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Abstract 
Certain hybrid prototypes of dispersive optical solitons that we are looking 
for can correspond to new or future behaviors, observable or not, developed 
or will be developed by optical media that present the cubic-quintic-septic 
law coupled, with strong dispersions. The equation considered for this pur-
pose is that of non-linear Schrödinger. The solutions are obtained using the 
Bogning-Djeumen Tchaho-Kofané method extended to the new implicit 
Bogning’ functions. Some of the obtained solutions show that their existence 
is due only to the Kerr law nonlinearity presence. Graphical representations 
plotted have confirmed the hybrid and multi-form character of the obtained 
dispersive optical solitons. We believe that a good understanding of the hy-
brid dispersive optical solitons highlighted in the context of this work allows 
to grasp the physical description of systems whose dynamics are governed by 
nonlinear Schrödinger equation as studied in this work, allowing thereby a 
relevant improvement of complex problems encountered in particular in 
nonliear optaics and in optical fibers. 
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1. Introduction 

Human beings, in search of well-being, face daily the multiple obstacles (or dif-
ficulties) imposed on them by the universe in its complexity. Therefore, a mo-
mentum of enormous progress in the advancement of essential knowledge and 
understanding of the natural phenomena born of these obstacles becomes essen-
tial. It is undoubtedly in this context that, for decades, several fields of research 
have emerged with the aim of providing adequate responses in order to preserve 
lives and improve living conditions. At the heart of these fields of science, in 
particular in physics, we can cite among others fluid mechanics, solid state 
physics, nonlinear optics, plasma physics, data transmission and so on. Since the 
world around us is intrinsically nonlinear, nonlinear partial differential equa-
tions (NLPDEs) appear to be the best adapted and are widely used to describe 
complex phenomena [1] [2] [3] [4] [5] in these different fields. Among these 
NLPDEs, those describing the dynamics of dispersive optical solitary wave at-
tract our attention, in particular, the Schrödinger-Hirota equation and the Fo-
kas-Lenells equation. Although these two models have been studied in depth 
[6]-[11] in the past, several behaviors developed by physical systems whose dy-
namics are described by these latter (models) still remain to be highlighted in the 
concern of possible improvement of the living conditions of citizens of the world, 
for example, the long range worldwide traffic of data (voice, images, etc.) and at 
very high speed through optical fibers. As part of the most exciting advances in 
nonlinear science and theoretical physics, one has attracted considerable the at-
tention from many researchers around the globe, including the development of 
methods [12]-[28] to search for exact solutions of the nonlinear partial differen-
tial equations. But very few of these methods offer approximate solutions, or 
even forced solutions, because these exact solutions are not always easy to con-
struct given that, such requires a deep understanding of mathematics. In this 
setting, one quickly realizes by visiting the literature that, in the field of nonli-
near optics, the theory of optical solitons occupies a spot of choice and, in recent 
decades, a large amount of results have been highlighted. This mobilization of 
researchers to produce more results on this subject continues until now. How-
ever, in this dynamic, an attention must be more worn paid to the area of dis-
persive optical solitons because of their significance in the transmission of tran-
soceanic data by optical fibers. These dispersive optical solitons inevitably ap-
pearing in systems whose dynamics are governed by nonlinear Schrödin-
ger-Hirota and Fokas-Lenells type equations. An explicit analytical study of 
these solitons becomes a necessity in the concern of a possible detection of new 
behaviors which could be developed by propagation media of these dispersive 
optical solitons. It is on this track that this manuscript sign up, in order to enrich 
the literature with not only dispersive optical solitons, but also with novel pro-
totypes of hybrid dispersive optical solitons. 

Thus, this manuscript aims to constructing and revealing new hybrid disper-
sives optical soliton solutions of the nonlinear Schrödinger equation presenting 
the cubic-quintic-septic law coupled with strong dispersions, with a view to 
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producing new knowledge regardless of application perspectives. To achieve this, 
this work is organized as follows: section 2 is devoted to a brief presentation of 
the model studied. Section 3 focuses its content on the presentation of the main 
lines of the Bogning-Djeumen Tchaho-Kofané method (BDKm) using the new 
implicit Bogning’ functions (iB-functions) while section 4 is dedicated to the re-
sults. The topic on the menu in section 5 is made up of discussions, while, sec-
tion 6 is dedicated to the conclusion coupled with future prospects  

2. Brief Presentation of the Mathematical Model 

In the context of this work, our choice is carried on the nonlinear Schrödinger 
equation (NLSE) presenting the cubic-quintic-septic (CQS) law coupled with 
terms of dispersion of several orders, and which appears in the form [16] [17] 
[18] [19] [20]  

( )
1 2 3 4 5 6

2 4 6
1 2 3 0.

t x xx xxx xxxx xxxxx xxxxxxiq ia q a q ia q a q ia q a q

b q b q b q q

+ + + + + +

+ + + =
         (1) 

It is needful to note here that Equation (1) is under its dimensionless form 
and where ( ),q x t  holds lieu of the wave profile with complex values while tq  
represents linear temporal evolution of this profile. The different terms from 
second to seventh represent intermodal dispersion (IMD), group speed disper-
sion (GVD), third order dispersion (3OD), fourth order dispersion (4OD), fifth 
order dispersion (5OD) and the sixth order dispersion (6OD), respectively. As 
for the eighth, ninth and tenth terms, they together constitute the CQS law. All 
the coefficients ( ), 1;2; ;6sa s =   and ( ), 1;2;3jb j =  are constant real num-
bers and i, an imaginary such that 2 1i = − . From the point of view of theoretical 
physics and mathematical, Equation (1) remains one of the most relevant and it 
governs the dynamics of propagation of dispersive optical solitons in nonlinear 
optical fibers. To be simpler, the NLSE is a sort of reading table for an appropri-
ation of the transmission of light waves through various non-linear supports. 
This importance granted by theoretical physics and mathematical to this equa-
tion sure finds its explanation for the fact that currently, all optical communica-
tions used for transcontinental and transoceanic data transfer, are done through 
long distance optical fibers. In a context of highly dispersive solitons, by the time 
the group velocity dispersion (GVD) is low, an appearance of the terms IMD, 
3OD, 4OD, 5OD and 6OD becomes essential to establish the balance between 
the non-linearity and dispersion, and thus ensuring the stability of the soliton. It 
follows for this purpose an improvement in performance during the propagation 
of solitons over long distances [10] [29]. In the following paragraph, we present 
the implementation of the BDKm which we will use in section 4 to construct 
hybrid dispersive optical soliton solutions of Equation (1).  

3. The BDKm Theory Extended to the iB-Functions 

Here, a brief presentation of the iB-functions will be followed by the implemen-

https://doi.org/10.4236/opj.2021.112003


C. T. D. Tchaho et al. 
 

 

DOI: 10.4236/opj.2021.112003 26 Optics and Photonics Journal 
 

tation of the BDKm in order to allow the reader to better arm themselves with 
the rudiments necessary for the proper understanding of the results which will 
be unearthed in section 4.  

3.1. iB-Functions 

These iB-functions [25] [30] [31] have been highlighted thanks to the multiple 
research works [21] [22] [23] [24] [25] [31]-[43] produced for more than a dec-
ade. It is during the repeated constructions of solitary wave solutions of certain 
types of equations in wave mechanics presenting dispersion terms coupled with 
nonlinear terms (which can be of different orders) via the BDKm, that the fasci-
nating properties of these functions were detected [25] [30] [31]. Under its 
hyperbolic form, the iB-function is written  

( )
( )

0

0

,
0 0 0

sinh
sinh sech .

cosh

pm
p p pi i m n

n m i i i i i ipni i ii i

i

i

x
J x x x

x

α
α α α

α= =

=

=
=

     
= =     

     

∑
∑ ∑ ∑

∑
   (2) 

The member on the left is the implicit form and the member on the right is 
the explicit form of the function, where ( ), 0;1;2; ;i i pα =   are the parameters 
associated to the independent variables ( ), 0;1;2; ;ix i p=  , m is the power of 
the numerator, n that of the denominator. In one dimensional, according to the 
choice of the parameter iα , Equation (2), is reduced under the form  

( ) ( )
( )

( ) ( ),

sinh
sinh sech ,

cosh

m
m n

n m n

x
J x x x

x
α

α α α
α

= =            (3) 

where α  is a constant associated to the independant variable x. We associate 
here two of the fundamental properties of this function which will be useful in 
the rest of this manuscript in the respective forms  

1 1
, 1, 1 1, 1

1 1

d d d
d d d

p p p
n m n m n m
p p p

J J J
m n

x x x
α α

− −
− − + +
− −= −               (4) 

and  

, , .p
n m np mpJ J=                            (5) 

It is important to note here that this function in its trigonometric form is 
written as  

( ) ( )
( ),

sin
.

cos

m
m

n m n

x
J ix i

x
=                        (6) 

For a better understanding of the properties of these functions, it is needful to 
refer to [25] [30] [31] where they are widely explained.  

