
Journal of Signal and Information Processing, 2021, 12, 1-41
https://www.scirp.org/journal/jsip

ISSN Online: 2159-4481
ISSN Print: 2159-4465

DOI: 10.4236/jsip.2021.121001 Feb. 26, 2021 1 Journal of Signal and Information Processing

A New Approach for the DFT NIST Test
Applicable for Non-Stationary Input
Sequences

Yehonatan Avraham, Monika Pinchas

Department of Electrical and Electronic Engineering, Ariel University, Ariel, Israel

Abstract
The National Institute of Standards and Technology (NIST) document is a
list of fifteen tests for estimating the probability of signal randomness degree.
Test number six in the NIST document is the Discrete Fourier Transform
(DFT) test suitable for stationary incoming sequences. But, for cases where
the input sequence is not stationary, the DFT test provides inaccurate results.
For these cases, test number seven and eight (the Non-overlapping Template
Matching Test and the Overlapping Template Matching Test) of the NIST
document were designed to classify those non-stationary sequences. But, even
with test number seven and eight of the NIST document, the results are not
always accurate. Thus, the NIST test does not give a proper answer for the
non-stationary input sequence case. In this paper, we offer a new algorithm
or test, which may replace the NIST tests number six, seven and eight. The
proposed test is applicable also for non-stationary sequences and supplies more
accurate results than the existing tests (NIST tests number six, seven and eight),
for non-stationary sequences. The new proposed test is based on the Wigner
function and on the Generalized Gaussian Distribution (GGD). In addition,
this new proposed algorithm alarms and indicates on suspicious places of cyclic
sections in the tested sequence. Thus, it gives us the option to repair or to
remove the suspicious places of cyclic sections (this part is beyond the scope
of this paper), so that after that, the repaired or the shortened sequence (origi-
nal sequence with removed sections) will result as a sequence with high proba-
bility of random degree.

Keywords
Wigner Distribution, Shape Parameter, Generalized Gaussian Distribution,
Random Number Generator, True Random Number Generator, Pseudo
Random Number Generator

How to cite this paper: Avraham, Y. and
Pinchas, M. (2021) A New Approach for
the DFT NIST Test Applicable for Non-
Stationary Input Sequences. Journal of Sig-
nal and Information Processing, 12, 1-41.
https://doi.org/10.4236/jsip.2021.121001

Received: November 1, 2020
Accepted: February 23, 2021
Published: February 26, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsip
https://doi.org/10.4236/jsip.2021.121001
https://www.scirp.org/
https://doi.org/10.4236/jsip.2021.121001
http://creativecommons.org/licenses/by/4.0/

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 2 Journal of Signal and Information Processing

1. Introduction

In this paper, the problem of estimating the probability of signal randomness
degree is addressed, which is widespread used in cryptography applications [1]
[2]. The key component of the encryption process is the Random Number Ge-
nerator (RNG) [3] [4], that is a physical apparatus or a software algorithm, that
generates a sequence of signs (numbers) without any visible deterministic pat-
tern or order. A True Random Number Generator (TRNG) is an apparatus that
is based on a non-deterministic entropy source while a Pseudo Random Number
Generator (PRNG) is based on software or hardware [5]. The quality of an RNG
is not always perfect due to the fact that physical generators (TRNG) are sensi-
tive to external influences [6] such as temperature [7], power supply, obsoles-
cence, may suffer from a slow and persistent failure that is not noticeable or may
suffer from a sharp decline in quality [8]. In addition, generators based on soft-
ware (PRNG) are defective since they are based on deterministic algorithms that
generate the numbers by some formula and some initial value [9] [10].

The series obtained from the RNG should be checked if this is not a lacking
random series [11]. There is a great variety of statistical tests for checking the
quality of a random generator [12] [13] [14]. These tests are not meant to prove
mathematically that the sequence that the generator produces is random, but
rather to find out if there are any vulnerabilities in the generator that may indi-
cate poor randomness [15]. The tests on the input sequence (a sequence of bits
of ones and zeros), determine whether the tested sequence contains certain pre-
dictable characteristics in a truly random sequence. Such a test result is not de-
terministic but probabilistic. For example, a truly random sequence should con-
tain zero and one bits approximately equally [14]. If the tested sequence does not
meet this requirement, the generator that created the sequence fails experimen-
tally. Conversely, if the one-bit number and zero equals a certain predetermined
divergence rate, it can be said that the random sequence was “accepted”. The
term was “accepted” means that the claim of randomness is not rejected [16].
Even if the sequence successfully undergoes a given statistical test, it is not an
absolute proof of its randomness but more than a probabilistic confirmation
[17].

The NIST tests [18] are very popular [19] [20]. However, these tests (NIST)
have several problems [21] [22] [23] [24] and as stated in [25], the NIST tests [18]
require that the behavior of the tested sequence shall be stationary. But, accord-
ing to [25], it is not rare for entropy sources (TRNGs) to generate time-varying
data, since entropy sources usually depend on physical phenomena (e.g. thermal
noise) and some of them are fragile and sensitive to external factors (e.g. tem-
perature), which means the distribution of their outputs or the dependency among
the outputs may change with external factors. In addition, much software based
TRNGs use the computer’s workload as their entropy sources, which are also va-
riable [25].

The NIST tests [18] contain fifteen tests, based on probabilistic methods that

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 3 Journal of Signal and Information Processing

examine the statistical independency between the bits in the tested input se-
quence. The result is a probability value for the “degree of randomness”. This
value is called “P value” [18].

In this paper, we deal with non-stationary sequences for which test number
six (the DFT test from the NIST document [18]) is not suitable. Although the
non-overlapping template matching test and the overlapping template matching
test (test number seven and eight of the NIST document [18]) are designed to
compensated for the inability of the DFT test to test non-stationary input se-
quences, still, inaccurate results are obtained for the non-stationary input se-
quence case. Thus, the NIST tests [18], do not supply satisfying results for non-
stationary input sequences.

The various tests from NIST [18] supply us a probabilistic confirmation that
the tested sequence is random. But it does not give us the location of the periodic
part that turns the whole sequence to be non-random. Thus, in cases where the
tested sequence failed to be random, the whole sequence is disqualified even if
only a short part of it, caused it.

In this paper, we propose a time-frequency approach, that analysis the input
sequence in the frequency and time domain in parallel, by using innovative func-
tions such as the Wigner Distribution [26] [27] and the GGD [28] [29]. This new
approach solves two open issues:

1) For the first time, the ability to test non-stationary sequences is possible.
2) For the first time, it is possible to locate the periodic section in the tested

input sequence.
This approach offers a test that can replace the DFT test in the NIST docu-

ment [18] and also may be a replacement for test number seven and eight from
the NIST tests [18]. The proposed algorithm (test) also finds the location of the
periodic part in the tested sequence if it is present. Thus, the periodic part can be
cut out from the tested sequence or it can be maybe corrected. Obviously, the
corrected and shortened sequences have to be tested again for randomness. The
whole issue of how correcting the sequence will not be discussed in this paper.
Simulation results will confirm the effectiveness of the proposed approach for
non-stationary sequences compared to tests six, seven and eight from the NIST
tests [18].

This paper is organized as follows. In Section 2, we explain the motivation of
using the Wigner function in estimating the probability of signal randomness
degree. In Section 3, we present the various parameters used for the Wigner test
which will be shown in Section 4 to be part of the whole proposed algorithm. In
Section 4, we present the structure of the whole algorithm, by using both the
Wigner and the GGD functions. In Section 5, we test our new proposed algo-
rithm via simulation and compare the results to those obtained from the NIST
(test six, seven and eight [18]). Finally, the conclusion is given in Section 6.

2. Motivation

The Wigner function [27] is the Fourier transform for the Autocorrelation func-

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 4 Journal of Signal and Information Processing

tion which allows us to get the spectrum as a function of time. In this way we
can track the locations of cyclic parts in the tested sequence, by detecting fre-
quency deviations at certain time points. The result of the Wigner function [27]
is a matrix, where the lines represent the time domain, the columns represent
the frequency domain.

The absolute output values from the Wigner function [27] can be shown in a
3-D image which shows the tested signal passed via the Wigner function [27] as
a function of frequency and time. In Figure 1, the absolute output values from
the Wigner function [27] are shown in a 3-D image, where the input signal to
the Wigner function [27] is a cosine signal with a frequency of 10 [MHz]. Please
note, that in the time domain the signal at the specified frequency of 10 [MHz] is
present throughout the time being tested, while in the frequency domain it has a
single frequency. Figure 2 shows the absolute output values from the Wigner
function [27] in a 3-D image, where the input signal to the Wigner function [27]
is a combination of three cosine signals with frequencies of 3, 7 and 10 [MHz].
Please note that according to Figure 2 we have more than only three frequencies
due to the cross-correlation effect between the input frequencies. Thus, for sig-
nals containing multiple frequencies, the Wigner function [27] creates a diffi-
culty in identifying the frequencies of the input signal. Thus, making a difficulty
in identifying the right image (frequency).

The random signal has no specific frequency, otherwise, the signal is not ran-
dom. In fact, the random signal behaves like the assembly of multiple signals,
which causes some difficulties in identifying processes within the signal. Figure
3 shows a 3-D image obtained from the absolute output values from the Wigner
function [27] for a random input sequence.

Figure 1. Mesh—one cosine signal, signal frequency: 10 MHznf =    , Sampling Frequency: 4s nf f= ,

81 2.5 10 sec
s

T
f

−= = ×    . Length of the signal: 1024 samples ()51024 2.56 10 secT −× = ×    .

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 5 Journal of Signal and Information Processing

Figure 2. Mesh—two cosine signal, signal frequency:
1,2,3

3,7,10 MHznf =    , sampling fre-

quency: 40 MHzsf =    , length of the signal: 1024 samples.

Figure 3. Mesh—random signal, length of the signal: 1024 samples.

Our new method should respond to changes in the time domain, where the
existing methods (tests) (NIST test [18]) fail. Thus, we test our method with non-
stationary random signal. Non-stationary signals can be artificially assembled by
using a number of random signals, as shown in Figure 4. where the “cyclic” part
is also a random signal that is repeated during the signal.

Figure 5 shows two images obtained from the absolute output values from the
Wigner function [27] where the left image was obtained for a random input sig-
nal while the right image was obtained for a non-random input signal having
periodic parts in the signal. According to Figure 5, the signal intensity (z-axis)
for the non-random input case, is approximately double the size compared with
the signal intensity for the random input case. This shows that the values in the
matrix obtained by the Wigner function [27] may be helpful in conjunction with
some predefined parameters for classifying the probability of signal randomness
degree.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 6 Journal of Signal and Information Processing

Figure 4. Non-stationary signal structure.

Figure 5. Comparison of 2 tested sequences. Left: non-random sequence, right: random se-
quence.

With the help of the Wigner function [27] we can detect changes in the time

plane. In order to see this, please refer to Figure 6, in which we show three dif-
ferent cases where the periodic part is placed in the tested sequence at different
places: at the beginning, at the center and at the end of the tested sequence.
Please note that in Figure 6 the y-axis shows the intensity of the signal. Accord-
ing to Figure 6, the location of the periodic segment can be detected via the ma-
trix obtained from the output of the Wigner function [27], by tracing the
changes in the intensity (y-axis in Figure 6).

