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Abstract 
We consider the efficacy of a proposed linear-dimension-reduction method 
to potentially increase the powers of five hypothesis tests for the difference of 
two high-dimensional multivariate-normal population-mean vectors with the 
assumption of homoscedastic covariance matrices. We use Monte Carlo si-
mulations to contrast the empirical powers of the five high-dimensional tests 
by using both the original data and dimension-reduced data. From the Monte 
Carlo simulations, we conclude that a test by Thulin [1], when performed 
with post-dimension-reduced data, yielded the best omnibus power for de-
tecting a difference between two high-dimensional population-mean vectors. 
We also illustrate the utility of our dimension-reduction method real data 
consisting of genetic sequences of two groups of patients with Crohn’s disease 
and ulcerative colitis. 
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1. Introduction 

When considering two multivariate-normal populations, researchers often at-
tempt to determine if a difference exists between population-mean vectors. Tra-
ditionally, Hotelling’s T2 test has been utilized to determine if a difference exists. 
However, this test can be applied only when the data has a combined sample size 
that is greater than the original feature dimension because Hotelling’s T2 test 
depends on the non-singularity of the sample covariance matrix. When the sam-
ple-data dimension is greater than the sum of the sample sizes, we say the data is 
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“high-dimensional”. For a fixed sample size, increasing the data dimension in-
creases the covariance-matrix estimator variability, thus yielding statistical hy-
pothesis tests for the difference in two population-mean vectors that are less 
powerful. Also, if the data dimension is greater than the sum of the group sam-
ple sizes, then the corresponding pooled-sample covariance matrix is singular 
and, therefore, one cannot conduct Hotelling’s T2 test for a mean difference. 
Hence, alternative tests for detecting the difference of two high-dimensional 
mean vectors, data dimension reduction (DR), or alternative tests combined 
with DR must be utilized. 

In this paper, we investigate the efficacy of linear DR via the singular value 
decomposition (SVD) applied to a concatonated data matrix. Specifically, we 
examine the change in test powers for five tests for the difference of two high- 
dimensional mean vectors after implementing our DR to the original data. 
When applicable, we also apply the traditional Hotelling’s T2 test to the dimen-
sion-reduced data. Thus, using Monte Carlo power simulation studies, we con-
trast the powers of five high-dimensional tests with and without our proposed 
SVD-DR method. We concluded that SVD-DR, when applied to the data prior 
to conducting a test proposed by Thulin [1], yielded the largest omnibus power 
of the five considered tests whose empirical powers are contrasted here. 

Throughout the paper, we use the notation m n×  and n  to represent the 
matrix space of all m n×  and n n×  matrices, respectively, over the real field 
 . Also, we let k

≥  represent the cone of all k k×  nonnegative-definite real 
matrices, and we let >

k  represent the cone interior of positive-definite matric-
es. Additionally, ( )tr A  represents the trace of the matrix A , and −a b  
denotes the Euclidean distance between the vectors 1, p×∈a b  . We assume that 
the data of the form 1ij p×∈x   with 1,2i =  and 1, , ij N=  , are randomly 
sampled from two distinct p-dimensional normal distributions denoted by 

( ),p iN µ Σ , 1,2i = , where the corresponding population-mean vectors and 
common population covariance matrix are denoted by 1i p×∈µ , where  

1, 2i = , and >
p∈Σ , respectively. 

For 1,2i = , the ith sample mean vectors and sample covariance matrices are 
given by 

1

1 iN

i ij
jiN =

= ∑x x  

and 

( )( )T

1

1 ,
1

iN

i ij i ij i
jiN =

= − −
− ∑S x x x x

 

respectively. An unbiased estimator of Σ  is 

( ) ( )1 1 2 2

1 2

1 1
.

2p

N N
N N

− + −
=

+ −
S S

S                   (1) 

The hypothesis test of interest is 
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0 1 2 1 1 2: versus : .H H= ≠µ µ µ µ  
Provided ( )1 2N N p+ > , Hotelling’s T2 statistic is 

( ) ( )T2 11 2
1 2 1 2

1 2

,p
N NT

N N
−= − −

+
x x S x x                (2) 

where 

( ) ( )21 2
1 2

1 2

1
~ , 1 .

