥20 μm 
Primary,  

Secondary and 
tertiary 

97% 

optical  
microscopy, 

SEM and 
μ-Raman  

microscopy 

Israel 
(Karmiel) 

Tagg et al., 2020 
[117] 

n.a 1.5 MP/L 392 μm 
Primary,  

Secondary  
and tertiary 

76.9% micro-FT-IR 
UK 

(East  
Midlands) 

Akarsu et al., 2020 
[132] 

1.1 and 3.6 MP/L 0.9 MP/L 1057 and 1095 
Primary,  

Secondary  
and tertiary 

55% - 97% FT-IR 
Turkey 

Mersin Bay 

Bayo et al., 2020 
[110] 

15.70 MP/L  13.04 MP/L 400 to 600 μm Primary 90.3% 
Visual inspection 

and FT-IR 
Spain 

(Cartagena) 

Naji et al., 2021 
[133] 

74 (±11.01, SD) 
and 67 (±18.35, 

SD) MP 35/L 
70.66 MP/L > 250 mm 

Primary and  
secondary 

n.a 
SEM and X-ray 

EDX 

Iran 
(Bandar  

Abbas City) 

Tang et al., 2021 
[136] 

23.3 MP/L and 
80.5 MP/L 

23.3 to 7.9 MP/L 0.636 to 0.803 
Primary and  

secondary 
66.1% and 

62.7%, 
Raman  

spectroscopy 
China 

(Wuhan City) 

Park et al., 2020 
[137] 

10 to 470 MP/L 10 to 470 MP/L 45 μm to 5 mm 
Primary,  

Secondary  
and tertiary 

98.7% - 
99.99% 

FT-IR Korea 

Rajala et al., 2020 
[138] 

n.a 
0.1 mg/L, 6.7 mg/L 

(used) 
1 μm and 6.3 μm Secondary 99.4% 

coagulation/ 
flocculation 

Finland 

Nguyen et al., 
2021 [139] 

n.a n.a >45 μm 
Primary,  

Secondary and 
tertiary 

80% 
Microscopic and 

FT-IR 
Korea 

(Seoul) 

Alvim et al., 2020 
[140] 

n.a 11.1 MP/L <1 mm 
Primary,  

Secondary 
n.a 

Visual/ 
µ-ATR-FTIR 

Spain 
(Valencia) 

Yuan et al., 2020 
[141] 

n.a 10.30 MP/L, 6.10 MP/L 141 to 665 μm 
Primary,  

Secondary and 
tertiary 

97.67% and 
98.46% 

n.a 
China 

(Nanjing) 

Pittura et al., 2021 
[142] 

(12,170,000 MP/h) 
3.6 MP/L 

1,730,000 MP/h <1 mm 
Primary,  

Secondary 
94% 

Stereomicroscope 
and µ FT-IR 

Italy 

Zou et al., 2020 al. 
[143] 

n.a 1.719 ± 1.035 MP/L n.a n.a n.a n.a 
China 

(Guangzhou) 

Mak et al., 2020 
[134] 

n.a 10,816 MP/m3 90 to 189 μm 
Primary,  

Secondary 
86.4%  

Hong Kong 
(Victoria 
Harbor) 
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Continued 

Zhou et al., 2020 
[135] 

54,100 MFs/L 537.5 MFs/L (MF) 200 - 300 μm 
Primary,  

Secondary and 
tertiary 

85% 
ImageJ software 

microscopy 

China 
(Keqiao  

industrial 
park) 

Hidayaturrahman 
et al., 2020 

[116] 
13,813 MP/L 132 MP/L <65 μm 

Primary,  
Secondary and 

tertiary 
>98% Microscope 

South Korea 
(Daegu) 

Raju et al., 2020 
[144] 

11.80 ± 1.10 MP/L 2.76 ± 0.11 MP/L >1.5 μm to >1 mm Secondary 76.61% 
Visual sorting 

and ATR-FTIR 

Australia 
(New south 

wales Hunter 
Region) 

Ferreira et al., 
2020 
[145] 

n.a 

0.24 ± 0.07 MP/m3 
(Laucala Bay) and 0.09 

± 0.02 MP/m3 (Suva 
Harbour) 

125 μm 79 WWTPs’ N.a ATR-FTIR 
Fiji 

(Suva) 