3. The Wigner Test

In the previous section, we have mentioned that the output values from the ma-
trix obtained from the Wigner function [27] may be helpful in conjunction with
some predefined parameters for classifying the probability of signal randomness
degree. In the following, we normalized the absolute values from the matrix ob-
tained by the Wigner function [27] by a predefined parameter that depends on
the input sequence length. For a sequence length of 1024, 2048 and 4096 the
predefined parameter is set to 350, 550 and 850 respectively. These parameters
were determined according to signal intensity (z-axis) expected to be obtained
from a random sequence, so that a division of this value normalizes the matrix
in such a way that it is possible to detect increases in the signal intensity, when
the sequence is not random. The value was obtained by performing simulation
experiments on 20 random sequences.

In the following we present four parameters (“Power”, “Distance”, “Density”
and “Highest”) with their range of values for which the input sequence is de-
clared as a random sequence. Please note, in order to declare that the sequence is
a random sequence, the four parameters (“Power”, “Distance”, “Density” and
“Highest”) must be in the range for which the sequence is declared as a random

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 7 Journal of Signal and Information Processing

Figure 6. Three tested sequences with a periodic section—a look at the time plane, the location of a periodic segment at the be-
ginning of the sequence (left side), middle (center) and end (right side).

sequence. Please note that in the following we mean by “samples” the absolute
values from the matrix obtained from the Wigner function [27]. It should be
pointed out that all the values or range of values of the listed parameters from
below, were found by simulation experiments only.

The parameters are:
1) Power—Describes the height of the samples. To obtain a normalized range—

the samples are divided by their maximum obtained value. For the random sig-
nal case, the received range must be between: Power = 0.7 - 0.8.

2) Distance—Describes the “distance” and is equal to the number of samples
between two samples with “Power” 0.8. To obtain a normalized range—the re-
ceived value is divided by the number of samples of the tested sequence. In the
random signal case, the received “Distance” is: Distance = 0.1 - 0.3.

3) Density—Describes the ratio of the number of samples above the “Power”
of 0.75 in the central part of the matrix to the numbers of samples above the
“Power” of 0.75 outside the central part of the matrix. For a random signal, a
high ratio is being received, meaning that most of the high samples are in the
centre of the signal. In order to declare the input sequence as a random sequence,
the received “Density” should be: Density > 0.87.

4) Highest—Describes the number of samples above the “Power” of 0.9. In a
random signal the received number is Highest < 15.

Simulation Wigner Test

Table 1 shows some simulation results using the Wigner test (with the above
four parameters test). For this purpose, eight sequences were applied with dif-
ferent number of cycles, with different cycle length and segment position of the
cyclic part. Each structure was tested with sequence length of 1024, 2048 and
4096. In the following, the highlighted red section is the periodic part.

The sequences structure:
For sequence length of 1024 samples:
Sequence number 1—8 × 128 (8 cycles of 128 bits sequence),

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 8 Journal of Signal and Information Processing

Table 1. Result of the Wigner function.

 Length of sequence
Wigner test

Power Distance Density Highest Random

1 1024 0.9 - 1 0.78 0.51 1208 no

2 1024 0.9 - 1 0.72 0.56 3611 no

3 1024 0.8 - 0.9 0.3 0.78 18 no

4 1024 0.7 - 0.8 0.25 0.88 6 yes

5 1024 0.8 - 0.9 0.39 0.79 19 no

6 1024 0.7 - 0.8 0.3 0.9 19 no

7 1024 0.9 - 1 0.47 0.83 36 no

8 1024 0.9 - 1 0.44 0.76 33 no

9 2048 0.9 - 1 0.75 0.6 3282 no

10 2048 0.9 - 1 0.8 0.5 9182 no

11 2048 0.7 - 0.8 0.22 0.77 13 no

12 2048 0.7 - 0.8 0.26 0.61 7 no

13 2048 0.9 - 1 0.29 0.91 48 no

14 2048 0.7 - 0.8 0.3 0.91 13 yes

15 2048 0.9 - 1 0.4 0.84 43 no

16 2048 0.9 - 1 0.4 0.8 51 no

17 4096 0.9 - 1 0.83 0.62 6346 no

18 4096 0.9 - 1 0.7 0.51 24,527 no

19 4096 0.7 - 0.8 0.25 0.72 4 no

20 4096 0.7 - 0.8 0.3 0.6 11 no

21 4096 0.9 - 1 0.42 0.92 84 no

22 4096 0.7 - 0.8 0.35 0.93 19 no

23 4096 0.9 - 1 0.48 0.84 96 no

24 4096 0.9 - 1 0.52 0.81 124 no

Sequence number 2—16 × 64 (16 cycles of 64 bits sequence),
Sequence number 3—768 + 32 × 8 (periodic part in the end of the sequence),
Sequence number 4—32 × 8 + 768 (periodic part in the start of the sequence),
Sequence number 5—384 + 32 × 8 + 384 (periodic part in the middle of se-

quence),
Sequence number 6—128 + 320 + 128 + 320 + 128,
Sequence number 7—64 + 128 + 64 + 128 + 64 + 128 + 64 + 128 + 64 + 128 +

64,
Sequence number 8—32 × 2 + 128 + 32 × 2 + 128 + 32 × 2 + 128 + 32 × 2 +

128 + 32 × 2 + 128 + 32 × 2.
For sequence length of 2048 samples:

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 9 Journal of Signal and Information Processing

Sequence number 9—8 × 256 (8 cycles of 256 bits sequence),
Sequence number 10—16 × 128 (16 cycles of 128 bits sequence),
Sequence number 11—1536 + 64 × 8 (periodic part in the end of the se-

quence),
Sequence number 12—64 × 8 + 1536 (periodic part in the start of the se-

quence),
Sequence number 13—768 + 64 × 8 + 768 (periodic part in the middle of se-

quence),
Sequence number 14—256 + 640 + 256 + 640 + 256,
Sequence number 15—128 + 256 + 128 + 256 + 128 + 256 + 128 + 256 + 128 +

256 + 128,
Sequence number 16—64 × 2 + 256 + 64 × 2 + 256 + 64 × 2 + 256 + 64 × 2 +

256 + 64 × 2 + 256 + 64 × 2.
For sequence length of 4096 samples:
Sequence number 17—8 × 512 (8 cycles of 512 bits sequence),
Sequence number 18—16 × 256 (16 cycles of 256 bits sequence),
Sequence number 19—3072 + 128 × 8 (periodic part in the end of the se-

quence),
Sequence number 20—128 × 8 + 3072 (periodic part in the start of the se-

quence),
Sequence number 21—1536 + 128 × 8 + 1536 (periodic part in the middle of

sequence),
Sequence number 22—512 + 1280 + 512 + 1280 + 512,
Sequence number 23—256 + 512 + 256 + 512 + 256 + 512 + 256 + 512 + 256 +

512 + 256,
Sequence number 24—128 × 2 + 512 + 128 × 2 + 512 + 128 × 2 + 512 + 128 ×

2 + 512 + 128 × 2 + 512 + 128 × 2
Simulation results:
Please note, in Table 1 the red colored values are the indices that classify the

sequence as non-random. The sequence is considered as random only when the
four parameters (“Power”, “Distance”, “Density” and “Highest”) meet the crite-
ria of the random sequence.

According to Table 1, the four parameters (“Power”, “Distance”, “Density”
and “Highest”) are effective in classifying if the given sequence is a random se-
quence or not. But it should be pointed out here that the good results were ob-
tained only for those sequences that have a high periodicity within the sequence
or have a long cyclic segment. In addition, with the four parameters (“Power”,
“Distance”, “Density” and “Highest”) we are not able to locate the cyclic section
in the tested sequence. Thus, as will be explained in the next section we need the
GGD [28] [29].

4. The Proposed Algorithm

The general structure of the algorithm can be seen in the block diagram presented

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 10 Journal of Signal and Information Processing

in Figure 7. In general, the tested sequence is a vector containing only ones and
minus ones in the digital time domain. By using the Wigner function [27] this
vector is converted to a quadratic matrix which represents the sequence behavior
in the time and frequency domains. This matrix allows us to decide whether the
tested sequence has a high periodicity within the sequence and should be an-
nounced as a non-random sequence, or at this stage, no periodicity was detected
within the sequence, thus we should move on to the next step of the algorithm.
To detect changes over the time domain, the GGD [28] [29] is being used as will
be explained later on in this section.

According to Figure 7, []s n is the sampled output from the RNG with sam-
ple rate of sf , where 1 sT f= and T is the sampling period () []()s nT s n→ .
Next, this signal []()s n is converted to an analytic signal with the help of the
Hilbert transform [30]. Thus now, the analytical signal []s n′ is driven to the
Wigner function [27]. Please note, the input to the Wigner function [27] must
be an analytical signal to avoid the aliasing problem with the Wigner transform
[27] for non-analytical signals. The output from the Wigner function [27] is

[],W n ω and is given by:

[] [](), ,ssW n fft R nτ τ= (1)

where 2 fω = π , f stands for the frequency, ().fft is the Fast Fourier Trans-
form on (). and [],ssR nτ is the Autocorrelation of []s n′ given by:

[] []()[,]ssR n E s n s nτ τ∗ ′ ′= ∗ +  (2)

where “*” is the multiplication operation, []s n∗′ is the conjugate part of []s n′
and [].E stands for the expectation operation.

At this point, the decision part of Figure 7 which receives the output from the
Wigner function [27] is used to decide whether the incoming sequence has a
high periodicity within the sequence or whether the repetitive sequence has a
high length. The purpose of this examination is to determine whether the se-
quence can be disqualified for being a random sequence or can be moved on to
the next step of the algorithm. In other words, if the algorithm does not detect a
high periodicity within the sequence or a high length of a repetitive sequence at
this point, we continue to the next step in the algorithm which is the GGD func-
tion [28] [29]. This step is based on examining the changes in the shape para-
meter associated with the GGD function [28] [29].

Figure 7. Block diagram of the system.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 11 Journal of Signal and Information Processing

Changes in the shape parameter of the GGD [28] [29] presentation, change
the shape of the probability density function (pdf) of the given input sequence to
the GDD [28] [29] which may have a Laplacian, or double exponential distribu-
tion, a Gaussian distribution or a uniform distribution for a shape parameter
equal to one, two and infinity respectively. Obviously, changes in the pdf of the
tested input sequence to the GDD [28] [29], indicates that the input sequence is
not random. The shape parameter allows us to characterize the absolute values
from the matrix obtained from the Wigner function [27], so that each row or
column in the matrix can be expressed by a single value. Thus, a vector that
characterizes the time or the frequency domain through the shape parameter can
be obtained. In our algorithm, the time domain is in our interest, therefore we
calculate the shape parameter on each column (representing the frequency do-
main) in the matrix. The obtained vector will be denoted as []G n (Figure 8).