2
N N p T F p N N p
N N p
+ − −

+ − +
+ −  

If ( )1 2p N N> + , then (2) is incalculable. 
Because of the increasing availability of high-dimensional data, especially in 

biological applications, researchers have proposed tests for the high-dimensional 
two-mean-vector problem. Dempster [2] first proposed a test for normal-
ly-distributed observation vectors where 1 2=Σ Σ . The high-dimensional prob-
lem for contrasting two population mean vectors has been explored in the lite-
rature in such articles as Bai and Saranadasa [3], who proposed a test with the 
same asymptotic power as the test proposed by Dempster [2] but without relying 
on the assumption of normality. 

Also, Srivastava [4] proposed a test similar to Hotelling’s T2 test where the 
inverse of (1) was replaced by its corresponding Moore-Penrose inverse. In 
addition, Srivastava and Du [5] have proposed replacing (1) with ( )diag pS  
in (2), which results in a test statistic that is invariant under the group of 
non-singular p p×  diagonal matrices. Park and Ayyala [6] and Chen and 
Quin [7] have also proposed test statistics for two high-dimensional popula-
tion-mean vectors that do not rely on the assumption of equal covariance ma-
trices, but these tests lose all information in the correlations between variables. 
Bickel and Levina [8] and Cai and Liu [9] have proposed tests using sparse es-
timators of the common covariance structure. In addition, Feng et al. [10] and 
Chen et al. [11] have proposed regularized versions of Hotelling’s T2 test. 
Moreover, Thulin [1] has proposed a modification to the test from Lopes et al. 
[12] by using random subspaces to improve test-statistic invariance properties. 
Zhang and Pan [13] followed the work of Thulin [1] by proposing a test using 
hierarchical clustering that more efficiently employs the covariance structure 
information in high dimensions. Srivastava et al. [14], He et al. [15], and oth-
ers have also proposed tests for a difference in two high-dimensional popula-
tion-mean vectors. 

We have organized the remaining sections of the paper as follows. In Section 
2, we present each of the five high-dimensional tests used to determine the utili-
ty of our proposed SVD-DR method. In Section 3, we present our SVD-DR ap-
proach, and in Section 4, we contrast the estimated power curves of each of the 
five considered tests using Monte Carlo simulations. Each test with and without 
SVD-DR is then applied to a bowel disease data set in Section 5. We then discuss 
the computational benefits of our proposed SVD-DR method in Section 6 and 
conclude with a brief discussion in Section 7. 
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2. Five Two-Sample Tests for a Difference between Two 
High-Dimensional Mean Vectors from Populations with 
Equal Covariance Matrices 

We next describe five hypothesis tests for identifying differences in two high- 
dimensional mean vectors. Namely, we consider the tests derived in Bai and Sa-
ranadasa [3], Srivastava [4], Srivastava and Du [5], Thulin [1], and Zhang and 
Pan [13]. 

2.1. The Bai-Saranadasa Test 

Dempster’s test for 0 1 2:H =µ µ  when ( )1 2N N p+ <  under the assumption 
of equal population covariance matrices is 

( ) ( )1 T
1 2 1 2

1 2

1 1 .
trD

p

T
N N

−
− − 

= + 
 

x x x x
S

               (3) 

Let ( )1 2 2n N N= + − . Under specified conditions, Bai and Saranadasa [3] 
proposed an asymptotic-based version of (3) given by 

( ) ( )

( )

T1
1 2 1 2

21 2 2

tr1 1 .
12 tr tr

p
BS

p p

T
N N

n

− − − − 
= + 

   −  

x x x x S

S S
 

2.2. Srivastava’s T+2 Test 

Srivastava [4] presented a test similar to (2) in which 1
p
−S  is replaced by the 

Moore-Penrose inverse p
+S  because ( )rank p p<S . His test statistic is 

( ) ( )
1

T2
1 2 1 2

1 2

1 1 .pT
N N

−

+ + 
= + − − 
 

x x S x x
 

2.3. The Srivastava-Du Test 

The tests given by Bai and Saranadasa [3] and Srivastava [4] are invariant under 
transformations of the type ij ija→x xΓ , provided 0a ≠  and T

p= IΓΓ . 
However, these tests are not transformation-invariant for p p×  non-singular, 
diagonal matrices. This fact implies that a change in units of measurement will 
affect the powers of both tests. To rectify this impediment, Srivastava and Du [5] 
proposed an invariant test statistic under p p×  non-singular, diagonal matric-
es, which is 

( ) ( )
1

T 1
1 2 1 2

1 2
1

2 2
2

,

1 1

,

ˆ2 tr

p

SD

p n

p
N N

T
p C
n

−
− 

+ − − − 
 =

    −   
     

Sx x D x x

R
 

where ( )p ijs=S , , 1, 2, ,i j p= 
, ( )11diag , ,

p pps s=SD  , 1 2 1 2ˆ
p pp

− −= S SR D S D , 
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and 
2

, 3 2

ˆtr1 1p
p nC

p
= + →

R , as ( ),n p →∞ . 