3.2. Implementation of the BDKm 

The BDKm finds its implementation field in nonlinear physics, wave mechanics, 
mathematics physics, and others. It is better suited for solving certain types of 
NPDEs of the form [21] [22] [23] [24] [25] [31]-[43]  
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( )( )2 2, , , , , , , , , , 0,t x tt xx ttt xxx
t

T φ φ φ φ φ φ φ φ φ φ =            (7) 

where ( ),x tφ  is an unknown function to be determined, T is some function of 
φ  and its derivatives with respect to x and t; and T includes the highest order 
derivatives and the nonlinear terms. Generally, the solution sought is of the form 

( ), 0
p

ij i j k kkJ xλ α
=∑ . As in the logic of a only variable, we can set the change of 

variable 0
p

k kk xξ α
=

= ∑ . But in the case where we have a function of x and t; 
( ),x tφ , we can pose the change of variable x tξ ν= − . Thus, ( ),x tφ  becomes 
( )φ ξ  where ν  is the speed of the wave and Equation (7) becomes in these 

conditions  

( )2, , , , , 0.ODET ′ ′′ ′Θ Θ Θ Θ Θ =                   (8) 

Equation (8) is an ordinary differential equation(ODE), where ′Θ , ′′Θ  
represent respectively the first and second derivatives of the envelope Θ  with 
respect to ξ . According to Equation (3), the solution we are trying to construct 
can be expressed as  

( ) ( ), ,ij j i
ij

Jξ λ ηξΘ = ∑                      (9) 

where η  is a real constant and ijλ  are the unknown constants to be deter-
mined. So, the combination of Equations (9) and (8) gives the main equation  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,0 ,1 ,0

,1 0,0

, , , , , ,

, , , , 0,

n ij n m ij m k ij k
ijn ijm ijk

l ij l ij
ijl ij

P J Q J R J

S J Y J

λ η ν ηξ λ η ν ηξ λ η ν ηξ

λ η ν ηξ λ η ν ηξ

−

−

+ +

+ + =

∑ ∑ ∑

∑ ∑
(10) 

where , , ,i j k l  are positive natural integers and ,n m  the real numbers [29] 
[34] [35]. It can be noted here that Equation (10) is the one from which all the 
possible analyzes result. The identification of coefficients  

( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , , ,n ij m ij k ij l ij ijP Q R S Yλ η ν λ η ν λ η ν λ η ν λ η ν  at zero makes it 
possible to obtain the ranges of equations whose resolutions could allow to ob-
tain the expressions of the unknown coefficients ijλ . Solving these series of eq-
uations can lead to exact, approximated or forced solutions [34] [35] [36] [37] 
depending on the models and the form of the considered ansatz. In the case of 
approximate or forced solutions, the priority in the order of resolution is given 
to those from the highest clues of ( ),0nJ ηξ , then to those of the highest clues of 

( ),1mJ ηξ . But, otherwise we go to those from the coefficients of lowest clues of 
( ),0kJ ηξ−  and ( ),1lJ ηξ− . Here, the priority makes reference to the serie that 

permits to obtain good results or merely that tends more to the sought exact so-
lution. Very often, the series of equations obtained by identify at zero the coeffi-
cient of ( ),0nJ ηξ  gives satisfaction. At the opposite, the last serie of equations 
given by the coefficient of ( )0,0J ηξ  is not very important because it is consi-
dered rather like a confused domain for the obtainable good solutions. So, this 
resolution permits to obtain the possible expressions of the coefficients ijλ  of 
Equation (9) as a function of the parameters ,η ν , and those supplied by Equa-
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tion (7), and then of the constraints which may result therefrom. Thus, the an-
satz given in Equation (9) can be supported by Equation (7) as a solution. Re-
cently, this method was used in [34] [35] and in [41] [42] [43] to construct hy-
brid solitary waves for the generalized Kuramoto-Sivashinsky, Multi-form soli-
tary wave solutions of the KdV-Burgers-Kuaramoto equation and solitary wave 
solutions which propagate through transmission media such as electrical lines, 
respectively. Now, we apply it again and in the following lines, to the NLSE 
which presents the CQS law coupled with terms of dispersion of several orders.  

4. Results 

We are exploited the BDKm to approach and unearth the new dispersive optical 
solitons that we qualify as hybrids due to the design and constitution of the an-
satz (see Equation (13)) that we will use in this part of the work.  

4.1. Obtention of the Range Equations 

This obtention comes from a rigorous application of the BDKm to Equation (1) 
preceded by the judicious choice of the mathematical form of the ansatz. Thus, 
considering the soliton profile in the form  

( ) ( ), e ,i tq x t ωψ ξ=                      (11) 

where x tξ ν= − ; ω  is the wave number, ν  the wave speed, we obtain from 
Equation (1), the equation satisfied by ψ  as  

( )

( ) ( )
1 1 2 3 4 5 6

2 3* * *
1 2 3 0,

i a ia a ia a ia a

b b b

ξ ξξ ξξξ ξξξξ ξξξξξ ξξξξξξν ψ ψ ψ ψ ψ ψ

ψψ ψψ ψψ ω ψ

− + + + + + +

 + + + − =  

   (12) 

where *ψ , denote the complex conjugate of ψ . Thus, taking into account the 
requirements related to the implementation of the BDKm presented to the pre-
vious section and in relation to the iB-function, it is easy to conceive the solution 
of Equation (12) which we seek to construct as being  

( ) ( ) ( )

( ) ( ) ( ) ( )

1

2 1 2 1,0 2 1 2 1,2 1
0

1,0 1,1 3,0 3,3 ,

s s s s s i
s

J i J

aJ ibJ cJ idJ

ψ ξ β αξ γ αξ

αξ αξ αξ αξ

+ + + + +
=

 = + 

= + + +

∑
       (13) 

where 1 1 3, ,a b cβ γ β= = =  and 3d γ=  are real constants to be determined, 
α , the inverse of the width of each component of the ansatz and i, an imaginary 
such that 2 1i = − . Let us point out here that, the architecture of Equation (13) 
reveals a prototype of hybrid dispersive optical solitons. This is because, Equa-
tion (13) is a sort of multi-form solitary waves generated by the pooling together 
of four terms from the two major families of solitary waves, namely, bright and 
dark type, respectively. To be a little clearer, the first and third terms are both 
bright type from the large bright family, while, the second and fourth terms 
represent kink and double-kink respectively, from the large dark family. In 
summary, Equation (13) can be perceived as being a complex package [25] [30] 

https://doi.org/10.4236/opj.2021.112003


C. T. D. Tchaho et al. 
 

 

DOI: 10.4236/opj.2021.112003 29 Optics and Photonics Journal 
 

[31] of dispersive optical solitons that can be grouped into two sub-packages: the 
first sub-package is the real part consisting of two bright solitons which differ in 
their powers 1 and 3, respectively, and the second sub-package is the imaginary 
part formed by a kink and double-kink [34] of the big dark family. That said, we 
continue our analysis by inserting Equation (13) into Equation (12) to obtain the 
contracted form of the main equation below  

( ) ( )

( ) ( )