According to the GGD function [28] [29], the shape parameter is given by:

()

[)

() [)

() [)

[)

2
27 3ln ln
16 4

2
2 2 1 3 1

1

2 2
1 2 1 2 3

3

2
2 2 3

3 1

2 if 0,0.131246
1 4 4 if 0.131246,0.448994

2
1 _ 4 if 0.448994,0.671256

2

3 41 (4 ln if 0.671256,0.75
2 4

ik
i

i i

i

i i i i
i

i
i

k

a a a a a k k
a

p k
b b k i b b k b k k

b k

k
c c c k

c c


 ∈

 − + − + ∈
=   − − − − ∈  

 


 − − + ∈   

(3)

where 1 2 30.535707356, 1.168939911, 0.1516189217,a a a= − = = −

1 2 30.9694429, 0.8727534, 0.07350824,b b b= = =

1 2 30.3655157, 0.6723532, 0.033834.c c c= = =
According to [28] [29], ik can be calculated by:

()
()

2

2

i
i

i

E W
k

E W


=


 

�

�
 (4)

where iW� is the i-th column (representing the frequency domain) in the matrix
[],W n ω .
Based on Equation (3) and Equation (4) the vector []G n can be defined:

[] () () () ()1 2 3, , , , NG n p k p k p k p k =  �

where N is the length of the tested input sequence.

Figure 8. Signal flow. iW� is the i-th column (representing the frequency domain) in the
matrix.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 12 Journal of Signal and Information Processing

The vector []G n holds all the changes in the time domain of the shape pa-
rameter. An example of the shape parameter vector []G n can be seen in Figure
9 for a random input sequence of length 1024.

To simplify the shape parameter signal classification, an average operation is
carried out on []G n by averaging every eight following samples of []G n for
an input sequence with length of 1024. In generally, the number of samples for
the average operation is 8, 16 and 32 for an input sequence with length of 1024,
2048 and 4096 respectively. The averaged signal []G n from Figure 9 is pre-
sented in Figure 10. Please note, in order to maintain the same vector length,
each of these eight samples (for an input sequence with length of 1024) received
the averaged value obtained by the averaging operation.

Figure 9. The vector G[n]. n represents the sample number.

Figure 10. Average of G[n] (an average of 8 samples).

0 100 200 300 400 500 600 700 800 900 1000

Time [
n]

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

G [
n

]
of a random sequence

0 100 200 300 400 500 600 700 800 900 1000

Time [
n]

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

The averaged vector G [
n

] -
random sequence

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 13 Journal of Signal and Information Processing

In the following we define:

() (), for 1,2,3, , time domainiW W i j i N= =� � (5)

() ()ˆ , for 1,2,3, , freguency domainjW W i j j N= = � (6)

According to Equation (4), Equation (5) and Equation (6) we can define:

()
()

()
2

2
for 1,2,3, , time domain

i
i

i

E W
k i N

E W
= =

 
  

�
�

�
 (7)

()
()

()
2

2

ˆ
ˆ for 1,2,3, , freguency domain

ˆ

j

j

j

E W
k j N

E W
= =

 
  

� (8)

Therefore, the vectors []G n and []Ĝ n can be defined:

[] () () () () ()1 2 3, , , , time domainNG n p k p k p k p k =  � (9)

[] () () () () ()1 2 3
ˆ ˆ ˆ ˆˆ , , , , freguency domainNG n p k p k p k p k =  � (10)

After the average operation on []G n and []Ĝ n , we get the vectors []g n� and
[]ĝ n respectively. In the following we set q equal to 1, 2, 4 for an input se-

quence length of 1024, 2048 and 4096 respectively.

[] ()0 8 16 24 8, , , , , time domainq q q N qg n a a a a a − =  � �

[] ()0 8 16 24 8ˆ ˆ ˆ ˆ ˆ ˆ, , , , , freguency domainq q q N qg n a a a a a − =  �

For simplicity we show in the following ja and ˆ ja for 1q = where
0,8 , , 8j q N q= −� . Please refer to the Appendix for the definition of ja and

ˆ ja for q equal to two and four.

[] [] [] []

[] [] [] []

8 8 8 8
1 1 1 1

8 8 8 8
1 1 1 1

1 1 1 1, , , ,
8 8 8 8

1 1 1 1, , ,
8 8 8 8

i i i i
j i i i i

i i i i
i i i i

a G i j G i j G i j G i j

G i j G i j G i j G i j

= = = =

= = = =

= = = =

= = = =

= + + + +
+ + + + 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

[] [] [] []

[] [] [] []

8 8 8 8
1 1 1 1

8 8 8 8
1 1 1 1

1 1 1 1ˆ , , , ,
8 8 8 8

1 1 1 1

ˆ ˆ ˆ

, , ,
8 8

ˆ

ˆ ˆ ˆ ˆ
8 8

i i i i
j i i i i

i i i i
i i i i

a i j i j i j i j

i j i

G G G G

G G G Gj i j i j

= = = =

= = = =

= = = =

= = = =

= + + + +
+ + + + 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

Detection Algorithm

The signal []D n is the output from the detection algorithm (Figure 7), that
classifies whether the input sequence is a random sequence or not, based on
passing or not passing seven test cases that will be presented in this section. In
addition, this algorithm marks the places that are suspicious of having a repeated
sequence within the tested sequence. Thus, there are two steps in the detection
algorithm:

1) Determine whether the sequence is random or not random.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 14 Journal of Signal and Information Processing

2) Finding the periodic part in the tested input sequence if it exists.
Let us start explaining the first step. Here we apply the histogram function

(from Matlab version R2018a) on the vectors []g n� and []ĝ n (obtained from
the tested input sequence) in order to have the distribution of the appearance of
the values of the shape parameter. In addition, for comparison, we apply also the
histogram function on the vectors []g n� and []ĝ n obtained from a random
sequence. In order to generate this random sequence, the “randn” function from
the Matlab version R2018a is applied which generates “random” numbers from a
Gaussian distribution with variance of one and with a zero mean. Next, if the
generated number is positive or equal to zero, then the used number is set to one,
else it is set to zero. Please note that for some tests in the NIST test [18] a se-
quence of ones and zeros are required. Thus, our generated sequence is con-
verted to ones and zeros following [18]. It should be pointed out that the various
parameters for the following seven test cases were found by simulation experi-
ments only. In the following, we use thirty bins for representing the histogram.
But those bins that have a height less than 0.01 will be deleted and not consi-
dered in the following tests. In addition, after the deletion of those bins that have
a height of less than 0.01, the bins that are not close to the center bins are also
deleted. In order to declare a sequence to be a random sequence, the seven test
cases have to be passed.

Please note that in Figures 11-17 the x-axis represents the various values of
the shape parameter associated with the tested input sequence, while the y-axis
represents the probability density of their appearance. As already was mentioned
earlier in this paper, the shape parameter allows us to characterize the absolute
values from the matrix obtained from the Wigner function [27], so that each row
or column in the matrix can be expressed by a single value. Thus, a vector that
characterizes the time or the frequency domain through the shape parameter can
be obtained.

In the following, we mean by saying that the test is performed in the time do-
main that the shape parameter was calculated on each column (representing the
frequency domain) in the matrix. In addition, if it is stated that the test is per-
formed in the frequency domain, it means that the shape parameter was calcu-
lated on each row (representing the time domain) in the matrix.

The seven test cases are:
Test 1—Checks, whether the maximum height is at the center of the graph

and if the width of the graph is smaller than 0.2. This test is performed in the
time domain. If the conditions are not met—the signal will be marked as a non-
random sequence. An example of this test can be seen in Figure 11, where at the
left figure we have the result for a random sequence while at the right figure we
have the result for a non-random input sequence. According to Figure 11, the
width of the graph in the right figure is higher than 0.2 and the maximum height
is not at the center of the graph. Thus, the tested input sequence is suspected to
be a non-random sequence. Please note, that we have marked all the bins that

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 15 Journal of Signal and Information Processing

were already deleted in the early stage of our test.
Test 2—Checks if there is more than one peak in the graph. It looks for the

two highest bins in the graph and declares that the tested input sequence is sus-
pected to be a non-random sequence if at least there is one bin between the two
highest found bins, and the difference between the heights of those two highest
bins is less than 15%. This test is performed in the time domain. An example for
this test can be seen in Figure 12 where at the right figure we have the result for
a non-random input sequence.

Figure 11. Example for test 1. The histogram in the left is for a random sequence and on
the right is for a non-random sequence.

Figure 12. Example for test 2. The histogram in the left is for a random sequence and on
the right is for a non-random sequence.

Figure 13. Example for test 3. The histogram in the left is for a random sequence and on
the right is for a non-random sequence.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 16 Journal of Signal and Information Processing

Figure 14. Example for test 4. The histogram in the left is for a random sequence and on
the right is for a non-random sequence.

Figure 15. Example for test 5. The histogram in the left is for a random sequence and on the right is for
a non-random sequence.

Figure 16. Example to test 6, the histogram in the left is random sequence and on the
right is non-random sequence.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 17 Journal of Signal and Information Processing

Figure 17. Example to test 7. The histogram in the left is for a random sequence and on
the right is for a non-random sequence.

Test 3—Checks whether the maximum height is obtained in the x-axis be-

tween 1.29 and 1.4. If it is outside of this boundary, the sequence is marked as a
non-random sequence. This test performed in the time domain. An example of
this test can be seen in Figure 13 where on the right figure we have the result for
a non-random sequence where the maximum height is not obtained in the x-axis
between 1.29 and 1.4.

Test 4—Checks whether the maximum height is above 0.25. If it is, the tested
input sequence is marked as a non-random sequence. This test is performed in
the frequency domain. The main idea behind this test is that if there is a concen-
tration around a certain frequency, it indicates that the tested sequence is sus-
pected to have a periodicity within the sequence. An example of this test can be
seen in Figure 14, where we have at the right figure the result for a non-random
input sequence where the maximum bin is more than 0.25.

Test 5—Checks the position of the maximum height of the bin between the
time domain and the frequency domain. If there is no match, this indicates that
the tested input sequence is a non-random sequence. An example for this test
can be seen in Figure 15, where we have at the right figures the result for a
non-random input sequence where there is no match between the position of the
maximum height of the bin between the time domain and the frequency do-
main.

Test 6—This test checks two conditions concerning the heights of the bins.
First, it checks if a bin can be found with a height lower than 0.05. Next, it
checks whether a bin can be found with a height above 0.2. If no bin is left with a
height lower than 0.05 and a bin is found with a height above 0.2, the sequence is
announced as a non-random sequence. This test is performed in the time do-
main. An example for this test can be seen in Figure 16, where we have at the
right figure the result for a non-random input sequence where we have marked
all the bins that were already deleted before entering into this test. Now, accord-
ing to Figure 16, we have a bin with a height above 0.2 and there is no bin with a
height lower than 0.05. Thus, the result presented in the right figure of Figure 16,
corresponds to a non-random sequence. Please note, that we have marked in
Figure 16 all the bins that were already deleted in the early stage of our test.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 18 Journal of Signal and Information Processing

Test 7—The pdf should increase monotonically towards the center bin (or to
the bin with the maximum height) of the pdf and decrease monotonically from
the center bin (or from the bin with the maximum height) downwards. If there
is a 40% decrease in the height of a bin with the bin before it, the tested sequence
is announced as a non-random sequence. An example for this test can be seen in
Figure 17, where we have at the right figure the result for a non-random input
sequence where we have circled the places where the decrease in the height of 40%
was found. Please note, that we have marked all the bins that were already de-
leted in the early stage of our test.