2.4. Thulin’s Random-Subspaces Test 

Lopes et al. [12] also presented a test for identifying a difference between two 
high-dimensional mean vectors that use random projections of the data onto 
k-dimensional subspaces, where k is a sufficiently small positive integer. However, 
this test is not invariant under a linear transformation of the marginal distributions. 

Moreover, Thulin [1] proposed a modification to the test by Lopes et al. [12] 
that uses random subspaces in lieu of random pseudo-projections and is inva-
riant under linear transformations of the marginal distributions. We can use 
Algorithm 1 to compute the random-subspaces test presented by Thulin [1]. In 
the algorithm pseudo-code, we use the fact that 

11 N p×∈X   and 
22 N p×∈X   

are the original-data matrices whose rows are composed of randomly sampled 
vectors of observations from their respective multivariate normal distributions. 

The choice of the number of subspaces, k, directly affects the power of the 
random-subspaces test. If k is too small, much of the information contained in 
the multivariate structure is lost. However, if k is too large, test power is lost. For 
the random-subspaces test, Thulin [1] numerically verified that a good choice 
for k is ( )1 2 2k N N= +   , where .    is the “floor” function. Also, let B represent 
the number of randomly-selected subspaces. Thulin [1] showed that the ran-
dom-subspaces test is essentially stable for 100B ≥ . Algorithm 1 describes the 
steps needed to perform the random-subspaces test. 

 

 

2.5. Zhang and Pan’s Clustered Subspaces Test 

Zhang and Pan [13] followed the work of Thulin [1] and made more efficient 
use of the information in (1) by proposing a test using hierarchical clustering in 
lieu of random subspaces. In particular, highly-correlated variables are clustered 
together to create subspaces. Hotelling’s T2 statistic is then applied to each clus-
tered subspace. 

Clusters are initially calculated based on a cutoff distance cd . For their pow-
er-study simulations, Zhang and Pan [13] used the tuning parameter value 

1c cd r= − , where ( ) ( )* *2 2: e 1 e 1c cz z
cr = − + , * : 1c cz t n= − ,  
( )( )( )1: 1 2 1ct p p−  = Φ − −  , and ( )Φ ⋅  is the standard normal cumulative 
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distribution function. After one performs clustering on the variables, some clus-
ters may contain an excessive number of variables. If a cluster contains more 
than : 2 3ck n=     variables, we partition the cluster into two sub-clusters. This 
partitioning process continues until each cluster or sub-cluster contains no more 
than ck  variables. One can use Algorithm 2 to compute the clustered sub-
spaces test presented in Zhang and Pan [13]. 

 

 

3. Linear Dimension Reduction via the SVD of a Concatonated 
Matrix of Two High-Dimensional Data Sets 

Below, we describe how we apply the SVD to a concatenated data matrix com-
posed of the two sample-data sets to reduce the original data dimension. 
Through the deletion of a subset of right and left singular vectors associated with 
the SVD of the total data matrix, we eliminate information concerning the mean 
difference, which is of minor importance, while maintaining the bulk of the in-
formation for detecting that ( )2 1− ≠µ µ 0 . Thus, to reduce the dimensionality 
of the two considered datasets, we propose the following DR method. First, we 
horizontally concatenate the two data matrices, 1X  and 2X , to form the 
N p×  data matrix X  and calculate ( )rank X . Next, given r, where r p< , 
we determine ( )SVD X  and subsequently eliminate the ( p r− ) columns of the 
left and right eigenvector matrices associated with the smallest ( p r− ) eigen-
values of X . This process yields an ( N r× ) approximation of X . Below in 
Algorithm 3, we present steps for calculating the SVD-DR method. 

 

 

4. A Monte Carlo Power Contrast of Five Tests for 
High-Dimensional Means with and without DR 

To examine the powers of the five considered tests for a difference between two 
high-dimensional population-mean vectors before and after applying DR on the 
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concatenated data matrix X , we simulated the powers of the five two-sample- 
mean tests over varying values of 2 1−µ µ . Below, we describe the Monte Carlo 
simulation design that we used to examine the efficacy of the SVD-DR method. 