,0

,1

, , , , , , , ,

, , , , , , , , 0,

s k r s
s

j k r j
j

P a b c d a b J

i Q a b c d a b J

α ω ν αξ

α ω ν αξ+ =

∑

∑
           (14) 

where { }1;2;3;4;5;6;7;8;9;11;13; ;21s∈  ;  
{ }1;2;3;4;5;6;7;8;9;11;13; ;21j∈  ; { }1;2;3;4;5;6k ∈  and { }1;2;3r∈ . So, 

Equation (14) has delivered in its formulation, two ranges of equations in the 
terms of ( ),0sJ αξ , and ( ),1jJ αξ , thus constituting the most important ranges 
(while noting that the imaginary part consists only of the equations from the 
second range ( ),1jJ αξ ) according to the BDKm theory. Thus, We should limit 
ourselves to solving only the equations from terms in ( ),0sJ αξ . The identifica-
tion at zero, of the coefficients of the terms in ( ),0sJ αξ ,  

{ }1;2;3;4;5;6;7;8;9;11;13; ;21s∈  , gives rise to the serie of range algebraic 
equations, with unknowns , ,a b c  and d as follows 

the term in ( )21,0J αξ ,  

( )32 2
3 0,c d b c− =                       (15) 

the term in ( )19,0J αξ ,  

( )

( ) ( )

6 2 4 4 2 2 5

4 3 3 6 5
3

6 12 6 9 6

18 12 9 6 0,

ac d ac d ac d bd c

d bd c d bd c b

 − + + +

− + + + =

           (16) 

the term in ( )17,0J αξ ,  

( ) ( )
( ) ( ) ( )
( )

2 5 2 2 3 4 2 2 4 4 3 2

5 6 2 2 5 4 3 2 2 3

6 5 2 4
3

21 30 9 45 30 54 36

6 9 3 12 9 27 60 18

18 48 15 0,

a c a d c d a c d bd ac d bd ac

bd d a b bd d c d bd b d c

d bd b d c b

 − + + + − +

+ + − + + + + +

− + + =

 (17) 

the term in ( )15,0J αξ ,  

( ) ( ) ( )
( ) ( )
( ) ( )
( )

( ) ( )

4 4 2 2 3 2 2 3 4 3 2

2 2 4 4 3 2 2 2

6 5 2 4 2 2 5

4 3 3 2 2 3

26 5 2 4 3 3 2 2
3 2

35 3 30 90 60 54 36

15 60 45 78 120 36

18 48 15 3 6 3

60 12 120 72

66 156 105 20 0,

c d d c a d bd a c d bd a c

b bd d ac d bd b d ac

d bd b d a b bd d c

d b d bd b d c

d bd b d b d c b c d cb

 + − + + − +

− + + + + +

− + + + + +

+ + + +

+ + + + + − =

  (18) 

the term in ( )13,0J αξ ,  
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( ) ( ) ( )
( ) ( )
( ) ( )
( ) (

)

3 2 4 2 3 2 4 3 3

2 2 2 3 4 3 2 2 2

2 2 4 4 3 3 2 2 2

6 5 2 4 3 3 4 4 3 3

2 2 3 6

35 15 90 60 18 12

30 120 84 123 180 54

15 30 15 180 36 360 216

66 156 105 20 3 45 36 120

108 126 3

c d c a d bd a c d bd a

b bd d a c d bd b d a c

b bd d ac d b d bd b d ac

d bd b d b d a b d b d bd

b d c d

 − + + − +

− + + + + +

+ + + − + + +

+ + + + + + + +

+ − +( )

( ) ( )

5 4 2 2 4 3 3
3

4 2 2 4 2 3 4 3
2

36 15 315 120

5 6 6 4 6 4 0,

bd b d b d b d c b

ac d ac d a d bd c d bd c b

+ + + 

 + − + + + − + = 

(19) 

the term in ( )11,0J αξ ,  

( ) ( ) ( )
( ) ( )
( )
( )
( )

2 2 5 2 4 4 3 2 2 3

2 2 3 2 2 2 2 3

4 3 3 2 2 2

4 4 3 3 2 2 2

6 5 4 2 2 4 3 3

21 3 37 25 45 60 18

30 120 84 30 60 30

180 36 360 216

9 135 108 360 324

126 336 15 315 120

c d a d bd a c d bd b d a

b bd d a c b bd d a c

d b d bd b d a c

b d b d bd b d ac

d bd b d b d b d a

 − + + + + +

− + + + + +

− + + +

+ + + + +

− + + + +

 

( )
( )

( ) ( )

( ) ( )

4 4 3 3 2 2 3

6 5 5 4 2 2 4 3 3
3

2 3 2 2 2 2 4 3

2 2 3 4 3 2 2
2

6 18 36 60 72

126 6 240 75 525 300

10 6 18 12 6 4

2 8 6 15 20 6 0,

b d b d bd b d c

d b d bd b d b d b d c b

a c d a c d bd ac d bd a

b bd d c d bd b d c b

− + + + +

+ + + + + + 

+ − + + − +

− + + + + + =       

(20) 

the term in ( )9,0J αξ ,  

( ) ( )
( ) ( )
( )
( )
( )

6 2 5 2 2 4

4 3 3 2 2 3 2 2 3 2

4 4 3 3 2 2 2

4 4 3 3 2 2 2

6 5 5 4 2 2 4 3 3

7 15 48 57

60 12 120 72 30 60 30

9 135 108 360 324

18 54 108 180 216

126 6 420 75 525 300

a c d bd a b bd d a c

d b d bd b d a b bd d a c

b d b d bd b d a c

b d b d bd b d ac

d b d bd b d b d b d a

 + + − + +

− + + + + + +

+ + + + +

− + + + +

+ + + + + +

 

( )
( )

( ) ( )
( ) ( )
( ) ( )

4 4 3 3 2 2 3

6 6 5 5 4 2 2 4 3 3
3

2 3 3 2 2 2 2 2 2

4 3 2 2 2 2 3

4 3 3 2 2 2 2
2 1

3 3 12 12 18

84 24 156 150 525 400

2 10 18 12 6 24 18

15 20 6 2 4 2

20 4 40 24 0,

b d b d bd b d c

b d b d bd b d b d b d c b

d a a c d bd a c b bd d ac

d bd b d a b bd d c

d b d bd b d c b c d cb

+ + + + +

− + + + + + + 

+ − + + + − + +

+ + + + + +

− + + + + − =   

(21) 

the term in ( )8,0J αξ ,  
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5
52520 0,a dα =                             (22) 

the term in ( )7,0J αξ ,  

( ) ( )
( )
( )
( )
( )

7 2 2 5 2 2 4

4 4 3 3 2 2 3

4 4 3 3 2 2 2

4 4 3 3 2 2 2

6 6 5 5 4 2 2 4 3 3

3 12 9 15 30 15

3 45 36 120 108

18 54 108 180 216

9 9 36 36 54

84 24 156 150 525 400

a b bd d a b bd d a c

b d b d bd b d a

b d b d bd b d a c

b d b d bd b d ac

b d b d bd b d b d b d a

 − + + + + +

+ + + + +

− + + + +

+ + + + +

− + + + + + +

 

( )

( ) ( ) ( )

( ) ( )
( )

6 6 5 5 4 2 2 4 3 3
3

4 2 3 2 2 2 2 2 2

4 3 3 2 2 2 2 2
2 1

6 4 6
6 4 6

3 36 36 102 141 306 282

4 6 4 4 16 12 2 4 2

20 4 40 24 3 3 2

720 360 29880 0,

b d b d bd b d b d b d c b

a c d bd a b bd d a c b bd d ac

d b d bd b d a b ac d a d bd c b

a a a a cα α α

+ + + + + + + 

+ + + − + + + + +

  − + + + + − + +  

− + + =

(23) 

the term in ( )6,0J αξ ,  

( )5 3 5
5 3 5120 60 3480 0,a b a a dα α α− − + =                (24) 

the term in ( )5,0J αξ ,  

( ) ( )
( )
( )
( )