Next, we determine the mathematical description of the above seven tests.
First, we define:

1 11; 1ˆi L i L
i ii i mm= =

= =
= =∑ ∑�

where im� and ˆ im holds the number of observations of []g n� and []ĝ n re-
spectively that fall into each of the disjoint bins divided by the length of []g n�
and []ĝ n respectively, and L is the total number of bins.

() []() ()min 1 , 1,2,3, ,d dx i g n diffx i i L= + ∗ − =� �

[]() []()max min
d

g n g n
diffx

L
−

=
� �

where ()dx i holds the value in the x-axis of the edge where the bin begins.

() []() []() []() ()
ˆ ˆmax min

ˆ ˆmin 1 , 1,2,3, ,d

g n g n
x i g n i i L

L
−

= + ∗ − = �

where ()ˆdx i holds the value in the x-axis of the edge where the bin begins. It
was already mentioned earlier that those bins that have a height less than 0.01
will be deleted and not considered in the seven tests. In addition, after the dele-
tion of those bins that have a height of less than 0.01, the bins that are not close
to the center bins are also deleted. Thus, from the mathematical point of view we
may write:

Step 1: find the index or indexes where (0.01im <�) is true and set those
 indexes to 1 2 3, , , , Li i i i� .
Step 2: set () 0i am i =� ; for 1,2,3, ,a L= � according to the founded
 indexes from Step 1.
Step 3: find ()1 2max , , , Lm m m� � �� and set the index i where the maximum
 was achieved as 1i
Step 4: 1a = ;
 for 1i = to (1 1i −) checking if there is a bin with 0im =� in order to
 set “a” as the start of the histogram after this bin.

if 0im ==� then
1a i= +

 end
 end
Step 5: 0b = ;

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 19 Journal of Signal and Information Processing

1 1i i= + ;
 while (0b ==) checking if there is a bin with 0im =� in order to

 set “b” as the end of the histogram before this bin.
if (i L==) then

b L=
 end

if (0im ==�) then
1b i= −

 end
 1i i= +
 end
Test number 1:
Step 1: find ()1max , , ,a a bm m m+� � �� and set the index ()i a i b< < where the

maximum was achieved as 1i .
Step 2: if (() ()1 1 2b i i a− − − ≤ & () () 0.2d d dx b diffx x a+ − <) then

()1 1Dn = Random signal
 else

()1 0Dn = Not Random signal
 end
Test number 2:
Step 1: find ()1max , , ,a a bm m m+� � �� and set the index ()i a i b< < where the

maximum was achieved as 1i .
Step 2: find ()1 1 1 11max , , , , , ,a a i i bm m m m m

− ++� � � � �� � and set the index i
 (a i b< <) where the maximum was achieved as 2i .

Step 3: if 1 2

1

100 15i im m
m
− 

< 
 

� �

�
 & (2 1 2i i− ≥) then

()2 0Dn = Not Random signal
else

()2 1Dn = Random signal
 end
Test number 3:
Step 1: find ()1max , , ,a a bm m m+� � �� and set the index i

(a i b< <) where the maximum was achieved as 1i .
Step 2: if ()11.29 1.4dx i< < then

()3 1Dn = Random signal
 else

()3 0Dn = Not Random signal
 end
Test number 4:
Step 1: if ()()1 2max , , ,ˆ ˆ ˆ 0.25Lm m m >� then

()4 0Dn = Not Random signal
 else

()4 1Dn = Random signal

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 20 Journal of Signal and Information Processing

 end
Test number 5:
Step 1: find ()1max , , ,a a bm m m+� � �� and set the index i

(a i b< <) where the maximum was achieved as 1i .
Step 2: find ()1 2max , ˆ ˆ,ˆ , Lm m m� and set the index i

(1 i L< <) where the maximum was achieved as 2i .
Step 3: if () ()1 2ˆ 0.05d dx i x i− ≤ then

()5 1Dn = Random signal
 else

()5 0Dn = Not Random signal
 end
Test number 6:
Step 1: if (()1max , , , 0.2a a bm m m+ >� � ��) & (()1min , , , 0.05a a bm m m+ >� � ��)

then
()6 0Dn = Not Random signal

 else
()6 1Dn = Random signal

 end
Test number 7:
Step 1: find ()1max , , ,a a bm m m+� � �� and set the index i

 (a i b< <) where the maximum was achieved as 1i .
Step 2: ()7 1Dn = Random signal

for i a= to 1i checking if there is an increase monotonically
towards the center bin

if (1 100 40i i

i

m m
m

+−
≥

� �
�

) & (1i im m +>� �) then

()7 0Dn = Not Random signal
 end
 end

for 1i i= to b checking if there is a decrease monotonically
from the center bin down

if (1 100 40i i

i

m m
m

+−
≥

� �
�

) & (1i im m +<� �) then

()7 0Dn = Not Random signal
 end
 end
Outcome from the seven tests:
if ()7

1 7k
k Dn k=

=
==∑ then

1D = the tested sequence is Random
else

0D = the tested sequence is not Random
end
Please note that when 0D = we continue to the next step in the algorithm of

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 21 Journal of Signal and Information Processing

locating the periodic part.
The second step in the detection algorithm is to find the periodic part in the

tested input sequence. For this purpose, we apply three different kind of averages
on the tested averaged vector []G n ([]g n�). This part of the algorithm is per-
formed only on []g n� which represents the time domain, because in this stage
we want to locate the periodic part. The three different kind of averages are as
follows:

1) The average of the whole vector []g n� (except for some samples at the be-
ginning and at the end) is carried out here. Thus, one average value is obtained.
In the following, we denote this kind of averaging as “Average number 1”.

2) The vector []g n� (except for some samples at the beginning and at the end)
is divided into 3 parts (40% - 20% - 40%) and then the average operation is car-
ried out on each part. Thus, here we have three average values. In the following,
we denote this kind of averaging as “Average number 2”.

3) The vector []g n� (except for some samples at the beginning and at the end)
is divided into 3 parts (25% - 50% - 25%) and then the average operation is car-
ried out on each part. Thus, here we have three average values. In the following,
we denote this kind of averaging as “Average number 3”.

Figure 18 presents the three different kind of averages carried out on the
tested averaged vector []G n ([]g n�).

where by “Margin” we mean that at the beginning and at the end of the aver-
aged tested []G n no averaging operation is carried out. For the case of a 1024,
2048 and 4096 length sequence, the margin on each side is 32 samples, 64 sam-
ples and 128 samples respectively.

Now, in order to declare an area to be suspicious of not being a random se-
quence, we compare the values of the averaged vector []G n to the values of
Average number 1, Average number 2 and to Average number 3. In general, if
the values of the averaged vector []G n are above or below the average number
(Average number 11 ε± , Average number 22 ε± , Average number 33 ε±
where 1ε , 2ε and 3ε are predefined values) for some tested values that come
in sequence, a suspicious place is declared. For more details, please refer to Fig-
ures 19-21 which describe in more details the comparison operation between
the values of the averaged vector []G n and the Average number 1 to Average
number 3.

Figures 22-25 show the simulated results obtained for a non-random se-
quence with length of 1024 where the averaged vector []G n ([]g n�) was com-
pared to the three different kind of averages (Average number 1, Average num-
ber 2, Average number 3) while Figure 26 holds the total result (collected from
Figure 22, Figure 23, Figure 25) of the suspicious places where the tested se-
quence is suspicious not to be a random sequence.

In the following, we describe the flowchart for finding the suspicious places of
the periodic parts in the tested input sequence by using the values for Average
number 1, Average number 2 and Average number 3.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 22 Journal of Signal and Information Processing

Figure 18. 3 kinds of averages are performed on the sequence.

Figure 19. Matlab code, associated with Average number 1.

Figure 20. Matlab code, associated with Average number 2.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 23 Journal of Signal and Information Processing

Figure 21. Matlab code, associated with Average number 3.

Figure 22. Comparison to Average number 1.

Figure 23. Comparison to Average number 2.

0 100 200 300 400 500 600 700 800 900 1000

Time [
n]

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

The averaged values of G [
n

]

Average number 1

Suspicious areas

0 100 200 300 400 500 600 700 800 900 1000

Time [
n]

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

The averaged values of G [
n

]

Average number 2

Suspicious areas

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 24 Journal of Signal and Information Processing

Figure 24. Zoomed in version of Figure 23, please note that we have two different levels at
350 450n< < . This cannot be seen in Figure 23 because the two levels are very close.

Figure 25. Comparison to Average number 3.

Figure 26. The result after collecting the three images from Figure 22, Figure 23, Figure 25.

300 350 400 450 500 550

Time [
n]

1.41

1.42

1.43

1.44

1.45

1.46

0 100 200 300 400 500 600 700 800 900 1000

Time [
n]

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

The averaged values of G [
n

]

Average number 3

Suspicious areas

0 100 200 300 400 500 600 700 800 900 1000

]

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

The averaged values of G [
n

]

Suspicious areas

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 25 Journal of Signal and Information Processing

Comparison to Average number 1:
Step 1: set () () ()1 , 1 , ,averageg g edge g edge g N edge= + −  � � �� .

 “edge” is the length of the margin defined as 32, 64 and 128 for a 1024,
2048 and 4096 length of input sequence respectively.
The input sequence length is defined as N.

Step 2: set Average number 1 = 1

2
averageg

N edge− ∗

Step 3: set () () ()1 , 1 , , 0.25
atestg g edge g edge g N = + ∗   � � ��

where ().   is the rounding down operation on (). .
Step 4:find the index or indexes where (1 1.01 1

atestg Average number> ∗)

is true and set those indexes to 1 2 3 0.25 1, , , , N edgei i i i ∗ − +  
�

Step 5: set ()1 1
acomparison ag i = ;

for ()1,2,3, , 0.25 1a N egde= ∗ − +  �
according to the founded indexes of Step 4.