4.1. Empirical Power Calculations 

For our power simulations, we simulated critical values to compute the empiri-
cal power for each of the five considered tests for a difference between two 
high-dimensional population means. More specifically, we simulated θ  repli-
cations of the data under H0 and applied SVD-DR to each simulated data matrix. 
The ( )thθα  largest value of the empirical test values was selected as the critical 
value, ĉα . We then generated another θ  replication of the data under H1 and 
applied our SVD-DR approach to each of the simulated data sets. The empirical 
power was then calculated by 

ˆ# ofˆ ,At cαβ
θ
≥

=
 

where At  represents the empirical test values generated under H1. We used 
1000θ = , which corresponded to the number of simulation iterations incorpo-

rated for power simulations by both Thulin [1] and Zhang and Pan [13]. 

4.2. The Monte Carlo Power Simulation Design 

For the power-contrast study to evaluate the efficacy of the SVD-DR method, we 
utilized a Monte Carlo configuration similar to that used by Thulin [1] and 
Zhang and Pan [13] to generate simulated data sets. We generated 50iN =  
observations of the form ( )T

1, ,
iij i iNx x=x 

 from ( ),p iN µ Σ , 1,2i = . We al-
so let 200p = , 1 1p×=µ 0 , and ( )2 2 jµ=µ , where 1, ,j p= 

, with 

( )
2

, for 25 ,mod 1,25 20,
0, otherwisej
d j m j

µ
 ≤ − <  = 
  

where 1,5,8m =  and ⋅    is the “ceiling” function. That is, we shifted 20 of 25 
variable means in m of the p/25 subvectors. Also, we let ( ),r s rsσ= =Σ Σ , where 

, 1, ,r s p= 
, and 

1, for ,
, for , 25 25 ,
, otherwise.

rs

r s
r r s r s
s

σ
=

= ≠ =       

  

Therefore, ,r sΣ  denotes a covariance matrix with unit variances and p/25 
equal-sized non-diagonal submatrices. The off-diagonal covariance elements in 
each submatrix are equal to r if r and s belong to the same submatrix block and 
equal to s, otherwise. Here, we consider the covariance structures 0,0 0.5,0.2,Σ Σ , 
and 0.9,0.1Σ . For the Monte Carlo power simulations in Section 4.2, we used 

( )1 2 2k N N= +    and 100B = . 

4.3. The Monte Carlo Power-Simulation Results 

In Figure 1 and Figure 3, we display power plots for each of the considered tests 
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corresponding to each parameter configuration for which we have applied 
SVD-DR prior to conducting the tests. From the results shown in Figure 1, 
where all covariance matrices are diagonal, we observed that four of the five tests 
produced similar power curves. In particular, the test from Bai and Saranadasa [3] 
yielded the predominant power curve, and the test proposed by Srivastava [4]  

 

 
Figure 1. Power curves of the five tests for mean differences with post-SVD-DR data when 200p = , 

1 2 50n n= =  and 0.05α =  with diagonal covariance matrices. 
 

 
Figure 2. Power-difference plots of the five tests for mean differences conducted with post-SVD-DR 
data for 200p = , 1 2 50n n= =  and 0.05α =  with diagonal covariance matrices. 
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Figure 3. Power curves of the five tests for mean differences conducted with post-SVD-DR data when 

200p = , 1 2 50n n= =  and 0.05α =  with non-diagonal covariance matrices. 
 

invariably produced the least-prominent power curve. All five high-dimensional 
tests for a difference between two mean vectors contrasted here yielded in-
creased power as m increased. Also, when the common covariance matrix was di-
agonal, we found that performing Hotelling’s T2 test on the SVD-DR data yielded 
powers comparable to those of the competing tests for two high-dimensional pop-
ulation means using post-SVD-DR data. 

In Figure 2, we displayed power-difference plots for six parameter configura-
tions with diagonal common covariance structures. For each test, the plots illu-
strate differences among the power curves using SVD-DR data minus the power 
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curves using the original unreduced data. As shown in Figure 2, the tests by Bai 
and Saranadasa [3], Srivastava and Du [5], and the random subspaces test by Thu-
lin [1] yielded a slight to moderate power increase when 2 10.01 2.00≤ − ≤µ µ . 
In contrast, the test proposed by Zhang and Pan [13] produced slightly increased 
power and the test by Srivastava [4] actually yielded decreased power for some 
values of 2 1−µ µ . 