2 2 5 4 4 3 3 2 2 3

4 4 3 3 2 2 2

6 6 5 5 4 2 2 4 3 3

6 6 5 5 4 2 2 4 3 3
3

3 6 3 6 18 36 60 72

9 9 36 36 54

3 36 36 102 141 306 282

3 9 24 48 75 105 120

b bd d a b d b d bd b d a

b d b d bd b d a c

b d b d bd b d b d b d a

b d b d bd b d b d b d c b

 + + − + + + +

+ + + + +

+ + + + + + +

− + + + + + + 

 

( ) ( )
( ) (

) ( ) ( )
( ) ( )

5 2 2 3 2 2 2

4 4 3 3 2 2 4 4 3

3 2 2 2 2 2 2
2 1

4 6 2 4 6
4 6 2 4 6

2 8 6 6 12 6

15 12 40 33 2 6 12

20 24 3 3 2 4 3

24 840 12 408 11172 0,

a b bd d a b bd d a c

b d b d bd b d a b d b d

bd b d c b a c d bd a b bd d c b

a a a a a a cα α α α α

+ − + + + + +

+ + + + + − + +

  + + + + + − + +  

+ + − + + =

(25) 

the term in ( )4,0J αξ ,  

( ) ( )3 5 3 5
3 5 1 3 56 120 3 66 1128 0,a a b a a a dα α α ν α α + + − + + =      (26) 

the term in ( )3,0J αξ ,  

( ) (
)

( )

( ) ( )

4 4 3 3 2 2 3 6 6

5 5 4 2 2 4 3 3

6 6 5 5 4 2 2 4 3 3
3

2 2 3 4 4 3 3 2 2

3 3 12 12 18 3 9

24 48 75 105 120

6 6 15 15 20

2 4 2 2 6 12 20 24

b d b d bd b d a b d

b d bd b d b d b d a

b d b d bd b d b d b d c b

b bd d a b d b d bd b d a

 + + + + − +

+ + + + +

+ + + + + + + 

+ + + − + + + +
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( ) ( )

( ) ( )
( )

4 4 3 3 2 2 3 2 2
2

2 2 2 4 6
1 2 4 6

2 4 6
2 4 6

4 4 6 4 3

2 2 20 182

9 81 729 0,

b d b d bd b d c b a b bd d a

b bd d c b a a a a

a a a c

α α α

α α α ω

 + + + + + + − + + 

+ + + − + +

+ + + − =

    (27) 

the term in ( )2,0J αξ ,  

( ) ( )3 5 3 5
1 3 5 1 3 54 16 3 12 48 0,a a a b a a a dα ν α α α ν α α   − − − + − − − =     (28) 

the term in ( )1,0J αξ ,  

( )
( )
( )

6 6 5 5 4 2 2 4 3 3
3

4 4 3 3 2 2
2

2 2 2 4 6
1 2 4 6

6 6 15 15 20

4 4 6

2 0.

b d b d bd b d b d b d b

b d b d bd b b b

b bd d b a a a aα α α ω

 + + + + + +

+ + + + +

+ + + + + + − =

        (29) 

The continuation of this study focuses on the analysis and resolution of the 
range Equations (15) to (29). However, it is useful to notice that, when one fixes 
one of the values of the unknowns coefficients, , ,a b c  or d, the major term va-
ries. For instance, if 0c =  and 0d = , Equations (15) to (22) are verified and 
only Equations (23) to (29) are those on which next investigations will also refer 
to.  

4.2. Analysis of the Range Equations 

At first glance, it is easy to see that Equations (15) and (22), respectively, lead to  

3, or 0, or 0c d b c= ± = =                    (30) 

and  

5 0, or 0.a d= =                        (31) 

Thus, the choice of the different families of solutions to be constructed, in the 
following, will be based around both conditions (30) and (31). It appears that the 
cases c d= ± , 3 0b =  and 5 0a =  open the way to many speculations that can 
guide this choice. Thus, for 3 0b = , Equations (15), (16) and (17) are verified, 
while, Equation (18) leads to ( )22 2

2 0c d cb− = . What highlights a possible ad-
ditional condition in the choice of solutions to be constructed: 2 0b = . If in ad-
dition, we associate with 3 0b = , the condition c d= ± , then, Equation (19) is 
verified while Equations (20) and (21) due to their complexities require to 
choose 2 0b = . 

By summarizing all this mainly to 3 2 5 0b b a= = = , Equations (15) to (20), (22) 
are verified while Equations (21), (23)-(29) are respectively scaled down to  

( )2 2
1 0,c d cb− =                          (32) 

( ) ( )2 2 6 4 6 2
1 6 4 6 13 720 360 29880 3 2 0,c d b a a a a d bd b cα α α   − − + + + + =    (33) 

3 0,a =                             (34) 
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( ) ( )
( )

2 2 4 6
1 1 4 6

2 4 6 2 2
2 4 6 1

3 3 2 24 840

12 405 11172 4 3 0,

b a c d bd b a a a a

a a a b bd d b c

α α

α α α

+ + + +

 − + + + + + = 

     (35) 

1,aν =                               (36) 

( )

( )

3 2 2 2 4 6
1 1 2 4 6

2 4 6 2 2
2 4 6 1

4 3 2 20 182

9 81 729 2 0,

b a b bd d b a a a a

a a a b bd d b c

α α α

α α α ω

 − + + + + + 

 + + + + + + − = 

      (37) 

1,aν =                               (38) 

( )2 2 2 4 6
1 2 4 62 .b bd d b a a aω α α α= + + + + +              (39) 

It is very important to note here that this analysis gives rise to two families of 
non-trivial solutions to which we will focus all of our attention throughout the 
following paragraph.  

4.3. Analytical Hybrid Dispersive Optical Solitons 

In this subsection, we group the obtained solutions into two large families that 
we name: First family of solutions and Second family of solutions. The first fam-
ily is incorporated of four subfamilies among which the first subfamily alone 
account four sub-subfamilies of solution that we have named: first subfamily 1 of 
solutions, second subfamily 1 of solutions (see paragraph 4.3.1.-1)), first subfa-
mily 2 of solutions and second subfamily 2 of solutions (see paragraph 4.3.1.-2)). 
As for the second family of solutions, it has three subfamilies of solutions among 
which the third subfamily alone comprises two sub-subfamilies given by the 
sub-paragraphs 4.3.2.-3)-a) and 4.3.2.-3)-b), respectively.  

4.3.1. First Family of Solutions; Case: b b a a= = = =3 2 5 3 0 , aν = 1  

In this case, the substitution of Equation (39) in Equation (37) gives  

( )
( )

3 2 2 2 4 6
1 1 2 4 6

2 4 6
2 4 6

4 3 2 20 182

8 80 728 0

b a b bd d b a a a a

a a a c

α α α

α α α

 − + + + + + 

+ + + =
       (40) 

Equation (33) and Equation (40) give, respectively,  

( ) ( ) ( )2 2 6 4 6
1 6 4 62

1

3 720 360 29880
3 2 ; 0

d c b a a a a c
d bd b c

c

α α α − + − + + = ≠ (41) 

and  

( )
( ) ( )

2 2
1

3 2 4 6 2 4 6
1 2 4 6 2 4 6

4 3

2 20 182 8 80 720
; 0.

b bd d b

b a a a a a a a a c
a

a

α α α α α α

+ +

− + + + + +
= ≠

(42) 

Taking into account Equations (41) and (42) in Equation (35) leads to an equ-
ation with three unknown coefficients a, c and d as follows  

( ) ( )
( ) ( )

2 2 3 6 3 4 6 2
1 6 4 6

2 4 6 2 2 4 6 3
2 4 6 2 4 6

720 360 29880

10 388 10990 8 80 728 0.

d c b a a a a a a c

a a a ac a a a c

α α α

α α α α α α

− + − +

− + + − + + =
(43) 
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One can notices here that, Equation (43) is the main equation on which we 
will derive the different first sub-families of solutions of the first family.  