Schmidt et al., 
2020 [146] 

n.a 
4 × 100 and 4.5 × 105 

MP/m3 
10 to 5000 μm Secondary n.a  Germany 

 

 
Figure 3. World map showing the locations of the studies carried out on MP in WWTPs 
(Table 1 and Table 2). 
 
the use of extraction pumps [83] [92] [97] [98] [99], the use of neuston/plankton 
nets [99] [118] to analysing composite samples [83] [91] [97] [106] [112]. From 
wastewater, microplastics can be separated by visual selection, but can also be 
detected by spectroscopic imaging such as by focal plane array (FPA)-based mi-
cro-Fourier transform infrared (micro-FTIR) imaging [94] [147] [148] [149] af-
ter filtration onto a membrane filter. Micro- and nanoplastics, while having been 
studied by the use of scanning electron microscopy, X-ray photoelectron spec-
troscopy (SEM-XPS), can also be identified by micro-Raman imaging techniques 
[56] [150] [151]. Wastewater is a biogenic organic matter-rich matrix, which 
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makes MP detection, isolation and quantification difficult [117]. There are but 
few studies that address the MP flux through a WWTP over a long period of 
time [91] [111]. Additionally, most studies have solely looked at MP concentra-
tions in the WWTP influent and final effluent, but only few studies have inves-
tigated the MP concentrations at the different treatment stages [90] [117]. Na-
noplastics (NPs) have also not been assessed thoroughly. 

Figure 2, possible set-up of a wastewater treatment plant (partially adopted 
from [142]). 

Nevertheless, it is clear that WWTPs cannot completely retain MPs, and that 
the effluent from WWTPs contributes to the MP load in receiving waters [83] 
[90] [93] [95] [99] [101] [102] [113] [114] [152]. In many cases, there is a signif-
icantly higher concentration of MPs downstream of a WWTP as compared to 
upstream [89] [153]. MPs ranging in size from 20 to 1000 μm have been found 
in WWTP effluents [16], in amounts of between 9.3 × 105 to 4.0 × 109 particles 
per day [16]. Many WWTPs also receive stormwater run-off, which can be dis-
charged in cases of severe weather after only basic physicochemical treatment or 
with no treatment at all, and in such cases larger amounts of MPs can be released 
from WWTPs into the environment [154]. Nevertheless, there is still a high un-
certainty in regard to overall MP emissions from WWTPs [44] [47] [96] [113] 
[153]. It has been noted, however, that there is a greater chance of smaller mi-
croplastics to break through WWTPs [101]. 

An important variable in the MP emission to the environment is the nature of 
the tertiary stage of the WWTP that can include advanced separation methods 
such as ultrafiltration and reverse osmosis. Rapid sand filters (RSF) [110] can 
remove up to 97% of microplastics from the effluent of a secondary stage of a 
WWTP. As part of the last stage of a tertiary WWTP, they are deemed to be 
economical and can be operated at a reasonable scale [114]. However, micro-
plastics between 0.02 μm and 2 μm in size have been reported to travel through 
sand [155]. In this regard, spherical microbeads have the highest mobility 
through sandfilters as compared to fibers, microplastic fragments, microtyres 
and plastic films, and it has been shown that in certain locations these micro-
beads constitute the largest portion of microplastics released with the effluent of 
tertiary WWTPs [116]. Nevertheless, also small fibers have been reported to tra-
vel through RSFs, where in one study the removal efficiency for small fibers by 
RSF was only 53.8%. Also, sand filtration has been noted to fragment micro-
plastics into even smaller particles [4] [114]. Ultrafiltration (UF) is often used 
for the removal of particulates and macromolecules from raw water to produce 
potable water, and is more and more replacing secondary treatment methods 
such as coagulation, flocculation, and sedimentation and more classical tertiary 
filtration such as sand filtration. While UF, typically having polymeric or ce-
ramic membranes with a pore size between 1 - 100 nm, is laid out to retain large 
organic molecules such as proteins as well as bacteria, protozoa, and viruses, 
UF is not specifically designed to retain micro- or nanoplastics [156]. Often-
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times, pre-treatments are necessary for the successful use of UF as UF mem-
branes can be fouled easily. To that effect, a coagulation step as pretreatment 
with iron-based coagulants has been advocated, especially in combination with 
an addition of polyacrylamide (PAM), which increased the removal efficiency of 
small-sized polyethene particles (d < 0.5 mm) significantly from 13% to 91% 
[157] [158]. 