Step 6: find the number of groups in 1acomparisong of consecutive samples
equal to one and set this number to K1.
Step 7: find the length of those groups of consecutive samples equal to one
from Step 6 and hold them in the vector:

()1alength j ; for 1, , 1j K= �
Step 8: find the start and end position of the founded groups from

Step 6 and hold them in the matrix:
()1 ,aplace j i ; for 1, , 1j K= � ; 1,2i =

Step 9: set 1 1anumber K=
A1 = 20, 40 and 80 for 1024, 2048 and 4096 length of sequence respectively.
 for 1j = to K1

if ()1 1alength j A< then
 1 1 1a anumber number= −
 for ()1 ,1ai place j= to ()1 ,2aplace j
 ()1 0

acomparisong i =
 end
 end
 end
Step 10: set () () ()1 0.45 , 0.45 1 , , 0.55

btestg g N g N g N = ∗ ∗ + ∗           � � ��
Step 11: find the index or indexes where (1 0.97 1

btestg Average number< ∗)
is true and set those indexes to 1 2 3 0.55 0.45 1, , , , N Ni i i i ∗ − ∗ +      

�
Step 12: set ()1 1

bcomparison ag i = ;
for ()1,2,3, , 0.55 0.45 1a N N= ∗ − ∗ +      � according to the

founded indexes of Step 11.
Step 13: find the number of groups in 1bcomparisong of consecutive samples

equal to one and set this number to K2.
Step 14: find the length of those groups of consecutive samples equal to one

from Step 13 and hold them in the vector:
()1blength j ; for 1, , 2j K= �

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 26 Journal of Signal and Information Processing

Step 15: find the start and end position of the founded groups from
Step 13 and hold them in the matrix:

()1 ,bplace j i ; for 1, , 2j K= � ; 1,2i =
Step 16: set 1 2bnumber K=
A2 = 33, 56 and 95 for 1024, 2048 and 4096 length of sequence respectively.
 for 1j = to K2
 if ()1 2blength j A< then
 1 1 1b bnumber number= −
 for ()1 ,1bi place j= to ()1 ,2bplace j

()1 0
bcomparisong i =

 end
 end
 end
Step 17: set () () ()1 0.75 , 0.75 1 , ,

ctestg g N g N g N edge = ∗ ∗ + −       � � �� .

Step 18: find the index or indexes where (1 1.01 1
ctestg Average number> ∗)

is true and set those indexes to 1 2 3 0.75 1, , , , N edge Ni i i i − − ∗ +      
�

Step 19: set ()1 1
ccomparison ag i = ;

for ()1,2,3, , 0.75 1a N edge N= − − ∗ +      �

according to the founded indexes of Step 18.
Step 20: find the number of groups in 1ccomparisong of consecutive samples

equal to one and set this number to K3.
Step 21: find the length of those groups of consecutive samples equal to one

from Step 20 and hold them in the vector:
()1clength j ; for 1, , 3j K= �

Step 22: find the start and end position of the founded groups from
Step 20 and hold them in the matrix:

()1 ,cplace j i ; for 1, , 3j K= � ; 1,2i =
Step 23: set 1 3cnumber K=
 for 1j = to K3

if ()1 1clength j A< then
 1 1 1c cnumber number= −

 for ()1 ,1ci place j= to ()1 ,2cplace j
 ()1 0

ccomparisong i =

 end
 end
 end
Comparison to Average number 2:
Step 1: set () () ()2 , 1 , , 0.4

aaverageg g edge g edge g N = + ∗   � � ��

() () ()2 0.6 1 , 0.6 2 , ,
baverageg g N g N g N edge = ∗ + ∗ + −           � � ��

Step 2: set 2 0.4
a

len N edge= ∗ −  

()() ()2 0.6
b

len N edge N= − − ∗  

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 27 Journal of Signal and Information Processing

Step 3: set 2 2

2 2

 2 ,a b

a b

average averageg g
Average number

len len
 

=  
  

Step 4: set () () ()2 0.24 , 0.24 1 , , 0.35
atestg g N g N g N = ∗ ∗ + ∗           � � ��

Step 5: find the index or indexes where
(()2 1.002 2 1

atestg Average number> ∗) is true and set those
indexes to 1 2 3 0.35 0.24 1, , , , N Ni i i i ∗ − ∗ +      

�

Step 6: set ()2 1
acomparison ag i = ;

for ()1,2,3, , 0.35 0.24 1a N N= ∗ − ∗ +      �
according to the founded indexes of Step 5.

Step 7: find the number of groups in 2acomparisong of consecutive samples
equal to one and set this number to K4.
Step 8: find the length of those groups of consecutive samples equal to one
from Step 7 and hold them in the vector:

()2alength j ; for 1, , 4j K= �
Step 9: find the start and end position of the founded groups from
Step 7 and hold them in the matrix:

()2 ,aplace j i ; for 1, , 4j K= � ; 1,2i =
Step 10: set 2 4anumber K=
A3 = 17, 48 and 129 for 1024, 2048 and 4096 length of sequence respectively.
 for 1j = to K4

if ()2 3alength j A< then
 2 2 1a anumber number= −
 for ()2 ,1ai place j= to ()2 ,2aplace j
 ()2 0

acomparisong i =
 end
 end
 end
Step 11: set () () ()2 0.65 , 0.65 1 , , 0.76

btestg g N g N g N = ∗ ∗ + ∗           � � ��
Step 12: find the index or indexes where

(()2 1.002 2 2
btestg Average number> ∗) is true and set those indexes to

1 2 3 0.76 0.65 1, , , , N Ni i i i ∗ − ∗ +      
�

Step 13: set ()2 1
bcomparison ag i = ;

for ()1,2,3, , 0.76 0.65 1a N N= ∗ − ∗ +      �
according to the founded indexes of Step 12.

Step 14: find the number of groups in 2bcomparisong of consecutive samples
equal to one and set this number to K5.
Step 15: find the length of those groups of consecutive samples equal to one

from Step 14 and hold them in the vector:
()2blength j ; for 1, , 5j K= �

Step 16: find the start and end position of the founded groups from
Step 14 and hold them in the matrix:

()2 ,bplace j i ; for 1, , 5j K= � ; 1,2i =
Step 17: set 2 5bnumber K=

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 28 Journal of Signal and Information Processing

 for 1j = to K5
 if ()2 3blength j A< then
 2 2 1b bnumber number= −

for ()2 ,1bi place j= to ()2 ,2bplace j
()2 0

bcomparisong i =
 end
 end
 end
Comparison to Average number 3:
Step 1: set () () ()3 , 1 , , 0.25

aaverageg g edge g edge g N = + ∗   � � ��

() () ()3 0.25 1 , 0.25 2 , , 0.75
baverageg g N g N g N = ∗ + ∗ + ∗           � � ��

() () ()3 0.75 1 , 0.75 2 , ,
caverageg g N g N g N edge = ∗ + ∗ + −           � � ��

Step 2: set ()3 0.25
a

len N edge= ∗ −  

() ()3 0.75 0.25
b

len N N= ∗ − ∗      

()() ()3 0.75
c

len N edge N= − − ∗  

Step 3: set 3 3 3

3 3 3

 3 , ,a b c

a b c

average average averageg g g
Average number

len len len
 

=  
  

Step 4: set () () ()3 0.34 , 0.34 1 , , 0.45
atestg g N g N g N = ∗ ∗ + ∗           � � ��

Step 5: find the index or indexes where (()3 3 1
atestg Average number>)

is true and set those indexes to 1 2 3 0.45 0.34 1, , , , N Ni i i i ∗ − ∗ +      
�

Step 6: set ()3 1
acomparison ag i = ;

for ()1,2,3, , 0.45 0.34 1a N N= ∗ − ∗ +      �
according to the founded indexes of Step 5.
Step 7: find the number of groups in 3acomparisong of consecutive samples
equal to one and set this number to K6.
Step 8: find the length of those groups of consecutive samples equal to one
from Step 7 and hold them in the vector:

()3alength j ; for 1, , 6j K= �
Step 9: find the start and end position of the founded groups from
Step 7 and hold them in the matrix:

()3 ,aplace j i ; for 1, , 6j K= � ; 1,2i =
Step 10: set 3 6anumber K=
 for 1j = to K6
 if ()3 3alength j A< then

3 3 1a anumber number= −
for ()3 ,1ai place j= to ()3 ,2aplace j

()3 0
acomparisong i =

 end
 end
 end
Step 11: set () () ()3 0.55 , 0.55 1 , , 0.66

btestg g N g N g N = ∗ ∗ + ∗           � � ��

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 29 Journal of Signal and Information Processing

Step 12: find the index or indexes where (()3 3 3
btestg Average number>)

is true and set those indexes to 1 2 3 0.66 0.55 1, , , , N Ni i i i ∗ − ∗ +      
�

Step 13: set ()3 1
bcomparison ag i = ;

for ()1,2,3, , 0.66 0.55 1a N N= ∗ − ∗ +      �
according to the founded indexes of Step 12.
Step 14: find the number of groups in 3bcomparisong of consecutive samples
equal to one and set this number to K7.
Step 15: find the length of those groups of consecutive samples equal to one
from Step 14 and hold them in the vector:

()3blength j ; for 1, , 7j K= �
Step 16: find the start and end position of the founded groups from
Step 14 and hold them in the matrix:

()3 ,bplace j i ; for 1, , 7j K= � ; 1,2i =
Step 17: set 3 7bnumber K=
 for 1j = to K7
 if ()3 3blength j A< then
 3 3 1b bnumber number= −

for ()3 ,1bi place j= to ()3 ,2bplace j
()3 0

bcomparisong i =
 end
 end
 end
Step 18: set () () ()3 0.45 , 0.45 1 , , 0.55

ctestg g N g N g N = ∗ ∗ + ∗           � � ��
Step 19: find the index or indexes where
(()3 1.05 3 2

ctestg Average number> ∗)
is true and set those indexes to 1 2 3 0.55 0.45 1, , , , N Ni i i i ∗ − ∗ +      

�
Step 20: set ()3 1

ccomparison ag i = ;
for ()1,2,3, , 0.55 0.45 1a N N= ∗ − ∗ +      �
according to the founded indexes of Step 19.
Step 21: find the number of groups in 3ccomparisong of consecutive samples
equal to one and set this number to K8.
Step 22: find the length of those groups of consecutive samples equal to one
from Step 21 and hold them in the vector:

()3clength j ; for 1, , 8j K= �
Step 23: find the start and end position of the founded groups from
Step 21 and hold them in the matrix:

()3 ,cplace j i ; for 1, , 8j K= � ; 1,2i =
Step 24: 𝑠𝑠𝑠𝑠𝑠𝑠 3 8cnumber K=
A4 = 9, 15 and 63 for 1024, 2048 and 4096 length of sequence respectively.
 for 1j = to K8
 if ()3 4clength j A< then

3 3 1c cnumber number= −
 for ()3 ,1ci place j= to ()3 ,2cplace j

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 30 Journal of Signal and Information Processing

()3 0
ccomparisong i =

 end
 end
 end
Fine tuning on the above obtained results:
The algorithm has also false alarms at the stage of marking the suspected parts

as periodic. Therefore, there is a mechanism which deletes some of the false
alarms which is described in the following.

Step 1: if (1 1anumber ==) & (1 1cnumber >) then
 1 0

acomparisong =
 end
Step 2: if (1 1anumber >) & (1 1cnumber ==) then
 1 0

ccomparisong =
 end
Step 3: if (2 1anumber ==) & (2 1bnumber >) then
 2 0

acomparisong =
 end
Step 4: if (2 1anumber >) & (2 1bnumber ==) then
 2 0

bcomparisong =
 end
Step 5: if (3 0anumber >) or (3 0bnumber >) then
 3 0

ccomparisong =
 end
The last stage is to connect all the vectors with the suspicious locations as a

periodic part to one outcome vector.
Step 6: Initialize the following vectors with zeros of length N:

* * * *
1 1 1 2

* * * *
2 3 3 3

, , , ,

, , , .
a b c a

b a b c

comparison comparison comparison comparison

comparison comparison comparison comparison

g g g g

g g g g

Step 7: Arrange the values in the vectors
1 1 1 2

2 3 3 3

, , ,

, , ,
a b c a

b a b c

comparison comparison comparison comparison

comparison comparison comparison comparison

g g g g

g g g g

to their position in the original vector []g n� by using the vectors from
Step 6.