1) First subfamily of the first family of solutions; case:  

3 2 5 3 0, 0b b a a c d= = = = = ≠  
Under these conditions, Equation (43) leads to a third degree equation to two 

unknown coefficients a and d in the form  

( ) ( )
( )

4 3 2 4 2 2 4 2
6 4 6 2 4 6

2 4 3
2 4 6

360 180 14940 5 194 5495

4 40 364 0

a a a a a d a a a ad

a a a d

α α α α α

α α

− + − + +

− + + =
(44) 

Facing a third degree equation to two unknown coefficients a and d, and una-
ble to identify an obvious solution of Equation (44), one must, to solve this, fixes 
one of the unknowns a or d by associating two additional conditions( 6 0a =  or 

2 4
2 4 610 91a a aα α= − − ) obtained by equating at zero the coefficients of a3 and 

d3, respectively. 
- First associated conditions 1: 1c d λ= = , *

1λ ∈ℜ  and 6 0a =   
Under these conditions, Equation (44) leads to a quadratic equation in un-

known a as follows  
2

1 1 1 0,m a n a p+ + =                       (45) 

with ( ) ( )2 2 2 2
1 4 1 2 4 1 1 2 4 1180 , 5 194 , 4 40m a n a a p a aα α λ α λ= = + = + . Solving in 

the case of the positive discriminant allows Equation (45) to support the coeffi-
cient a below as solution  

( )2 2 2 4 2
2 4 1 1 2 2 4 4

2
4

5 194 25 940 8836
.

360

a a a a a a
a

a

α λ λ α α

α

− + ± − +
=      (46) 

From Equation (46), one can notice that the amplitude of the first term of the 
ansatz (13) is a function of the coefficients of the dispersion terms of order three, 
order four and the width at half height of the soliton only. Thus, we can easily 
obtain from Equation (41), the coefficient b in the form  

4 4
1

1 1

3 180 ,
2

ab a
b

λ α
λ

= − − −                     (47) 

and the first subfamily 1 of the first family of solutions comes in the form  

( )
( )

( )

( ) ( ) ( )

2 2 2 4 2
2 4 1 1 2 2 4 4

1,02
4

4 4
1 1,1 1 3,0 1 3,3

1 1

5 194 25 940 8836
,

360

3 180 e ,
2

i t

a a a a a a
q x t J

a

ai a J J i J
b

ω

α λ λ α α
αξ

α

λ α αξ λ αξ λ αξ
λ

− + ± − +
=



 
+ − − − + +  

  

(48) 

where 1 40; 0b a≠ ≠  and a is given by Equation (46). 
- Second associated conditions 1: c d= , 1a γ= , *

1γ ∈ℜ  and  
2 4

2 4 610 91a a aα α= − −   
In this context, Equation (44) becomes a quadratic equation in unknown d 

below  
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2
2 2 2 0,m d n d p+ + =                      (49) 

with 2
2 4 64 140m a aα= + , ( )2

2 4 6 15 415n a aα γ= + , 2 2
2 6 110p aα γ= −  and its 

resolution reveals the expression of the unknown d in the form  

( )2 2 2 4 2
4 6 1 1 4 4 6 6

2
4 6

2
4 6

5 415 25 4310 177825
;

8 280

35 .

a a a a a a
d

a a

a a

α γ γ α α

α

α

− + ± + +
=

+

≠ −

  (50) 

From Equation (50), one can notice that the amplitude of the second and 
fourth terms of the ansatz (13) is a function of the coefficients of the dispersion 
terms of order four, order six and the width at half height of the soliton only. So, 
from Equation (41), we obtain the coefficient b as  

( ) ( )2 6 4 6
1 6 1 4 6

12
1

360 180 149403 ; 0,
2

d b a a a d
b d b

d b

α γ α α− + +
= − − ≠   (51) 

and the second subfamily 1 of the first family of solutions is  

( ) ( )
( ) ( )

( )

( ) ( )

2 6 4 6
1 6 1 4 6

1 1,0 1,12
1

3,0 3,3

360 180 149403,
2

e ,i t

d b a a a d
q x t J i d J

d b

dJ idJ ω

α γ α α
γ αξ αξ

αξ αξ

  − + +
  = − +
  

 


+ + 



(52) 

where d is given by Equation (50). One should note here that, Equations (48) 
and (52) are the first prototypes of hybrid dispersive optical solitons which we 
believe the last two terms resulting from Equation (13) reveal a competition of 
equal amplitudes among them. This competition is disclosed by the sequence 

( ) { }2 2 , 1;2;3
k

kc d b k− ∈  which can be identified across Equations (21), (18) 
and (15), and therefore their structure has suggested the choice of c d=  condi-
tion. 

2) Second subfamily of the first family of solutions; case:  

3 2 5 3 0, 0b b a a c d= = = = = − ≠  
From these conditions, Equation (43) becomes  

( ) ( )
( )

4 3 2 4 2 2 4 2
6 4 6 2 4 6

2 4 3
2 4 6

360 180 14940 5 194 5495

4 40 364 0.

a a a a a d a a a ad

a a a d

α α α α α

α α

+ + − + +

+ + + =
(53) 

We note here that we face the same difficulties as in the case of Equation (44). 
Which suppose that we will use the same approach for its resolution. 
- First associated conditions 2: 2d c λ= − = , *

2λ ∈ℜ  and 6 0a =   
Taking these conditions into account in Equation (53) gives rise to a quadratic 

equation in a in the form  
2

3 3 3 0,m a n a p+ + =                        (54) 

with 2
3 4180m aα= , ( )2

3 2 4 25 194n a aα λ= − + , ( )2 2
3 2 4 24 40p a aα λ= + . Solv-

ing Equation (54) unveils the sought unknown a as being  
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( )2 2 2 4 2
2 4 2 2 2 2 4 4

42
4

5 194 25 940 8836
; 0

360

a a a a a a
a a

a

α λ λ α α

α

+ ± − +
= ≠   (55) 

and thereafter, Equation (41) gives  

4 4
2 1

2 1

3 180 ; 0,
2

ab a b
b

λ α
λ

= − + − ≠                  (56) 

and the first subfamily 2 of the first family of solutions is given by  

( )
( )

( )

( ) ( ) ( )

2 2 2 4 2
2 4 2 2 2 2 4 4

1,02
4

4 4
2 1,1 2 3,0 2 3,3

2 1

5 194 25 940 8836
,

360

3 180 e ,
2

i t

a a a a a a
q x t J

a

ai a J i J i i J
b

ω

α λ λ α α
αξ

α

λ α αξ λ αξ λ αξ
λ

 + ± − +
=



 
+ − + − − +  

  

(57) 

where a is given by Equation (55). 
- Second associated conditions 2: c d= − , 2a γ= , *

2γ ∈ℜ  and  
2 4

2 4 610 91a a aα α= − −   
Under these conditions, Equation (53) takes the quadratic form in unknown d  

2
4 4 4 0,m d n d p+ + =                          (58) 

with 2
4 4 64 140m a aα= + , ( )2

4 4 6 25 415n a aα γ= − + , 2 2
4 6 210p aα γ= −  and its 

solution is given by  

( )2 2 2 4 2
4 6 2 2 4 4 6 6

2
4 6

2
4 6

5 415 25 4310 177825
;

8 280

35 .

a a a a a a
d

a a

a a

α γ γ α α

α

α

+ ± + +
=

+

≠ −

    (59) 

From Equation (59), one can notice that the amplitude of the third and of the 
sixth terms of the ansatz (13) is a function of the coefficients of the dispersion 
terms of order four, order six and of the width at half height of the soliton only. 
So, from Equation (41), we obtain the coefficient b as  

( ) ( )2 6 4 6
1 6 2 4 6

12
1

360 180 149403 ; 0
2

d b a a a d
b d b

d b

α γ α α− + +
= − + ≠       (60) 

and the second subfamily 2 of the first family of solutions is  

( ) ( )
( ) ( )

( )

( ) ( )

2 6 4 6
1 6 2 4 6

2 1,0 1,12
1

3,0 3,3

360 180 149403,
2

e ,i t

d b a a a d
q x t J i d J

d b

dJ idJ ω

α γ α α
γ αξ αξ

αξ αξ

  − + +
  = + − +
  

 


− +



(61) 

where d is given by Equation (59). One should also note here that, Equations (57) 
and (61) are the second prototypes of hybrid dispersive optical solitons which we 
believe the last two terms resulting from equation (13) reveal a competition of 
opposite amplitudes among them. This competition is disclosed by the sequence 
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( ) { }2 2 , 1;2;3
k

kc d b k− ∈  which can be identified across Equations (21), (18) 
and (15), and therefore their structure has suggested this time the choice of 
c d= −  condition. 