Membrane bioreactors, in which the action of biological catalysts (bacteria, 
enzymes), is coupled to a separation process have been seen to remove 99.9% of 
MPs (from 6.9 to 0.005 MP·L−1), while disc filters have a removal efficiency of 
40% - 98.5% (from 0.5 - 2.0 to 0.03 - 0.3 MP·L−1) [114]. However, fouling also of 
MBRs through MPs has been noted, where PVC MPs artificially added at a con-
centration of 10 MPs/L inhibited the removal performance of the MBR towards 
polluting organic matter and ammonia [159]. Also, the process is quite expen-
sive, both in investment (membrane) as well as in running costs (high energy 
consumption) [3] [4]. 

S. Fortin [151] has compared the efficiency of two other advanced tertiary 
treatment methods, namely of reverse osmosis nanofiltration and of activated 
carbon filtration systems, where in a pilot program was fed secondary effluent 
water with return activated sludge added to it to increase the turbidity. This 
water was branched and fed into the two different advanced treatment me-
thods. The carbon train system was composed of a flocculation/sedimentation 
step followed by an ozonation step and treatment with bacterial activated car-
bon and granular activated carbon columns, before undergoing UVD/UVA 
disinfection. The other train consisted of a reverse osmosis nano-filtration step 
followed by UVD/UVA disinfection [151]. It was found that the reverse osmosis 
nano-filtration produced effluent that still showed microplastics with a relatively 
narrow size distribution of 1 μm and 10 μm, though over 90% of the particles 
were smaller than 10 μm, while the filtration on activated carbon gave effluent 
with much larger particles remaining, with 54% of the total particles larger than 
10 μm. Many of the particles were not plastic but inorganic particles, some 
stemming from a prior flocculation step. Overall, the study found more small 
microparticles than previous studies have had, most likely due to a better quan-
tification of the microparticles by Raman microspectroscopy [151]. All of the 
membrane processes above are of interest and continue to be developed. In 
order to be commercially viable, especially for larger WWTPs, the methods need 
to be cost-effective and have a high through-put. 

2.3. Microplastics in Sludge 

As much of the retained MP material (about 90% on the average) ends up in the 
sludge of WWTPs [14], high concentrations of MPs in WWTP sludge samples 
have been described in many studies [47] [76] [96] [98] [160] [161] [162]. Ma-
hon et al. [161] found microplastic in concentrations of 4.20 to 15.4 × 103 par-
ticles kg−1 dry sludge. Lassen et al. [47] reported that sludge samples from Ger-
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man WWTPs contain 1.00 to 24.0 × 103 MP particles (10 mm) per kg of dry 
sludge. A comparison of MP concentrations in sludge collected at different 
WWTPs from around the world is given in Table 2. Sludge from 8 WWTPs in 
Norway (Oslo, Stavanger, Tromsø, Federickstand, among others), serving alto-
gether 1,500,000 inhabitants and producing about 100,000 tons of sludge, re-
vealed an overall average plastic abundance of 6077 particles kg−1 (dw), of which 
37.6% were beads, 31.8% fragments, and 28.9% fibers. The most common con-
stituents were found to be polyethylene (PE, 30.5%), polyethylene terephthalate 
(PET, 26.7%) and polypropylene (PP, 20.3%) [163]. Sujathan et al. reported a 
very high microplastic particle count of 4.95 × 105 per kg (dw) in return acti-
vated sludge [164]. In the study, microplastics as small as 0.48 μm could be iden-
tified, which may mean that many microplastic particles in WWTP sludge are 
indeed small and escape detection [163]. 
 

Table 2. Studies on microplastics (MP) in accumulated sludge from wastewater treatment plants (WWTPs). 