() ()*
1 1a acomparison comparisong i edge g i+ = ;

for ()11, 2, ,
acomparisoni length g= �

() ()*
1 10.45
b bcomparison comparisong i N g i+ ∗ =   ;

for ()11, 2, ,
bcomparisoni length g= �

() ()*
1 10.75

c ccomparison comparisong i N g i+ ∗ =   ;

for ()11, 2, ,
ccomparisoni length g= �

() ()*
2 20.24

a acomparison comparisong i N g i+ ∗ =   ;

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 31 Journal of Signal and Information Processing

for ()21, 2, ,
acomparisoni length g= �

() ()*
2 20.65

b bcomparison comparisong i N g i+ ∗ =   ;

for ()21, 2, ,
bcomparisoni length g= �

() ()*
3 30.34

a acomparison comparisong i N g i+ ∗ =   ;

for ()31, 2, ,
acomparisoni length g= �

() ()*
3 30.54

b bcomparison comparisong i N g i+ ∗ =   ;

for ()31, 2, ,
bcomparisoni length g= �

() ()*
3 30.45

c ccomparison comparisong i N g i+ ∗ =   ;

for ()31, 2, ,
ccomparisoni length g= �

Step 8: Obtain one output vector which holds the suspicious places in []g n� .
[]

* * * *
1 1 1 2

* * * *
2 3 3 3

_

.
a b c a

b a b c

comparison comparison comparison comparison

comparison comparison comparison comparison

suspicious places n

g g g g

g g g g

= + + +

+ + + +

5. Simulation

Wigner Test Vs DFT NIST Test
In this section we first show the simulation results (Table 2) using the Wigner

test (the test with the four parameters “Power”, “Distance”, “Density” and
“Highest”) for identifying if the tested input sequence is a random sequence or
not, compared to those obtained with the DFT test from NIST [18]. For this
purpose, eight sequences were applied with different number of cycles, with dif-
ferent cycle length and segment position of the cyclic part in the tested sequence.
Each structure was tested with a sequence length of 1024, 2048 and 4096 (please
refer to Section III where we have already presented the results for the Wigner
test and where the tested sequences were defined). According to Table 2, the
DFT test from NIST [18], does not detect in most cases that the non-stationary
input sequence is not a random sequence, while the Wigner test (the test with
the four parameters “Power”, “Distance”, “Density” and “Highest”) supplies in
most cases the right answer. Please note that in Table 2 the red colored values
are the indices that classify the sequence as non-random.

New Test Vs NIST Tests
It should be pointed out that the tested input sequences used for generating

the results in Table 2 are sequences with a high periodicity within the sequence
or have a high length of a repetitive sequence. For this case, the Wigner test (the
test with the four parameters “Power”, “Distance”, “Density” and “Highest”) is
enough for declaring if the tested input sequence is random or not random. But,
for sequences with a low periodicity within the sequence the GGD function [28]
[29] is needed. In the following, we denote as the “New test” our new proposed
method as described in the previous section and described in Figure 7 contain-
ing the Wigner and the GDD functions [27] [28] [29].

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 32 Journal of Signal and Information Processing

Table 3 shows a summary of results obtained by the NIST tests number 1, 2, 3,
6, 7 and 8 [18] and by the “New test” algorithm for low-periodic input sequences
(2 periods in a signal) and input sequences having a short periodic segment
length (100 - 170 samples of a periodic segment length out of 1024 samples). It
can be clearly seen from Table 3, that in most cases the “New test” classifies the
incoming sequence as non-random as it should, while the opposite is true for the
NIST tests number 1, 2, 3, 6, 7 and 8 [18].

Table 2. Comparison between the DFT test to Wigner.

Length of
sequence

Wigner DFT

Power Distance Density Highest Random P value Random

1 1024 0.9 - 1 0.78 0.51 1208 no 1.2e-04 no

2 1024 0.9 - 1 0.72 0.56 3611 no 0.8364 yes

3 1024 0.8 - 0.9 0.3 0.78 18 no 0.4559 yes

4 1024 0.7 - 0.8 0.25 0.88 6 yes 0.6464 yes

5 1024 0.8 - 0.9 0.39 0.79 19 no 0.4913 yes

6 1024 0.7 - 0.8 0.3 0.9 19 no 0.4913 yes

7 1024 0.9 - 1 0.47 0.83 36 no 0.6881 yes

8 1024 0.9 - 1 0.44 0.76 33 no 0.0665 yes

9 2048 0.9 - 1 0.75 0.6 3282 no 7.2e-12 no

10 2048 0.9 - 1 0.8 0.5 9182 no 0.7151 yes

11 2048 0.7 - 0.8 0.22 0.77 13 no 0.6881 yes

12 2048 0.7 - 0.8 0.26 0.61 7 no 0.1215 yes

13 2048 0.9 - 1 0.29 0.91 48 no 0.207 yes

14 2048 0.7 - 0.8 0.3 0.91 13 yes 0.3304 yes

15 2048 0.9 - 1 0.4 0.84 43 no 0.0027 no

16 2048 0.9 - 1 0.4 0.8 51 no 0.0167 yes

17 4096 0.9 - 1 0.83 0.62 6346 no 1.3e-21 no

18 4096 0.9 - 1 0.7 0.51 24,527 no 0.5281 yes

19 4096 0.7 - 0.8 0.25 0.72 4 no 0.1687 yes

20 4096 0.7 - 0.8 0.3 0.6 11 no 0.0031 no

21 4096 0.9 - 1 0.42 0.92 84 no 0.2758 yes

22 4096 0.7 - 0.8 0.35 0.93 19 no 0.0963 yes

23 4096 0.9 - 1 0.48 0.84 96 no 0.002 no

24 4096 0.9 - 1 0.52 0.81 124 no 0.2175 yes

Table 3. Comparison of NIST test results with the “New test”.

Test 8
NIST

Test 7
NIST

Test 6
NIST

Test 3
NIST

Test 2
NIST

Test 1
NIST

NIST test New test Structure

0.0733 - 0.4913 0.348 0.518 0.95
Non

random
Non

random Structure
number 1

0.364 0.341 0.491 0.144 0.556 0.26 Random
Non

random

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 33 Journal of Signal and Information Processing

Continued

0.837 0.916 0.122 0.231 0.34 0.189 Random
Non

random

 0.122 - 0.067 0.537 0.804 0.189
Non

random
Non

random

0.102 0.409 0.122 0.799 0.367 0.169 Random
Non

random

0.17 - 0.067 0.047 0.197 0.104
Non

random
Non

random

Structure
number 2

0.793 0.372 0.688 0.575 0.932 0.803 Random
Non

random

0.045 0.553 0.6881 0.0541 0.258 0.532 Random
Non

random

0.145 - 0.207 0.552 0.709 0.317
Non

random
Non

random

0.095 0.538 0.646 0.42 0.403 0.137 Random
Non

random

0.865 0.145 0.329 0.629 0.834 0.453 Random
Non

random

Structure
number 3

0.016 - 0.909 0.247 0.598 0.317
Non

random
Non

random

0.736 0.752 0.207 0.163 0.559 0.608 Random
Non

random

0.689 - 0.0665 0.912 0.223 0.492
Non

random
Non

random

- - 0.908 0.617 0.993 0.95
Non

random
Non

random

0.865 0.081 0.491 0.497 0.836 0.617 Random
Non

random

Structure
number 4

0.167 0.123 0.456 0.667 0.945 0.617 Random
Non

random

0.736 - 0.207 0.855 0.634 0.708
Non

random
Non

random

0.576 0.458 0.688 0.255 0.879 0.532 Random Random

0.322 0.301 0.688 0.193 0.655 0.118 Random
Non

random

0.859 - 0.456 - 0.644 0.851
Non

random
Random

Structure
number 5

0.593 - 0.1215 - 0.056 0.317
Non

random
Non

random

0.767 0.196 0.688 0.418 0.489 0.169 Random
Non

random

0.349 0.752 0.491 0.254 0.289 0.211 Random
Non

random

0.72 0.659 0.329 0.094 0.984 0.492 Random
Non

random

0.409 0.538 0.646 0.803 0.997 1 Random
Non

random

Structure
number 6

0.647 0.107 0.909 0.951 0.827 0.901 Random Random

0.239 0.752 0.122 0.19 0.308 0.754 Random
Non

random

0.249 0.288 0.329 0.144 0.197 0.382 Random
Non

random

0.593 0.597 0.688 0.436 0.912 0.249 Random
Non

random

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 34 Journal of Signal and Information Processing

The sequences structure:
Structure number 1: 128, 320, 128, 320, 128.
Structure number 2: 150, 170, 384, 170, 150.
Structure number 3: 100, 824, 100.
Structure number 4: 50, 924, 50.
Structure number 5: 200, 100, 324, 100, 300.
Structure number 6: 312, 100, 200, 100, 312.
(The number marked in red marks the periodic part in the sequence.)
Simulation results—Random or Non-random:
Simulation results—Estimating the Random places:
Next, we compare the simulated results obtained from our new algorithm

“New test” to those obtained by the 15 tests from NIST [18] (Figures 27-30).

Figure 27. Result of a sequence from the structure 1, on the left the results from the “New
test”, on the right the results from the NIST tests.

Figure 28. Result of a sequence from the structure 2, on the left the results from the “New
test”, on the right the results from the NIST tests.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 35 Journal of Signal and Information Processing

Figure 29. Result of a sequence from the structure 3, on the left the results from the “New
test”, on the right the results from the NIST tests.

Figure 30. Result of a sequence from the structure 4, on the left the results from the “New
test”, on the right the results from the NIST tests.

According to Figures 27-30, our new proposed algorithm (“New test”) finds

that all the input sequences are non-random as it should in contrary to the NIST
tests [18]. In addition, our new proposed algorithm (“New test”) also indicates
to those places where repeated samples are found that have already appeared in
the tested sequence.

Although the presented examples (Figures 27-30) refer to a sequence length
of 1024 samples only, the algorithm can also be applied successfully for longer
sequences such as for 2048 or 4096 samples by changing only a few parameters
within the algorithm. It should be pointed out that according to [18], the assump-

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 36 Journal of Signal and Information Processing

tion has been made that the size of the sequence length, is large (of the order 103
to 107) for many of the tests in [18]. For such large sample sizes of the sequence
length, asymptotic reference distributions have been derived and applied to car-
ry out the tests [18]. Most of the tests are applicable for smaller values of the se-
quence length [18]. However, if used for smaller values of the sequence length,
the asymptotic reference distributions would be inappropriate and would need
to be replaced by exact distributions that would commonly be difficult to com-
pute [18]. As already mentioned earlier in this work, the Wigner function [27]
allows us to get the spectrum as a function of time which makes it applicable for
the non-stationary input sequence case. The DFT function is not suitable for the
non-stationary input sequence case. Different sizes of the input sequence length
do not affect the fact that the Wigner function [27] is a proper choice for the
non-stationary input sequence. Thus, we just looked for the minimum input se-
quence length allowed according to [18] in order to have a low computation
time.