3) Third subfamily of the first family of solutions; case:  

1 3 2 5 30; 0b b b a a≠ = = = = , 0d c≠ =  
For the additional condition 0d c≠ = , Equation (32) is verified, while, solv-

ing Equations (33), (35) and (37) successively give  

6 6

1

720 ,
a

d
b

α= ± −                         (62) 

3
6 4

1 6 6
1 6

55
720 ; 0,

60
a a

b b a a
b a

α α−
= ± − ≠               (63) 

2 4 6
2 2 2 4 6

1

2 20 182
4 3 ,

a a a
a b bd d

b
α α α+ +

= ± + + +          (64) 

with 6 1 0a b  , d and b in Equation (62) are given by Equation (63) and Equa-
tion (64), respectively. So, the third subfamily of the first family of solutions is 
written as follows  

( ) ( )

( ) ( )

2 4 6
2 2 2 4 6

1,0
1

3
66 4 6

1 6 1,1 3,3
1 6 1

2 20 182
, 4 3

55
720 720 e ,

60
i t

a a a
q x t b bd d J

b

a a a
i b a J i J

b a b
ω

α α α
αξ

α α
αξ α αξ

 + +
= ± + + +


−
± − ± − 



(65) 

with 6 1 0a b  , the constraint given by Equation (39), d and b are given by Equa-
tions (62) and (63), respectively. Equation (65) is a hybrid solution which puts in 
competition a bright represented by the first term, a kink and a double-kink 
represented by the second and the third term, respectively. The big dark family 
(kink and double-kink) outnumber the big bright family (first term). This sug-
gests a tendency to produce a hybrid solution with a strong kink, double-kink or 
kink-double-kink character as a function of the values of the coefficients 

, , , , ,a b d α ω ν  of the wave and the parameters { }, 1;2;3;4;5;6ka k ∈  and  
{ }, 1;2;3rb r∈  of system.  

4) Fourth subfamily of the first family of solutions; case:  

3 2 5 3 0b b a a= = = = , 1 0c d b≠ ≠ =  
In the context 2 3 3 5 0b b a a= = = =  coupled with the additional condition 

1 0c d b≠ ≠ = , the Equations (32), (33), (35), (37) and (39) in their different 
combinations lead to the following constraint  

2 2 4 4 2 6 8 2
2 2 4 2 6 4 4 6 64 199 5208 1590 62909 44084 0.a a a a a a a a aα α α α α+ + + + + = (66) 

So, the fourth subfamily of the first family of solutions takes the form  

( ) ( ) ( ) ( ) ( )1,0 1,1 3,0 3,3, e ,i tq x t aJ ibJ cJ idJ ωαξ αξ αξ αξ = + + +        (67) 

with 2 4 6
2 4 6a a aω α α α= + + , 1aν = , *a∈ℜ , *b∈ℜ , *c∈ℜ , *d ∈ℜ  and 

the constraints given by Equation (66). It is important to emphasize here that, 
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this fourth subfamily of solutions is that of a part of the linear dispersive equa-
tion because all the nonlinear effects as well as the dispersion effects of order 
three and order five are neglected. Which would suppose that, this mode is mar-
ginal with respect to these different effects.  

4.3.2. Second Family of Solutions; Case: c = 0 , d = 0  
For 0c = , 0d = , Equations (15) to (22) are verified, while, Equations (23) to 
(29) are reduced to, respectively  

( )32 2 6
3 6720 0,a b b a aα − − =  

                  (68) 

5
5120 0,a bα− =                         (69) 

( ) ( )22 2 2 6 4
2 3 6 43 840 24 0,a b b b b a a aα α − + + + =  

          (70) 

( )3 5
3 56 120 0,a a bα α+ =                      (71) 

( )( )2 2 2 4 6 4 2
1 2 3 6 4 22 3 182 20 2 0,a b b b b b b a a a aα α α − + + − − − =      (72) 

( ) 3 5
1 3 54 16 0,a a a bα ν α α − − − =                   (73) 

( )2 2 4 6 4 2
1 2 3 6 4 2 0,b b b b b b a a a aα α α ω + + + + + − =            (74) 

From Equation (69), It easily appears that  

5 0 or 0,a b= =                          (75) 

consequently, Equation (71) and Equation (73) lead to, respectively  

3 0 or 0,a b= =                          (76) 

and  

1 or 0.a bν = =                          (77) 

To the look of the structure of Equations (68), (70) and (72) which offer the 
different sequences of the powers of the difference of two squares: ( )2 2 k

ka b b− , 
where { }1;2;3k ∈ , the introduction of an additional condition becomes neces-
sary for this second large family of solutions of the Equation (1): a b= ± . Under 
these considerations, and in order to construct non-trivial solutions, we must 
consider the following three cases: 5 3 0a a= = , 1aν = , 0b ≠ ; 5 0a ≠ , 3 0a ≠ , 

1aν ≠ , 0b =  and a b= ± .  
1) First subfamily of the second family of solutions; case: 5 3 0a a= = , 

1aν =  and 0b ≠   
Equation (68) gives  

2 2 2 63 6 3
3

2 90 , 0.
a

a b a b
b

α− =                    (78) 

Equations (70) and (72), by taking into account Equation (78), give, respec-
tively  

2
62 4

62 23 33 6 3 6 3

70 2
, 0

3 3 300 3 300

ab ab a
b a b a b

α
= ± − − −              (79) 
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and  

( )2 4 4 263 1 2 3 6 4 2
3

90 2 3 91 10 0.
a

b b b b b a a a
b

α α+ + − − − =         (80) 

From Equation (74), we obtain  

( )2 4 2 6 4 2
1 2 3 6 4 2 ,b b b b b b a a aω α α α= + + + + +            (81) 

and next, Equation (78) gives  

2 2 63

3

2 90 ,
a

a b
b

α= ± +                     (82) 

where b is given by Equation (79) with ( ) ( )3 6 0sign b sign a=  . By pursuing, 
the combination of Equation (80) and Equation (81) leads to  

4 2
2 4 2 6 4 26 4 2

2 3 6 4 2
63

3

91
2 ,

90

a a a
b b b b b a a a

a
b

α α
ω α α α

 
 

+ + = − − + + + 
  
 

    (83) 

where b is given by Equation (79). Finally, the first subfamily of the second fam-
ily of solutions 1 is expresses as  

( ) ( )

( )

2 2 63 1,0
3

2
62 4

1,12 23 33 6 3 6 3

, 2 90

70 2
e ,

3 3 300 3 300
i t

a
q x t b J

b

ab ai J
b a b a b

ω

α αξ

α
αξ


= ± +



± − − −



      (84) 

where b is given by Equation (79) with ( ) ( )3 6 6 30; 0sign b sign a a b= ≠  and 
the constraint given by Equation (83). This solution has a hybrid character 
which, according to the values of the coefficients , , , ,a b ν α ω  of the wave and 
those of parameters { }, 1;2;3;4;5;6ka k ∈  and { }, 1;2;3rb r∈  of the system 
generates either a bright, a kink or a combined solution of the two types which 
produces the hybrid solution. And the condition of existence of the solution 
given by Equation (84) is that: ( ) ( )3 6 0sign b sign a=  .  