Type of WWTP’s Country MP size range 
MP concentration (particles 

kg−1 d.w.a and w.wb) 
Analytical Method References 

(7WWTPs,) 
Ireland 

(7WWTPs) 
250 µm - 4 mm 4196 - 15,385 Optical and FT-IR 

Mahon et al., 2017 
[161] 

(7WWTPs,) 
Netherlands 

(Amsterdam) 
0.7 µm - 5 mm 370 - 950 FT-IR Leslie et al., [104] 

n.a 
Sweden 
(Lysekil) 

300 µm - 5 mm 16.7a × 104 FT-IR 
Magnusson & Norén, 

2014 [96] 

n.a 
(USA) 

Ithaca, New York 
No Data About 1000 - 4000 Filtration techniques 

Zubris and Richards, 
2017 [165] 

Primary, Secondary 
and Tertiary 

USA 
(Los Angeles County) 

<5 mm 5000 
Visual sorting, 

Microscope FT-IR 
Carr et al., 2016 [99] 

 
China 

(28WWTPs,) 
37 µm - 5 mm 1565 - 56,386a  Li et al., 2018 [166] 

12 WWTPs:  
mostly secondary 

and tertiary 

Germany 
(Oldenburg 

<5 mm 1000 to 24,000a micro-FT-IR 
Mintening et al., 2014, 

2017 [94] [101] 

 
Germany 
(Seelze) 

20 to 100 µm 495,000a confocal Raman microscopy 
Sujathan et al., 2017 

[164] 

Secondary 
UK 

(Glasgow) 
1.34 - 1.62 mm About 2000b FT-IR 

Murphy et al., 2016 
[90] 

Primary  
and secondary 

Finland 
(Mikkeli) 

<1mm 8.2 - 301.4b FT-IR and Raman Microscope Lares et al., 2018 [95] 

Primary  
and secondary 

Canada 
(Vancouver) 

64 µm 4400b Microscopy and FT-IR Gies et al., 2018 [119] 

 
Norway 

(10 WWTPs) 
54 µm to 5mm 6 077a µ-FT-IR 

Lusher et al., 2018 
[163] 

n.a 
China 

(Jiangsu) 
25 to >500 μm 1.6 and 0.7b FT-IR 

Lv et al., 2019 
[125] 

Primary  
and secondary 

China 
(Wuhan) 

100 to 800 μm 24,030a Visual inspection and FT-IR 
Liu et al., 2019 

[126] 
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Continued 

Primary  
and secondary 

China 
(Beijing) 

681.46 μm    95.16 Microscopy and FT-IR Yang et al., 2019 [121] 

Primary, secondary 
and tertiary 

Italy 
(Italy) 

0.5 - 0.1 mm 113,000a FT-IR Magni et al., 2019 [115] 

Secondary 
Australia 

(New South Wales, 
Hunter Region) 

>1.5 μm to >1 
mm 

7.91 ± 0.44 MP/L  
(in activated sludge 

Visual sorting and ATR-FT-IR 
Raju et al., 2020 

[144] 

Primary  
and secondary 

Italy <1 mm 

1.67 MP/g TS in the  
Sludge, 5.3 MP/g TS in the 
AerWAS and 4.74 MP/g TS 

dewatered sludge 

Stereomicroscope and µ FT-IR 
Pittura et al., 2021 

[142] 

Primary  
and secondary 

Spain 
(Valencia) 

<1 mm 280 MP/Lof activated sludge μ-ATR-FT-IR/ATR-FT-IR Alvim et al., 2020 [140] 

Primary  
and secondary 

Iran 
(Bandar Abbas City) 

>250 µm 
328.50 (±56.42, SD) MP/50 g 

dw and 278.4 (±26.87, SD) 
MP/50 g dw 

SEM and X-ray EDX 
Naji et al., 2021 

[133] 

Primary  
and secondary 

Spain 25 to 104 µm 
183 ± 84 MP/g (mixed 
sludge), 165 ± 37 MP/g  

(dried sludge) 
Visual inspection and FT-IR Edo et al, 2020 [109] 

The site map of Figure 3 shows the locations of the studies on a world map. aDM, dry matter. bThe unit is particles kg−1 wet weight and the dry weights of 
the wet sewage sludge samples were all below 1%. 

 
Oftentimes, sludge after thickening, is treated in a thermal hydrolysis reactor 

and then goes into an anaerobic digester. Afterwards, the sludge is dried. It must 
be noted that while sewage sludge is added to soil, smaller amounts of sludge can 
also be incinerated. The latter might also be added to a landfill. Also, an appre-
ciable quantity [90] [114] [167] of microplastics, especially those of low density 
such as LDPE and PP, can be separated off in the primary steps of the wastewa-
ter treatment, in grit traps and during grease skimming. These separated wastes 
are usually put into landfills or are incinerated [99] [163]. 

