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Abstract 
In this paper, we investigate the elementary wave interactions of the 
Aw-Rascle model for the generalized Chaplygin gas. We construct the unique 
solution by the characteristic analysis method and obtain the stability of the 
corresponding Riemann solutions under such small perturbations on the ini-
tial values. We find that the elementary wave interactions have a much more 
simple structure for Temple class than general systems of conservation laws. 
It is important to study the elementary waves interactions of the traffic flow 
system for the generalized Chaplygin gas not only because of their signific-
ance in practical applications in the traffic flow system, but also because of 
their basic role for the general mathematical theory. 
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1. Introduction 

In the present paper, we study the Aw-Rascle (AR) macroscopic model of traffic 
flow  
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where 0ρ ≥  is the density, 0u ≥  is the velocity, P is the velocity offset 
which is called as the “pressure” inspired from gas dynamics. The derivation 
process of the above AR model and the application can be discovered in 
[1]-[7]. 

In [8], Aw and Rascle studied the limit behavior and found that the pressure 
term is active. In [9], Shen and Sun investigated the limit behavior without the 
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constraint of the maximal density. 
In [10] [11], M. N. Sun studied the following model  
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In [10] [11], they studied the elementary wave interactions and obtained the 
stability of the Riemann solutions under such a perturbation on the initial 
data. 

In [12], G. D. Wang investigated the Riemann problem of (1) and  

,Bp αρ
= −                            (3) 

where 0 1α< ≤ , 0B > . This is the so-called generalized Chaplygin gas for 
(1). 

In the present paper, we investigate the elementary wave interactions for (1) 
and (3). In our paper [13], we study the wave interactions containing no delta 
shock, so we just consider the wave interactions for (1) containing delta shock 
wave with the three piecewise constants  
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where the perturbation parameter ε  is sufficiently small. (4) can be regarded as 
a local perturbation on the initial values  

( )( ) ( ), ,0 , ,    0,u x u xρ ρ± ±= ± >                  (5) 

where , 0u ρ± ± > . 
This paper is arranged as follows. In Section 2, we give curtly the Riemann 

problem for the model (1) (3) and (5) for the convenience of the readers. In Section 
3, we investigate the elementary wave interactions by the characteristic analysis 
method. In Section 4, we summarize our main conclusion. 

2. Preliminaries 

We give briefly the Riemann problem for (1) (3) and (5) [12]. 

The characteristic roots of (1) are 1
Bu α

αµ
ρ

= − , 2 uµ =  which shows that (1) 

is strictly hyperbolic. The corresponding right characteristic vector of 1µ  and 

2µ  is respectively given by  
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If 0 1γ< < , we get  
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which indicates that 1µ  is genuinely nonlinear and the associated wave is 
either shock wave or rarefaction wave, 2µ  is always linearly degenerate and the 
associated wave is the contact discontinuity, where ∇  denotes the gradient. 

We construct the self-similar solution ( )( ) ( )( ), , ,u x t uρ ρ ζ= , x
t

ζ = . The 

Riemann problem (1) (5) becomes the following boundary value problem of the 
ordinary differential equations  

( )

2
1 1

0,

0,

u

B uBu u

ζ ζ

α α
ζ ζ

ζρ ρ

ζ ρ ρ
ρ ρ− −

− + =

    
− − + − =   

   

               (8) 

and ( )( ) ( ), ,u uρ ρ± ±±∞ = . For smooth solutions, let ( )T,V u ρ= , (8) becomes  

( ) 0,A V Vζ =                           (9) 

where  
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Besides the constant state solution ( ), constantu ρ = , (9) has a rarefaction 
wave solution. For the given left state ( ),u ρ− − , the rarefaction wave curve is 
given by  
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For a bounded discontinuity at ζ τ= , it holds the Rankine-Hugoniot 
conditions  
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where [ ] r lρ ρ ρ= − , ( )0lρ ρ τ= − , ( )0rρ ρ τ= + , etc. 
For the given left state ( ),u ρ− − , the shock wave is given by  
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Since 2λ  is linearly degenerate, from (9) or (11) we know the contact 
discontinuity  

: .J u uζ −= =                          (13) 
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All the above rarefaction waves R, shock waves S, and contact discontinuities J 
are the elementary waves for (1). Notice the shock curves coincide with the 
rarefaction curves in the phase plane ( ),u ρ  [14]. It is very important because it 
can simplify the process of the elementary wave interactions. 

According to the right state ( ),u ρ+ +  in the different region (Figure 1), we 

obtain the unique Riemann solution. When ( ), Iu ρ+ + ∈  or II, the unique Riemann 

solution is R J+ , when ( ), IIIu ρ+ + ∈  or IV, the unique Riemann solution is 

S J+ , when ( ), Vu ρ+ + ∈ , i.e., Bu u uαρ+ − −
−

< − < , we should construct the delta 

shock wave solution as follows. 
Consider a piecewise smooth solution of (1) with the form  
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where  
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δ -measure solutions ( ),u ρ  of (1) (3) and (5) is given  

( ) [ ] ( ) ( ) [ ] ( ) ( ), ,    , ,Lu x t u u H x t x t H x t tσ ρ ρ ρ σ β δ− −= + − = + − +   (16) 

here ( ){ }, : 0L t t tσ= ≤ < +∞ , ( )H x  is the Heaviside function. 
The measure solution (14) and (15) satisfies the generalized Rankine-Hugoniot 

condition  
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where [ ] ( )( ) ( )( )0 0u u x t u x t= + − −  is the jump of u across the discontinuity 
( )x x t= , etc. 