2) Second subfamily of the second family of solutions; case: 5 0a ≠ , 

3 0a ≠ , 1aν ≠  and 0b =   
For 0b = , Equations (69), (71) and (73) are verified, and Equations (68), (70), 

(72), (74) become, respectively  
6 6

3 6720 0,b a aα− =                      (85) 

4 6 4
2 6 4840 24 0,b a a aα α+ + =                  (86) 

2 6 4 2
1 6 4 2182 20 2 0,b a a a aα α α− − − =              (87) 

6 4 2
6 4 2 .a a aω α α α= + +                     (88) 

Equation (87) gives  
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6 2 26 4 2

1 1 1

182 20 2 .
a a aa
b b b

α α α= ± + +               (89) 

The combination of Equations (85) and (86) leads to the following relation  
2

2 26
6 3 4 3 2

2

30
35 ; 0.

a
a a b a b b

b
α

α= − + ≠               (90) 

From Equation (89) and Equation (90), when setting, 2 2a a= , we obtain the 
constraint below  

( )6 2 4 2 2
6 3 6 4 3 6 2 3 4 3 6 2 1 4 2 33185 441 35 10 15 0.a b a a b a a b a b a a b a a bα α α+ + + + + = (91) 

So, we obtain the second subfamily of the second family of solutions 1 as fol-
lows  

( ) ( )6 2 26 4 2
1,0

1 1 1

, 182 20 2 e ,i ta a aq x t J
b b b

ωα α α αξ
 

= ± + + 
  

      (92) 

with 1 0b ≠ , 6 4 2
6 4 2a a aω α α α= + +  and the constraint is given by Equation 

(91). Equation (92) shows that Equation (1) has the bright soliton as solution, 
the amplitude of which varies as the inverse of the square root of the coefficient 

1b  of the cubic law.  
3) Third subfamily of the second family of solutions; case: a b= ±   
This third subfamily of the second family of solutions of Equation (1) contains 

two sub-subfamilies, namely for cases: a b β= ± = ; 3 5 0a a≠ ≠ ; 1aν ≠  and 
a b µ= ± = , 3 5 0a a= = , 1aν = .  

a) First sub-subfamily of the third subfamily of the second family of solu-
tions; case: a b β= ± = ; *β ∈ℜ ; 3 5 0a a≠ ≠ ; 1aν ≠  

In this first case, if we are situated with respect to the conditions a b β= ± = ; 
*β ∈ℜ ; 3 5 0a a≠ ≠  and 1aν ≠ , we obtain within the framework of solving 

Equations (70), (71), (72), (73) and (75), the first sub-subfamily of the third sub-
family of the second family of solutions as being  

( ) ( ) ( )1,0 1,1, e ,i tq x t J i J ωβ αξ β αξ = ±               (93) 

with 2 4 6 6
1 2 3 6225b b b b b b aω α= + + + ; 4

1 564a aν α= − ; 4
2 6259a aα= ; 

2
3 520a aα= −  and 2

4 635a aα= − . Let us note here that, Equation (93) is an hy-
brid prototype which translates particular interactions between the two main 
types of bright and kink solitons, respectively. This interaction is revealed by the 
sequences ( )2 2 k

ka b b− , where { }1;2;3k ∈ , and which can be observed at the 
level of Equations (68), (70) and (72) and which in this case have imposed the 
condition a b= ± . This result also shows that, for a given value of the intermod-
al dispersion coefficient, the wave speed is a linear function of the dispersion 
coefficient of order five, and implicitly, a linear function of the dispersion coeffi-
cient of order three ( 2

3 520a aα= − ).  
b) Second sub-subfamily of the third subfamily of the second family of 

solutions; case: a b µ= ± = ; *µ ∈ℜ ; 3 5 0a a= = ; 1aν =   
In this second case, depending on the conditions a b µ= ± = ; *µ ∈ℜ ; 
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3 5 0a a= =  and 1aν = , the resolution of Equations (70), (71), (72), (73) and 
(75), leads to the second sub-subfamily of the third subfamily of the second fam-
ily of solutions under the form  

( ) ( ) ( )1,0 1,1, e ,i tq x t J i J ωµ αξ µ αξ = ±                (94) 

with 2
4 635a aα= − ; 4

2 6259a aα=  and 2 4 6 6
1 2 3 6225b b b b b b aω α= + + + . Equ-

ation (94) is a hybrid prototype which also translates particular interactions be-
tween the two main types of bright and kink solitons, respectively. This interac-
tion is revealed by the sequences ( )2 2 k

ka b b− , where { }1;2;3k ∈ , and which 
can be observed at the level of Equations (68), (70) and (72) and which in this 
case have imposed the condition a b= ± , and consequently, leads to the follow-
ing constraints 3 5 0a a= =  and 1aν = .  

4.4. Graphical Verification of the Hybrid Trait of the Obtained  
Solutions 

This section getting charge to unveil the real nature of certain structures which 
are concealed behind the obtained analytical solutions and given by Equations 
(48), (57) and (65), to name just a few. Next, a detailed discussion is conducted 
in order to better compare these obtained structures with the theoretical fore-
casts. Five figures are presented, each displaying the different obtained structures 
in three dimensions. The graphical tool used here is the MAPLE.  

From the above graphical representations, it clearly emerges that most of the 
obtained structures confirm of the analytical forecasts on the nature of the ob-
tained solutions: these are hybrid dispersive optical solitons which will be the 
subject of discussions. 

5. Discussions 

From the previous study, it should be emphasized here that Equation (13) is a 
complex hybrid prototype of dispersive optical solitons which seems to harbor 
within it particular interactions between terms taken two by two of the same odd 
power 1;3m =  and contained in the different sub-packages (bright and dark 
mentioned above), and directly related to the cubic-quintic-septic law. These 
observations are reinforced by the appearance in the range Equations (15) to (29) 
of the expressions ( )2 2 n

na b b−  and ( ) { }2 2 , 1;2;3
n

nc d b n− ∈  and whose ex-
tensions to the order t in each case can be written respectively  

( ) ( ) ( ) ( ) ( )2 3 12 2 2 2 2 2 2 2 2 2
1 1 1 1 1 2 1 1 3 1 1 1 1 1; ; ; ; ;

t t

t tb b b b bβ γ β γ β γ β γ β γ
−

−− − − − −  (95) 

and  

( ) ( ) ( ) ( ) ( )2 3 12 2 2 2 2 2 2 2 2 2
3 3 1 3 3 2 3 3 3 3 3 1 3 3; ; ; ; ; ,

t t

t tb b b b bβ γ β γ β γ β γ β γ
−

−− − − − −  (96) 

where we have imagined an emergence at an order j of the terms ( )2 2 j

jc d b−  
and ( ) { }2 2 , 1;2;3

j

ja b b j− ∈  consequence of the initial and arbitrary choice of 
the ansatz (13) under the form  
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( ) ( ) ( )2 1 2 1,0 2 1 2 1,2 1
0

,
k

s s s s s
s

J i Jψ ξ β αξ γ αξ+ + + + +
=

 = + ∑          (97) 

It is important to note here that, Equations (95) and (96) are sequences which 
emerge in the range Equations (15) to (29) for values 0s =  and 1s =  intro-
duced into Equation (97), respectively, when choosing the ansatz, with  

1 1 3, ,a b cβ γ β= = =  and 3d γ= . This observation is undoubtedly necessary 
because it informs us a priori of what could be the major terms of the range equ-
ations and to move us away from certain errors during analytical calculations. 
Equation (95) highlights the interaction between sech and tanh while Equation 
(96) translates the interaction between the terms sech3 and tanh3 of Equation (13) 
and which have favored the appearance of the cubic-quintic-septic law because 
equality c d=  prevents us from taking 1 20, 0b b= = , and 3 0b =  (see Equa-
tions (15), (18) and (21)). The solutions found in the first family of solutions 
owe their existence to the appearance in the system of the Kerr law nonlinearity 
only(because 2 3 0b b= = ). On the other hand, the second family of solutions 
resulting from the condition 0c d= =  owe its existence from the appearance 
in the propagation medium of the cubic-quintic-septic law (see Equations (68), 
(70) and (72)). Then, another peculiarity of the obtained dispersive optical soli-
tons resides in their capacities of modulation following to the form and which 
making of them new hybrid prototypes which we estimate capable of changing 
form according to the difficulties encountered in their multiple mediums of 
propagation. This variation following to the form follows to the possibility of al-
ternating the values of the coefficients , , ,a b c d  and as well as the values of the 
parameters α  and ν  of the wave. This can be verified by paying close atten-
tion to the different obtained profiles for this purpose. Thereby: 

Figure 1 introduces a set of four soliton profiles evolving from the double- 
bright given by Figure 1(a) to the bright given by Figure 1(d) through the in-
termediate forms given by Figure 1(b) and Figure 1(c) respectively. This figure 
reveals that, when we set the coefficients 0.9; 0.9b c d= = = −  and the parame-
ters 0.02; 0.0012α ν= = , assigning values 0.9 in turn; 0.79; 0.59 and 0.49 at 
coefficient a, Equation (48) is a hybrid prototype which generates multi-form 
structures belonging to the large bright family mainly. 