In Figure 3, we display power curves for the five tests conducted on SVD-DR 
data for six parameter configurations with non-diagonal covariance structures. 
We see that Thulin’s random-subspaces test, when applied to the SVD-DR data, 
yielded the best omnibus power curve for all six parameter configurations con-
sidered here. For most parameter configurations shown in Figure 3, Hotelling’s 
T2 test, conducted with SVD-DR data, yielded power curves similar to those of the 
random subspaces test by Thulin [1] across all mean and covariance matrix confi-
gurations with non-diagonal covariance structures. As within-block correlation 
and m increased, the test by Bai and Saranadasa [3] and the cluster-subspaces test 
of Srivastava and Du [5] generally provided the two smallest power curves. 

More importantly, we contrasted the powers of each test for the difference 
between two high-dimensional mean vectors with and without the application of 
the SVD-DR to the original data in Figure 4. The plots display the power of each 
test with the SVD-DR data minus the corresponding test power without the 
SVD-DR method applied to the full-dimensional data. That is, the graphed plots 
represent the average power-difference for the powers before and after applying 
SVD-DR on the 1000θ =  data sets for each of the five tests for a difference 
between two high-dimensional population-mean vectors. 

In each of the power-difference plots in Figure 4, we observed moderate to 
large increased test power for the random subspaces test proposed by Thulin [1] 
for all six parameter configurations. Specifically, Thulin’s [1] random subspaces 
test showed substantial maximal gains in power that ranged between 0.20 and 
0.70, depending on 2 1−µ µ  and on the type of population covariance struc-
ture. The tests given in Bai and Saranadasa [3] and Srivastava [4] yielded mod-
erate power gains in three of the six parameter configurations. However, the 
clustered-random-subspaces test by Zhang and Pan [13] produced little increase 
in power and some decreased power in five of the six parameter configurations. 
The most significant result from Figure 4 was that SVD-DR consistantly and 
substantially improved the power of the random subspaces test by Thulin [1], 
which was already the most powerful considered test on the unreduced data. In 
addition, we see that when 2 1−µ µ  is relatively large, the degree of power 
improvement is considerably lessened because the tests considered already have 
large power. 

5. A Contrast of Test Performance with and without  
SVD-DR for Bowel Disease Data 

Burczynski et al. [16] studied patients with two common inflammatory bowel  
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Figure 4. Power-difference plots of the five tests for mean differences conducted with post-SVD-DR 
for 200p = , 1 2 50n n= =  and 0.05α =  with non-diagonal covariance matrices. 

 
diseases that produce intestinal inflammation and cause tissue damage: Crohn’s 
disease and ulcerative colitis. For patients with inflammatory bowel disease, ap-
proximately 10% were diagnosed with diseases that were medically classified as 
indeterminate following a colonoscopy even though these two diseases are dis-
tinct. Burczynski et al. [16] analyzed transcriptional profiles in peripheral blood 
mononuclear cells for patients with either Crohn’s disease or ulcerative colitis by 
hybridization to microarrays of more than 22,000 genetic sequences. 

To illustrate that the proposed SVD-DR method can increase the test powers 
for identifying a difference between two high-dimensional population-mean vec-
tors, we applied each of the five tests to both SVD-reduced and full-dimensional 
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data. We used 1 10N =  randomly-selected patients with Crohn’s disease and 

2 10N =  randomly-selected patients with ulcerative colitis. We randomly chose 
2000p =  features to demonstrate the SVD-DR efficacy. In addition, we applied 

Hotelling’s T2 test to the post-SVD-DR data. 
We present the results of the five tests for two high-dimensional mean vectors 

with and without SVD-DR and Hotelling’s T2 with SVD-DR in Table 1. No dif-
ference between the two population mean-vector gene-expression levels of the 
patient groups was detected by any of the five high-dimensional tests when the 
tests were applied to the full-dimensional data. However, when SVD-DR was 
applied to the data prior to performing the five tests, a difference between the 
two high-dimensional mean vectors of patients with Crohn’s disease and ulcera-
tive colitis was observed for three of the five tests: Thulin [1], Zhang and Pan 
[13], and Srivastava [4]. On the other hand, the tests from Bai and Saranadasa 
[3] and Srivastava and Du [5] yielded a relatively small reduction in the test 
p-value and, therefore, failed to produce a statistically significant result. 

The increased power for the random subspaces test proposed by Thulin [1] 
was not surprising, given the power-curve and power-difference plots in Figure 
3 and Figure 4, respectively. However, the increased power for the test proposed 
by Srivastava [4] was surprising and seems to have occurred because the com-
mon sample covariance structure of the reduced data contained many relatively 
large off-diagonal elements. In addition, Hotelling’s T2 test, conducted with the 
post-SVD-DR data, detected a difference in the two high-dimensional mean 
vectors for patients with Crohn’s disease and patients with ulcerative colitis. 