6. Conclusion

In this paper, we proposed a new approach for estimating the probability of sig-
nal randomness degree based on the Wigner and GGD functions which allowed
us to classify the input sequence in the time and frequency domains at the same
time. Our new proposed approach is suitable also for non-stationary input se-
quences where the NIST tests fail. In addition, this new proposed algorithm has
the ability to indicate on suspicious places of cyclic sections in the tested se-
quence. Thus, the option to repair or to remove the suspicious places of cyclic
sections in the tested input sequence is given with this new approach which was
not available until now. Simulation results have confirmed the effectiveness of
our new proposed method for estimating the probability of signal randomness
degree for non-stationary input sequences. It should be pointed out here that the
values for the four parameters (“Power”, “Distance”, “Density” and “Highest”)
were not optimized. Thus, it is possible to get even better results in identifying if
the tested sequence is random or not.

Funding Statement

The authors would like to thank the Israeli Innovation Authority and Defender
Cyber Technologies LTD for their support for research under the Academic
Knowledge Guidance Program (Nofar) File No. 63907.

Patent Statement

A Patent Application incorporating this paper has been filed.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 37 Journal of Signal and Information Processing

References
[1] Martin, H., Peris-Lopez, P., Tapiador, J. E. and San Millan, E. (2016) A New TRNG

Based on Coherent Sampling with Self-Timed Rings. Transactions on Industrial In-
formatics, 12, 91-100. https://doi.org/10.1109/TII.2015.2502183

[2] Inayah, K., Sukmono, B. E., Purwoko, R. and Indarjani, S. (2013) Insertion Attack
Effects on Standard PRNGs ANSI X9.17 and ANSI X9.31 Based on Statistical Dis-
tance Tests and Entropy Difference Tests. 2013 International Conference on Com-
puter, Control, Informatics and Its Applications, Jakarta, 19-21 November 2013,
219-224. https://doi.org/10.1109/IC3INA.2013.6819177

[3] Soorat, R., Madhuri, K. and Vudayagiri, A. (2017) Hardware Random Number Gen-
erator for Cryptography. NANOSYSTEMS: Physics, Chemistry, Mathematics, 8,
600-605. https://doi.org/10.17586/2220-8054-2017-8-5-600-605
https://www.researchgate.net/publication/282639432_Hardware_Random_number
_Generator_for_cryptography#fullTextFileContent

[4] Mathew, S.K., Srinivasan, S., Anders, M.A., Kaul, H., Hsu, S.K., Sheikh, F., Agarwal,
A., Satpathy, S. and Krishnamurthy, R.K. (2012) 2.4 Gbps, 7 mW All-Digital
PVT-Variation Tolerant True Random Number Generator for 45 nm CMOS High-
Performance Microprocessors. IEEE Journal of Solid-State Circuits, 47, 2807-2821.
https://doi.org/10.1109/JSSC.2012.2217631

[5] Goll, M. and Gueron, S. (2018) Randomness Tests in Hostile Environments. IEEE
Transactions on Dependable and Secure Computing, 15, 289-294.
https://doi.org/10.1109/TDSC.2016.2537799

[6] Petrie, C.S. and Alvin Connelly, J. (1999) The Sampling of Noise for Random
Number Generation. IEEE International Symposium on Circuits and Systems, Or-
lando, 30 May-2 June 1999, 26-29. https://doi.org/10.1109/ISCAS.1999.780085

[7] Soucarros, M., Canovas-Dumas, C., Cldire, J., Elbaz-Vincent, P. and Ral, D. (2011)
Influence of the Temperature on True Random Number Generators. 2011 IEEE In-
ternational Symposium on Hardware-Oriented Security and Trust, San Diego, 5-6
June 2011, 24-27. https://doi.org/10.1109/HST.2011.5954990

[8] Bahadur, V., Selvakumar Vijendran, D. and Sobha, P.M. (2016) Reconfigurable Side
Channel Attack Resistant True Random Number Generator. International Confer-
ence on VLSI Systems, Architectures, Technology and Applications, Bengaluru, 10-12
January 2016, 1-6. https://doi.org/10.1109/VLSI-SATA.2016.7593048

[9] Prokofiev, A.O., Chirkin A.V. and Bukharov V.A. (2018) Methodology for Quality
Evaluation of PRNG, by Investigating Distribution in a Multidimensional Space.
IEEE Conference of Russian Young Researchers in Electrical and Electronic Engi-
neering, Moscow, 29 January-1 February 2018, 355-357.
https://doi.org/10.1109/EIConRus.2018.8317105

[10] Prokofiev, A.O. (2019) Development Principles and Classification of PRNG Graphical
Tests. IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering, Saint Petersburg and Moscow, 28-31 January 2019, 295-300.
https://doi.org/10.1109/EIConRus.2019.8657165

[11] Pareschi, F., Rovatti, R. and Setti, G. (2007) Second-Level NIST Randomness Tests
for Improving Test Reliability. IEEE International Symposium on Circuits and Sys-
tems, New Orleans, 27-30 May 2007, 1437-1440.
https://doi.org/10.1109/ISCAS.2007.378572

[12] Márton, K., Homan, M., Suciu, A. and Rasa, I. (2013) The Histogram Test for Ran-
domness Assessment. 2013 RoEduNet International Conference 12th Edition: Net-
working in Education and Research, Iasi, 26-28 September 2013, 1-5.

https://doi.org/10.4236/jsip.2021.121001
https://doi.org/10.1109/TII.2015.2502183
https://doi.org/10.1109/IC3INA.2013.6819177
https://doi.org/10.17586/2220-8054-2017-8-5-600-605
https://www.researchgate.net/publication/282639432_Hardware_Random_number_Generator_for_cryptography#fullTextFileContent
https://www.researchgate.net/publication/282639432_Hardware_Random_number_Generator_for_cryptography#fullTextFileContent
https://doi.org/10.1109/JSSC.2012.2217631
https://doi.org/10.1109/TDSC.2016.2537799
https://doi.org/10.1109/ISCAS.1999.780085
https://doi.org/10.1109/HST.2011.5954990
https://doi.org/10.1109/VLSI-SATA.2016.7593048
https://doi.org/10.1109/EIConRus.2018.8317105
https://doi.org/10.1109/EIConRus.2019.8657165
https://doi.org/10.1109/ISCAS.2007.378572

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 38 Journal of Signal and Information Processing

https://doi.org/10.1109/RoEduNet.2013.6714183

[13] Zhu, S. (2015) A Randomness Test Based on the Distribution of Position for Pre-
Specified Pattern. 2015 International Conference on Computer Science and Me-
chanical Automation, Hangzhou, 23-25 October 2015, 166-169.
https://doi.org/10.1109/CSMA.2015.40

[14] Fan, Y.T. and Su, G.P. (2014) A New Testing Method of Randomness for True
Random Sequences. 2014 IEEE 5th International Conference on Software Engi-
neering and Service Science, Beijing, 27-29 June 2014, 537-540.
https://doi.org/10.1109/ICSESS.2014.6933624

[15] Fischer, T. (2018) Testing Cryptographically Secure Pseudo Random Number Gen-
erators with Artificial Neural Networks. IEEE International Conference on Trust,
Security and Privacy in Computing and Communications/12th IEEE International
Conference on Big Data Science and Engineering, New York, 1-3 August 2018,
1214-1223. https://doi.org/10.1109/TrustCom/BigDataSE.2018.00168

[16] Qi, M. and Dong, J. (2009) Research and Application of Entropy in the Sequence
Randomness Test. 2009 Asia-Pacific Conference on Computational Intelligence and
Industrial Applications, Wuhan, 28-29 November 2009, 224-227.
https://doi.org/10.1109/PACIIA.2009.5406638

[17] Mrton, K., Bja, V. and Suciu, A. (2014) Parallel Implementation of the Matrix Rank
Test for Randomness Assessment. IEEE 10th International Conference on Intelli-
gent Computer Communication and Processing, Cluj-Napoca, 4-6 September 2014,
317-321. https://doi.org/10.1109/ICCP.2014.6937015

[18] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel M., Banks, D., Heckert, A., Dray, J. and San, V. (2010) A Statistical Test
Suite for Random and Pseudorandom Number Generators for Cryptographic Ap-
plications. National Institute of Standards and Technology, Gaithersburg, 2.1-2.40.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

[19] Georgescu, C., Simion, E., Nita, A.P. and Toma, A. (2017) A View on NIST Ran-
domness Tests (In)Dependence. International Conference on Electronics, Computers
and Artificial Intelligence, Targoviste, 29 June-1 July 2017, 1-4.
https://doi.org/10.1109/ECAI.2017.8166460

[20] Hoţoleanu, D., Creţ, O., Suciu, A., Gyorfi, T. and Văcariu, L. (2010) Real-Time
Testing of True Random Number Generators through Dynamic Reconfiguration.
2010 13th Euromicro Conference on Digital System Design: Architectures, Methods
and Tools, Lille, 1-3 September 2010, 247-250. https://doi.org/10.1109/DSD.2010.56

[21] Okada, H. and Umeno, K. (2017) Randomness Evaluation with the Discrete Fourier
Transform Test Based on Exact Analysis of the Reference Distribution. IEEE Transac-
tions on Information Forensics and Security, 12, 1218-1226.
https://doi.org/10.1109/TIFS.2017.2656473

[22] Iwasaki, A. (2020) Deriving the Variance of the Discrete Fourier Transform Test
Using Parseval’s Theorem. IEEE Transactions on Information Theory, 66, 1164-
1170. https://doi.org/10.1109/TIT.2019.2947045

[23] Pareschi, F., Rovatti R. and Setti, G. (2012) On Statistical Tests for Randomness In-
cluded in the NIST SP800-22 Test Suite and Based on the Binomial Distribution.
IEEE Transactions on Information Forensics and Security, 7, 491-505.
https://doi.org/10.1109/TIFS.2012.2185227

[24] Hamano, K. (2005) The Distribution of the Spectrum for the Discrete Fourier Trans-
form Test Included in SP800-22. IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, E88-A, 67-73.

https://doi.org/10.4236/jsip.2021.121001
https://doi.org/10.1109/RoEduNet.2013.6714183
https://doi.org/10.1109/CSMA.2015.40
https://doi.org/10.1109/ICSESS.2014.6933624
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00168
https://doi.org/10.1109/PACIIA.2009.5406638
https://doi.org/10.1109/ICCP.2014.6937015
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://doi.org/10.1109/ECAI.2017.8166460
https://doi.org/10.1109/DSD.2010.56
https://doi.org/10.1109/TIFS.2017.2656473
https://doi.org/10.1109/TIT.2019.2947045
https://doi.org/10.1109/TIFS.2012.2185227

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 39 Journal of Signal and Information Processing

https://doi.org/10.1093/ietfec/E88-A.1.67

[25] Zhu, S., Ma, Y., Li, X., Yang, J. and Lin, J. (2020) On the Analysis and Improvement
of Min-Entropy Estimation on Time-Varying Data. IEEE Transactions on Informa-
tion Forensics and Security, 15, 1696-1708.
https://doi.org/10.1109/TIFS.2019.2947871

[26] Claasen, T.A.C.M. and Mecklenbrauker, W.F.G. (1980) The Wigner Distribution—
A Tool for Time-Frequency Signal Analysis—PART I: Continuous-Time Signals.
Phillips Journal or Research, 35, 217-250.