The application of sludge to agricultural soils and municipal green areas as 
well as its use by soil producers raises the concentration of microplastics in soils 
significantly [168] [169] [170]. In addition, microplastics are entering soil via 
plastic mulching, irrigation with grey water, and through run-offs. Also, air 
movement contributes to the dissemination of microplastics in farming areas 
[91] [171]. The occurrence and fate of microplastics in soil are less studied [172] 
[173] [174] [175] [176] than of microplastics in the marine environment. It has 
been calculated that in Norway alone, 500 billion (5 × 1011) pieces of microplas-
tic find their way into the soil via sewage sludge applied to agricultural soils 
[163]. This compares with an estimated 1.56 × 1014 plastic particles per year en-
tering Chinese soil [166], and 300,000 and 430,000 tons/year of plastic distri-
buted over European and North American agricultural land [73] [172]. While 
plastics structurally weather under the influence of humidity, temperature, 
UV-radiation and wind [173], they remain chemically intact in the soil for long 
periods of time [177], with slow chemical oxidation and UV driven bond scis-
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sion being the two main degradation mechanisms reported [178]. 
As stated above, in WWTPs, sludge undergoes prior steps before being re-

leased such as thickening and final dewatering, which can involve a centrifuga-
tion step. Oftentimes, digestion steps are incorporated in the treatment. These 
can be anaerobic digestion or aerobic digestion/composting. Here, L. Pittura et 
al. have shown that 86% of MPs (which included 100% of the particles and 87% 
of the fibers) can be retained with a pilot scale upflow granular anaerobic sludge 
blanket (UASB) in combination with an anaerobic membrane bioreactor 
(AnMBr) [142]. However, MPs can have potential adverse effects on anaerobic 
processes, which normally yield biogas as a useful side-product. Thus, L. Pittura 
et al. [142] have shown that in their case the presence 50 polypropylene MPs per 
g of solid led to a decrease of the methanogenic activity by 58%. This “poison-
ing” of the anaerobic microorganisms may be due to leachates from the MPs, 
which contain small organic molecules but also heavy metals. The organic mo-
lecules can stem from plastic additives to MPs such as added plasticizers, anti-
oxidants or UV absorbents or they themselves could have been adsorbed to the 
MPs at some point in their history and are now released. Also, other research 
groups have commented on this inhibition of methanogenic activity by MPs 
(and NPs) in lab scale anaerobic digestion processes of wastewater or simulated 
wastewater and in lab scale UASB processes [179] [180] [181] [182] [183]. 
PE-MPs [180], PEST-MPs [179], PET-MPs [182], PS-MPs [183], and PVC-MPs 
[181] all showed this inhibition.  

It has been shown that a fraction of up to 20% the microplastic can be re-
cycled back into the reject water during the sludge dewatering step [114] and 
thus will cycle through the system on more time. The fate of microplastics in 
thermal treatment processes such as in the Cambi process (i.e., at 160˚C) or in-
cineration processes has not been studied in detail. Mahon et al. have described a 
potential shredding of MPs in lime stabilization processes, leading to smaller 
sized MPs. MPs having gone through the sludge thermal drying process showed 
signs of melting and blistering [161]. We have noted that some plastic micro-
beads contained in personal care products undergo fragmentation when cycled 
on silica gel from room temperature to 100˚C and back to rt [17]. Synthetic fi-
bers, which are more ubiquitous, are usually more indestructible. Rom et al. 
have looked at polylactide microfibers and have found that they were not biode-
graded by treatment with activated sludge under mesophilic (36˚C) or thermo-
philic (56˚C) conditions, even after 4 weeks [184]. 

3. Laboratory-Scale Development of New Methods for the  
Removal of Micro- and Nanoplastics from Aqueous  
Systems Suitable for Implementation in Wastewater  
Treatment 

There are a number of new methods under development for the removal of mi-
cro- and nanoparticles that can be deemed suitable for implementation at a fu-
ture time. Mainly, they are based on adsorption [185] [186] [187], coagulation 
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techniques [157] [158] [188]-[194] and membrane filtration [156]. This becomes 
important also in regard to eliminating microplastics (and potentially 
nanoplastics) from drinking water derived from drinking water treatment plants 
(DWTPs) [195] [197] [198], where MP have been found not only in the ground 
water used by DWTPs, but also in tap water [199] and bottled mineral water 
[200] [201] [202]. Kosuth et al. have found MP in 81% of 156 drinking water 
samples collected from 14 countries [203]. 