Figure 2 is obtained by fixing the values of the coefficients 0.3a = −  (with 
−0.49 as the last value); 0.5; 0b c= − =  and successively assigning to the coeffi-
cient d the values 0.2; 0.13; 0.6 and 0.15. This exercise revealed the hybrid nature 
of the solution given by Equation (65). It offers four structures with a strong 
tendency to a bright type soliton. This can be elucidated by Figure 2(d) which is 
a bright which presents a flat top and reinforced by Figure 2(a) and Figure 2(c) 
like profiles with strong tendency bright. 

Figure 3 displays a content made up of a group of four hybrid structures with 
a strong dark tendency. This trend can be confirmed by the profiles named Fig-
ure 3(a), Figure 3(c) (dark with a flat bottom) and Figure 3(d), against a bright 
represented by profile Figure 3(b). To constitute this group and knowing that 
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0c = , we successively gave the values −0.3; 0.3; 0.09 and −0.09 at coefficient a 
while coefficient b scans the values 0.05; −0.05; 0.002 and 0.8. The coefficient d 
meanwhile, took the values 0.5; 0.2; 1 and −1. Here, 0.0012ν =  and 0.02α = .  

Following the previous scenery, we estimate that such results will have a very 
great advantage during the propagation tests in laboratories where the research-
ers will be able to choose the form of the signal which they will want to inject 
into the system which they study quite simply by operating an appropriate 
choice of the values of these coefficients , , , ,a b c d α  and ν  of the wave. In ad-
dition to all that has just been said, we believe that some of these new prototypes 
of hybrid dispersive optical solitons may find their applications in nonlinear fi-
ber optics when the refractive index of light is proportional to the intensity; oth-
ers in neuroscience where optical solitons have been spotted [44] [45] [46] and 
in the fluid media, more precisely in the context of waves in deep waters, etc. 
And thereafter, these solutions may also make it possible to detect new behaviors 
in the propagation media in which the Cubic-Quintic-Septic law appears, and 
thus contributes to the progress of technologies of the information. At the end of 
the discussions, it should be noted that most of the obtained results are different 
from those proposed in [5] [6] [7] [11] [17] [18] [19] [20] [26] [27] [28] [29] 
[47]. This difference can be observed at two levels: 
- first from the analytical point of view by its mathematical form given by Eq-

uation (13). It is a package [25] [30] [31] that contains within its bosom four 
terms of which the first and third terms are representative of the bright type 
soliton, the second is a kink while the fourth term is a double-kink [34]. 

 

 
Figure 1. Graphical representation given by Equation (48) for 0.02α = ; 0.0012ν = : 
Hybrid-bright dispersive optical soliton: (a) 0.9a = ; 0.9b = ; 0.9c = − ; 0.9d = − ; (b) 

0.79a = ; 0.9b = ; 0.9c = − ; 0.9d = − ; (c) 0.59a = ; 0.9b = ; 0.9c = − ; 0.9d = − ; 
(d) 0.49a = ; 0.9b = ; 0.9c = − ; 0.9d = − . 
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Figure 2. Graphical representation given by Equation (65) for 0.02α = ; 0.0012ν = : 
Hybrid bright-dark dispersive optical soliton: (a) 0.3a = − ; 0.5b = − ; 0c = ; 0.2d = ; 
(b) 0.3a = − ; 0.5b = − ; 0c = ; 0.13d = ; (c) 0.3a = − ; 0.5b = − ; 0c = ; 0.6d =  
(d) 0.49a = − ; 0.5b = − ; 0c = ; 0.15d = . 

 

 

Figure 3. Graphical representation given by Equation (65) for 0.02α = ; 0.0012ν = : 
Hybrid dark-bright dispersive optical soliton: (a) 0.3a = − ; 0.05b = ; 0c = ; 0.5d = ; 
(b) 0.3a = ; 0.05b = − ; 0c = ; 0.2d = ; (c) 0.09a = ; 0.002b = ; 0c = ; 1d =  (d) 

0.09a = − ; 0.8b = ; 0c = ; 1d = − . 
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- then, from a numerical point of view, for example, Figure 3(d) displays a 
hybrid or multiform wave structure which reveals the bright and dark types 
that are qualified as double dark-double bright solitary wave. 

Whereas, in [7] and [18], the authors proposed exact bright, dark solitons and 
the singular optical solitons while in [17], authors proposed the highly dispersive 
singular optical solitons. 

6. Conclusion  

Ultimately, it should be pointed out that, thanks to the BDKm theory, we were 
able to locate and unearth new hybrid prototypes of dispersive optical solitons as 
much on their mathematical forms as on their profiles. This method has re-
vealed a certain affinity coupled (between certain terms of the ansatz (13)) to 
being regroup in a sorts of power of the difference of two squares of exponent n, 
engaging their amplitudes and in link to cubic-quintic-septic law, and occurring 
in the forms ( )2 2 n

nc d b−  and ( ) { }2 2 , 1;2;3
n

na b b n− ∈  respectively. From 
this affinity it emerges that some of these solutions owe their existence only to 
the appearance in the system of non-linearity of Kerr type through the sequence 

( )2 2
1c d b−  (see the first term of Equation (43)) and which gave rise to the con-

dition c d= ± . And also of the appearance of the cubic-quintic-septic law 
through the sequence ( ) { }2 2 , 1;2;3

n

na b b n− ∈  (see Equations (68), (70), (72)) 
and which gave rise to the condition a b= ±  and concerns the second family of 
solutions (case 0, 0c d= = ). The profiles displayed by Figures 1-3 confirmed 
the hybrid characters of the obtained dispersive optical solitons. At the same 
time, these Figures indicate that a precise choice can be made in advance on the 
profiles of the hybrid dispersive solitons that one would like to obtain by simply 
making an appropriate choice of the values of the coefficients , , ,a b c d  and 
those of parameters ν  and α  of the initial wave given by Equation (13). Thus, 
as the form of the signal which one wants to obtain varies according to the val-
ues of the real constants , , , ,a b c d ν  and α , that supposes that one can control 
the energies of the nonlinear systems whose the dynamics are governed by the 
Schrödinger Equation (1) by simply playing on the values of these real constants. 
These new hybrid prototypes of dispersive optical solitons translate the new be-
haviors that can be developed by systems whose dynamics are described by Equ-
ation (1). Since the transmission of data through optical fibers is the responsibil-
ity of optical solitons [2] [3] [6] [26] [27] [28] [29], we believe that the new hy-
brid prototypes of dispersive optical solitons that we have proposed in the 
framework of this work will be able to respond to the requirement in recent 
years, of information technology which is, the improvement of optical fiber 
transmission systems associated with the extraction of optical solitons. We be-
lieve that a good understanding of the hybrid dispersive optical solitons hig-
hlighted in the context of this work may also allow to grasp the physical descrip-
tion of systems whose dynamics are governed by Equation (1) in order to pro-
vide a relevant improvement of complex problems. However, a continuous ex-
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ploration deserves to be maintained in this direction in order to further enrich 
the literatures of new types of dispersive optical soliton type structures whose 
needs are no longer in doubt. 
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