6. The Computational Benefit of SVD-DR 

In conjunction with improvements in the power, an additional benefit of the 
SVD-DR application is a reduced computational intensity needed to conduct 
tests for a difference between two high-dimensional population-mean vectors. 
For the tests proposed in Bai and Saranadasa [3], Srivastava [4], and Srivastava 
and Du [5], computation of (1) is time-consuming. The random subspaces test 
by Thulin [1] and the clustered subspaces Zhang and Pan [13] are also computa-
tionally intense because of the increased number of data projections required for 
high-dimensional data. The application of the SVD-DR method before testing  

 
Table 1. Test results for bowel disease data with and without SVD-DR. 

Test Full dim. T-score Full dim. p-value SVD-DR T-score SVD-DR p-value 

Bai-Saranadasa 0.03 0.488 0.13 0.448 

Srivastava T+2 35.00 0.873 123.77 0.013 

Srivastava-Du 0.04 0.485 0.53 0.298 

Random Subspaces 24.66 0.310 97.30 0.000 

Cluster Subspaces 5136.26 0.076 22.76 0.044 

Hotelling’s T2 NA NA 5.57 0.008 
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for a difference between two high-dimensional population means using hierar-
chical cluster subspaces (Algorithm 2) drastically reduced the computational 
demand for this test. 

To demonstrate the computational efficacy of the SVD-DR method before 
performing a hypothesis test for the difference in two high-dimensional means, 
we summarized the computation times for the five tests on the real data intro-
duced in Section 5 with and without the application of SVD-DR to the data in 
Table 2. The computational times for the tests using SVD-DR include both the 
time to reduce the data dimension and the time to conduct the test itself. 

In Table 2, we observed decreased computation times for all five tests for de-
tecting a difference between two high-dimensional population mean-vectors. In 
particular, for the Zhang and Pan [13] test, we saw a drastic computational-time 
reduction from 13.8 hours to 3.04 seconds. 

7. Discussion 

We have contrasted the changes in powers for five previously-proposed tests for 
the difference of two high-dimensional population-mean vectors when using the 
SVD to reduce the dimensionality of the two sample-data sets and with the 
original high-dimensional data. From Figure 2, we observed that under the con-
figurations with diagonal covariance structures, the tests proposed by Bai and 
Saranadasa [3], Thulin [1], Srivastava and Du [5], and Zhang and Pan [13] all 
displayed moderately-increased power for relatively small values of 2 1−µ µ , 
when applied to post-SVD-DR data. The Moore-Penrose inverse test proposed 
by Srivastava [4] demonstrated a mixture of very slightly-increased power and 
decreased power when the test was performed on SVD-DR data. 

For non-diagonal covariance matrices, when SVD-DR was applied to the 
original data prior to conducting each of the five tests, the random-subspaces 
test displayed the largest power increase as shown in Figure 4. Also, the test 
proposed by Zhang and Pan [13] actually lost power for certain values of 

2 1−µ µ  for five of the six parameter configurations considered here. 
We also applied the five tests for a difference between two high-dimensional 

population means to actual data from Burczynski et al. [16], which consisted of 
genetic data from patients with two types of inflammatory bowel disease. After  

 
Table 2. Computational times in seconds for executing the five tests for two high-dimensional 
mean vectors on the bowel disease data with SVD-DR data and without first applying the 
SVD-DR method to reduce the data dimension. 

Test No SVD-DR With SVD-DR 

Bai-Saranadasa 5.93 3.27 

Srivastava T+2 6.20 0.17 

Srivastava-Du 28.70 0.18 

Random Subspaces 5.93 3.27 

Cluster Subspaces 49790.00 3.04 
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applying SVD-DR to a random subset of variables sampled from the original 
data, we found that Thulin’s random-subspaces test, Srivastava’s T+2 test, and 
Zhang and Pan’s cluster-subspaces test identified a difference in the two high- 
dimensional population-mean vectors of DNA for both patients with Crohn’s 
disease and patients with ulcerative colitis at the 5% significance level. However, 
the tests proposed by Bai and Saranadasa [3] and Srivastava and Du [5] did not 
find evidence of a difference between the two high-dimensional mean vectors 
when conducted with SVD-DR data. Finally, we demonstrated the computation-
al benefit of applying SVD-DR on a subset of the data from Burczynski et al. [16] 
prior to conducting the five tests. 
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