First, we turn to adsorption or other types of retention of MPs on different 
materials leading to different filtrations. Z. Wang et al. have looked at replacing 
sand filters with biochar filters [187]. The filters were either comprised of corn 
straw biochar produced at 500 ˚C or of commercially available hardwood bio-
char. Leachate column tests were performed with spherical 10 μm polystyrene 
beads at a concentration of 1.6 × 108 suspended beads/L distilled water. The 
removal efficiency of such filters was found to be more than 95% [187]. C. Sun 
et al. have developed artificial sponges made from chitin and graphene oxide 
cross-linked with the help of epichlorohydrin, which were found to take up po-
lystyrene, carboxylate modified polystyrene and amine-modified polystyrene 
microbeads of 1 μm size with maximum adsorption capacities of 5.99. 7.53 and 
8.46 mg/g, respectively [186]. The sponges could be reused, although the rege-
neration of the sponges involves a complex process of rinsing with larger 
amounts of ethanol, cooling them down to −80˚C for 4h and freeze-drying 
[186].  

Looking at chemical coagulation-flocculation processes, G. Zhou et al. [190] 
used polyaluminium chloride (PAC) and ferric chloride (FeCl3) as coagulants for 
PE and PS microplastics, finding 77.8% (PS) and 29.7% (PE) removal efficiencies 
with PAC and 64% (PS) and 17.4% (PE removal efficiencies with FeCl3. Interes-
tingly, with these systems the smaller sized PE microplastics could be removed 
more efficiently, while for PS it was just the reverse [190]. N. Shahi et al. have 
turned to using alum coagulant alone or in combination with polyamine-coated 
(PC) sand. Here, a combination of PC sand (500 mg·L−1) with alum (20 mg·L−1) 
gave an MP removal of 97% for PE-MPs, where it was noted that size, shape and 
surface morphology plays a significant role in the coagulation and flocculation 
processes [192]. K. Rajala et al. [138] have studied the effectiveness of PAC and 
FeCl3 in MP removal by artificially adding PS microspheres, 1 and 6.3 μm in size, 
respectively, to a WW matrix stemming from the effluent of a secondary WWTP 
in Finland. M. Lapointe et al. [194] looked at the difference in coagulation and 
flocculation behaviour of pristine and weathered microplastics, using polyethene 
microspheres (15 μm and 140 μm in size), polystyrene microspheres (140 μm in 
size) and polyester fibers (12 - 16 μm wide, 105 - 1325 μm long). Alum (0.45 - 
3.64 mg Al/L) and polyacrylamide (PAM, 0.05 - 0.30 mg/L) were used as coagu-
lant/flocculant. It was seen that polyester fibers were removed more efficiently 
(99%) than the microbeads (82% - 84%). Again, smaller sized microbeads were 
removed more facilely than larger ones. Weathered (aged) PE microbeads were 
more easily removed than pristine beads. The authors rationalized this behaviour 
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with the slow oxidation of the PE bead surface which allows such functionalities 
as –OH, -CO2H, and –C=C- to form. With a quartz crystal microbalance, the 
deposition of coagulant and flocculant was investigated on a plastic surface. 
Here, it was seen that cationic PAM showed the highest deposition rate. Z. Chen 
et al. [204] have demonstrated an interesting flocculation method for the remov-
al of NPs with different salt-based flocculants, which not only included 
aluminium but also calcium. Calcium ions show an excellent sedimentation 
performance for impurities at high pH. It has been described that flocculation 
occurring between composite metal calcium-aluminium (Ca/Al) ions and 
nanoplastics showed the best performance, again at high pH [204]. As many 
synthetic polymers used as flocculants exhibit some toxicity, especially due to 
small concentrations of monomers in the materials, bio-based polymeric floccu-
lants have been suggested [205]. Here, the problem is their poor water solubility 
and their low charge density [206] [207]. Nevertheless, S. Magalhães et al. have 
performed initial experiments using a cationic hydrophobically modified cellu-
lose derivative as a bio-flocculant for the flocculation PET microplastics [206]. 