[27] Claasen, T.A.C.M. and Mecklenbrauker, W.F.G. (1980) The Wigner Distribution—
A Tool for Time-Frequency Signal Analysis—PART II: Discrete-Time Signals. Phil-
lips Journal or Research, 35, 276-300.

[28] Domínguez-Molina, J.A., González-Farías, G. and Rodríguez-Dagnino, R.M. (2003)
A Practical Procedure to Estimate the Shape Parameter in the Generalized Gaussian
Distribution. Universidad de Guanajuato, ITESM Campus Monterrey, Guanajuato,
1-27.

[29] González-Farías, G., Domínguez-Molina, J.A. and Rodríguez-Dagnino, R.M. (2009)
Efficiency of the Approximated Shape Parameter Estimator in the Generalized
Gaussian Distribution. IEEE Transactions on Vehicular Technology, 58, 4214-4223.
https://doi.org/10.1109/TVT.2009.2021270

[30] Marple, L. (1999) Computing the Discrete-Time “Analytic” Signal via FFT. IEEE
Transactions on Signal Processing, 47, 2600-2603.
https://doi.org/10.1109/78.782222

https://doi.org/10.4236/jsip.2021.121001
https://doi.org/10.1093/ietfec/E88-A.1.67
https://doi.org/10.1109/TIFS.2019.2947871
https://doi.org/10.1109/TVT.2009.2021270
https://doi.org/10.1109/78.782222

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 40 Journal of Signal and Information Processing

Appendix

The mathematical description for []g n� and []ĝ n with an input sequence length
of 2048 and 4096 respectively is:

[] ()0 8 16 24 8, , , , , time domainq q q N qg n a a a a a − =  � �

[] ()0 8 16 24 8ˆ ˆ ˆ ˆ ˆ ˆ, , , , , freguency domainq q q N qg n a a a a a − =  �

ja and ˆ ja where

0,8 ,16 , , 8j q q N q= −� .

For 2q = :

[] [] [] []

[] [] [] []

[] [] [] []

16 16 16 16
1 1 1 1

16 16 16 16
1 1 1 1

16 16 16 16
1 1 1 1

1 1 1 1, , , ,
16 16 16 16
1 1 1 1, , , ,

16 16 16 16
1 1 1 1, , , ,

16 16 16 16
1

1

i i i i
j i i i i

i i i i
i i i i

i i i i
i i i i

a G i j G i j G i j G i j

G i j G i j G i j G i j

G i j G i j G i j G i j

= = = =

= = = =

= = = =

= = = =

= = = =

= = = =

= + + + +

+ + + +

+ + + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

[] [] [] []16 16 16 16
1 1 1 1

1 1 1, , ,
6 16 16 16

i i i i
i i i iG i j G i j G i j G i j= = = =

= = = =

+ + + + 
∑ ∑ ∑ ∑

[] [] [] []

[] [] [] []

[] [] []

16 16 16 16
1 1 1 1

16 16 16 16
1 1 1 1

16 16 16
1 1 1 1

1 1 1 1ˆ ˆ ˆ ˆˆ , , , ,
16 16 16 16
1 1 1 1ˆ ˆ ˆ ˆ, , , ,

16 16 16 16
1 1 1 1ˆ ˆ ˆ, , ,

16 16 16 16

i i i i
j i i i i

i i i i
i i i i

i i i
i i i i

a G i j G i j G i j G i j

G i j G i j G i j G i j

G i j G i j G i j

= = = =

= = = =

= = = =

= = = =

= = =

= = = =

= + + + +

+ + + +

+ + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ []

[] [] [] []

16

16 16 16 16
1 1 1 1

ˆ ,

1 1 1 1ˆ ˆ ˆ ˆ, , ,
16 16 16 16

i

i i i i
i i i i

G i j

G i j G i j G i j G i j

=

= = = =

= = = =

+

+ + + + 

∑

∑ ∑ ∑ ∑

For 4q = :

[] [] [] []

[] [] [] []

[] [] [] []

32 32 32 32
1 1 1 1

32 32 32 32
1 1 1 1

32 32 32 32
1 1 1 1

1 1 1 1, , , ,
32 32 32 32
1 1 1 1, , , ,

32 32 32 32
1 1 1 1, , , ,

32 32 32 32
1

3

i i i i
j i i i i

i i i i
i i i i

i i i i
i i i i

a G i j G i j G i j G i j

G i j G i j G i j G i j

G i j G i j G i j G i j

= = = =

= = = =

= = = =

= = = =

= = = =

= = = =

= + + + +

+ + + +

+ + + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

[] [] [] []32 32 32 32
1 1 1 1

1 1 1, , , ,
2 32 32 32

i i i i
i i i iG i j G i j G i j G i j= = = =

= = = =
+ + + +∑ ∑ ∑ ∑

[] [] [] []

[] [] [] []

[] [] [] []

32 32 32 32
1 1 1 1

32 32 32 32
1 1 1 1

32 32 32 32
1 1 1 1

1

1 1 1 1, , , ,
32 32 32 32
1 1 1 1, , , ,

32 32 32 32
1 1 1 1, , , ,

32 32 32 32
1
32

i i i i
i i i i

i i i i
i i i i

i i i i
i i i i

i
i

G i j G i j G i j G i j

G i j G i j G i j G i j

G i j G i j G i j G i j

= = = =

= = = =

= = = =

= = = =

= = = =

= = = =

=

=

+ + + +

+ + + +

+ + + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

[] [] [] []32 32 32 32
1 1 1

1 1 1, , ,
32 32 32

i i i
i i iG i j G i j G i j G i j= = =

= = =

+ + + + 
∑ ∑ ∑ ∑

https://doi.org/10.4236/jsip.2021.121001

Y. Avraham, M. Pinchas

DOI: 10.4236/jsip.2021.121001 41 Journal of Signal and Information Processing

[] [] [] []

[] [] [] []

[] [] []

32 32 32 32
1 1 1 1

32 32 32 32
1 1 1 1

32 32 32
1 1 1 1

1 1 1 1ˆ ˆ ˆ ˆˆ , , , ,
32 32 32 32
1 1 1 1ˆ ˆ ˆ ˆ, , , ,
32 32 32 32
1 1 1 1ˆ ˆ ˆ, , ,
32 32 32 32

i i i i
j i i i i

i i i i
i i i i

i i i
i i i i

a G i j G i j G i j G i j

G i j G i j G i j G i j

G i j G i j G i j

= = = =

= = = =

= = = =

= = = =

= = =

= = = =

= + + + +

+ + + +

+ + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ []

[] [] [] []

32

32 32 32 32
1 1 1 1

ˆ ,

1 1 1 1ˆ ˆ ˆ ˆ, , , ,
32 32 32 32

i

i i i i
i i i i

G i j

G i j G i j G i j G i j

=

= = = =

= = = =

+

+ + + +

∑

∑ ∑ ∑ ∑

[] [] [] []

[] [] [] []

[] [] []

32 32 32 32
1 1 1 1

32 32 32 32
1 1 1 1

32 32 32 32
1 1 1 1

1 1 1 1ˆ ˆ ˆ ˆ, , , ,
32 32 32 32
1 1 1 1ˆ ˆ ˆ ˆ, , , ,
32 32 32 32
1 1 1 1ˆ ˆ ˆ ˆ, , ,
32 32 32 32

i i i i
i i i i

i i i i
i i i i

i i i i
i i i i

G i j G i j G i j G i j

G i j G i j G i j G i j

G i j G i j G i j G

= = = =

= = = =

= = = =

= = = =

= = = =

= = = =

+ + + +

+ + + +

+ + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ []

[] [] [] []32 32 32 32
1 1 1 1

,

1 1 1 1ˆ ˆ ˆ ˆ, , ,
32 32 32 32

i i i i
i i i i

i j

G i j G i j G i j G i j= = = =

= = = =

+

+ + + + 
∑ ∑ ∑ ∑

https://doi.org/10.4236/jsip.2021.121001

	A New Approach for the DFT NIST Test Applicable for Non-Stationary Input Sequences
	Abstract
	Keywords
	1. Introduction
	2. Motivation
	3. The Wigner Test
	Simulation Wigner Test

	The sequences structure:
	For sequence length of 1024 samples:
	Sequence number 1—8 × 128 (8 cycles of 128 bits sequence),
	Sequence number 2—16 × 64 (16 cycles of 64 bits sequence),
	Sequence number 3—768 + 32 × 8 (periodic part in the end of the sequence),
	Sequence number 4—32 × 8 + 768 (periodic part in the start of the sequence),
	Sequence number 5—384 + 32 × 8 + 384 (periodic part in the middle of sequence),
	Sequence number 6—128 + 320 + 128 + 320 + 128,
	Sequence number 7—64 + 128 + 64 + 128 + 64 + 128 + 64 + 128 + 64 + 128 + 64,
	Sequence number 8—32 × 2 + 128 + 32 × 2 + 128 + 32 × 2 + 128 + 32 × 2 + 128 + 32 × 2 + 128 + 32 × 2.
	For sequence length of 2048 samples:
	Sequence number 9—8 × 256 (8 cycles of 256 bits sequence),
	Sequence number 10—16 × 128 (16 cycles of 128 bits sequence),
	Sequence number 11—1536 + 64 × 8 (periodic part in the end of the sequence),
	Sequence number 12—64 × 8 + 1536 (periodic part in the start of the sequence),
	Sequence number 13—768 + 64 × 8 + 768 (periodic part in the middle of sequence),
	Sequence number 14—256 + 640 + 256 + 640 + 256,
	Sequence number 15—128 + 256 + 128 + 256 + 128 + 256 + 128 + 256 + 128 + 256 + 128,
	Sequence number 16—64 × 2 + 256 + 64 × 2 + 256 + 64 × 2 + 256 + 64 × 2 + 256 + 64 × 2 + 256 + 64 × 2.
	For sequence length of 4096 samples:
	Sequence number 17—8 × 512 (8 cycles of 512 bits sequence),
	Sequence number 18—16 × 256 (16 cycles of 256 bits sequence),
	Sequence number 19—3072 + 128 × 8 (periodic part in the end of the sequence),
	Sequence number 20—128 × 8 + 3072 (periodic part in the start of the sequence),
	Sequence number 21—1536 + 128 × 8 + 1536 (periodic part in the middle of sequence),
	Sequence number 22—512 + 1280 + 512 + 1280 + 512,
	Sequence number 23—256 + 512 + 256 + 512 + 256 + 512 + 256 + 512 + 256 + 512 + 256,
	Sequence number 24—128 × 2 + 512 + 128 × 2 + 512 + 128 × 2 + 512 + 128 × 2 + 512 + 128 × 2 + 512 + 128 × 2
	Simulation results:
	4. The Proposed Algorithm
	Detection Algorithm

	5. Simulation
	6. Conclusion
	Funding Statement
	Patent Statement
	Conflicts of Interest
	References
	Appendix