Electrocoagulation uses sacrificial iron or aluminium electrodes and usually 
forms iron- and aluminium hydroxides as coagulant material. As with the addi-
tion of chemical coagulants, these destabilize the surface charges on the surface 
of the suspended solids. The suspension is broken up, and the particles, ap-
proaching each other more closely, interact by van der Waals forces to form a 
conglomerate of particles. The hydrogen liberated during the electrolysis process 
lifts these larger conglomerates together with the blanketing coagulant to the 
water surface. In their set-up, W. Perren et al. [189] used seven metal electrodes, 
one as cathode, one as working anode and the five remaining as sacrificial 
anodes. The added spherical polyethene beads of 300 - 355 μm size were found 
to aggregate on the positive electrode faces. The microplastic particles under-
went simultaneous charge neutralisation and flocculation to create a stable floc 
on the water’s surface. A minimum of 2 g/L NaCl salt concentration was em-
ployed. The microbead removal efficiency increased with increasing salt concen-
tration [189]. 

It was seen that mesoparticles (i.e., 20 μm - 0.5 μm, falling within the size of 
many microplastics) can play a role in irreversible membrane fouling and that a 
prior coagulation process is of utmost importance [208]. An alternative mem-
brane separation technology is that using dynamic membranes (DMs). DMs op-
erate with a layer produced on a supporting membrane by particles in the influ-
ent. So, these particles in the influent form a filtration layer that can be sup-
ported by a larger pore-sized mesh or by low-cost porous materials. DMs have 
been run successfully with particles that are of a similar size to microplastics 
[209]. Also membranes made from electrospun lignin-zeolite composite nanofi-
bers, with 1 wt% zeolite, were found to retain polystyrene microbeads of size > 1 
μm (R = 94.7%) after five cycles of filtration [210]. Zirconium based metal 
organic frameworks (MOFs) in form of foams have been utilized as filters. They 
are recyclable and operate at a MP removal efficiency of up to 95.5%. A large 
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scale filtration with these materials as filters was carried out [211]. 
The following shows some further intriguing approaches for the removal of 

MPs from wastewater, but they may be less suitable for a high through-put 
WWTPs and more suitable for batch treatments. One such approach centres on 
centres on the adsorption of nanoparticles on MPs that induce a property 
change in the MPs such as a change in density or giving the composite magnetic 
properties. Also, the use of hydrophobic magnetic nanoparticles has been for-
warded. One such method uses magnetic polyoxometalate supported ionic liquid 
phases (magPOM-SILPs), in which magnetic iron oxide/silica core-shell precur-
sor particles, with an average size of 16 nm, are treated with a polyoxometalate 
ionic liquid (n-C7H15)4N+)8 [α-SiW11O39]8-in acetone, giving a viscous coating to 
the particles. This makes the magPOM-SILPs attach themselves to the MPs. The 
mag-POM-SILPs with the attached MPs are then removed from the water with a 
permanent magnet [212]. The use of a coating of magnetic iron nanoparticles by 
reaction of the nanoparticles with hexadecyltrimethoxysilane (HDTMS) has also 
been reported to be suitable for the adsorption of MPs. Similar to the above, the 
nanoparticles with the attached MPS are removed from the water by a perma-
nent magnet [213]. Lastly, an interesting approach to the removal of micropar-
ticles, incl. microplastics, in water is through their interaction with magnetic, 
self-moving microswimmers of the type Au@Ni@TiO2, linked together in form 
of a chain. The microswimmers moving in a magnetic field have been used to 
clear water of the river Warnow in Germany from microparticles by “shoveling” 
or “pushing” interactions [214]. The microswimmers still lack selectivity to 
identify microplastics among other microparticles [214]. 

4. Conclusion 

The emission of microplastics into the environment will be an ongoing problem 
for the foreseeable future. The phase-out of plastic microbeads in personal care 
products and of single use plastic in the food industry in certain regions is laud-
able, but will only have a limited impact on the continuous generation of poly-
meric microparticles that especially include synthetic fibers, microtires and sec-
ondary microplastics, incl. from plastic packaging. Therefore, WWTPs will play 
an ever-increasing role in frustrating the dispersal of these materials, specifically 
in the marine ecosystem. In this context, further research in four broader areas 
continues to be needed: 1) the creation of new techniques to better retain mi-
croparticles; 2) a more complete understanding of possible physiological ef-
fects of the materials in humans and animals; 3) the development of a more 
complete inventory of microplastic emissions; 4) a better knowledge of the fate 
and lifetime of microplastics in aquatic ecosystems and soil. This should go 
hand-in-hand with the development of new methods for the analysis of micro- 
and nanoplastics, also and especially in drinking water and food. 
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