 

 
Figure 1. Wave curves in (u, ρ). 
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The δ -entropy condition is  

( ) ( ) ( ) ( )1 2 1 1, , , , ,u u u u uδλ ρ λ ρ λ ρ λ ρ+ + + + − − − −≤ ≤ ≤ ≤        (18) 

which is  

.B Bu u u u uδα α

α α
ρ ρ+ + − −
+ −

− ≤ ≤ ≤ − ≤                (19) 

We know that all the characteristics on both sides of the δ -shock wave curve 
are incoming. 

In order to consider the interaction of elementary waves containing delta shock 
wave, we briefly recall the concept of left- and right-hand side delta functions as 
follows. 

Let 2R+  be divided into two disjoint open sets 1Ω  and 2Ω  with a 
piecewise smooth boundary curve L, which satisfies 1 2Ω Ω =∅  and  

2
1 2 R+Ω Ω = . Let ( )iΩ  and ( )iΩ  be the space of bounded and 

continuous real-valued functions equipped with the L∞ -norm and the space of 
measures on ( )1, 2i iΩ = , respectively. Let us assume that  

( ) ( )( )1 2,L = Ω Ω    and ( ) ( )( )1 2,L = Ω Ω   , then the product of 
( )1 2, LG G G= ∈  and ( )1 2, LD D D= ∈  is defined as an element  
( )1 1 2 2, LGD G D G D= ∈ , where ( )1,2i iG D i =  can be defined as the usual 

product of a continuous function and a measure. Thus, it is obvious that the 
above-defined product makes sense. 

We view the measure on iΩ  as a measure on 2R+  with support in 
( )1,2i iΩ = . Then the mapping ( )2: Lm M M R+→  can be obtained by taking 
( ) 1 2m D D D= + . In a similar way, we have ( ) 1 1 2 2m GD G D G D= + . The solution 

concept used in our paper when we consider the delta shock can be described 
as follows: carry out the multiplication and composition in the space LM  and 
take the mapping ( )2: Lm M M R+→  before differentiation in the space of 
distributions. 

Based on the above analysis, we have the following conclusion. 
Theorem 2.1 The Riemann solution of the initial value problem (1) (3) and (5) 

is unique.  

3. Interactions of Elementary Waves Containing Delta Shock  
Wave 

Now we study the elementary wave interactions for (1) (3) with (4). (4) is 
regarded as the perturbation on the Riemann initial values (5). In order to 
cover all the cases containing delta shock completely, we have three possibilities 
according to the different combinations from ( ),0ε−  and ( ),0ε  as follows: 

Sδ  and Sδ , S J+  and Sδ , R J+  and Sδ . 
Case 1: 1Sδ  and 2Sδ . 
We consider the interaction of a delta shock wave 1Sδ  emanating from 

( ),0ε−  and a delta shock wave 2Sδ  emanating from ( ),0ε . When t is small 
enough, the solution of the initial value problem (1) (3) and (4) is expressed as 
(Figure 2).  
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Figure 2. Interaction of δS1 and δS2. 
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where 
1δ

τ  and 
2δ

τ  are respectively the propagating speed of 1Sδ  and 2Sδ , 
( )1 tβ  and ( )2 tβ  are respectively the strength of 1Sδ  and 2Sδ . 
It easy to see that 

1 2δ δτ τ>  which shows that 1Sδ  will overtake 2Sδ  at a 
point ( )1 1,x t  which is determined by  

1

1

1 1

1 1

,

,

x t

x t
δ

δ

ε τ

ε τ

+ =
 − =

                        (20) 

which yields  

( )
( )1 2

1 2 1 2

1 1
2, , .

u u
x t

u u u u
δ δ

δ δ δ δ

ε ε +
 =
 − −
 

               (21) 

At the intersection point ( )1 1,x t , a new initial data is formed as follows  
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where ( ) ( ) ( )1 1 1 1 1t t tβ β β= +  is the sum of the strengths of the incoming delta 
shock wave 1Sδ  and 2Sδ . A new delta shock wave will generate after interaction 
and we denote it by 3Sδ , which is given by  

( ) ( )
( ) ( ) ( ) ( )

, ,

, ,

u x t u u u H

x t H t D t Dρ ρ ρ ρ β β
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        (23) 

where H is the Heaviside function and ( ) ( ) ( )t t D t Dβ β β− +
− += +  is a split 

delta function. All of them are supported by the line ( )
31 1x x t t δτ= + − , 

3δ
τ  is 

the propagating speed of 3Sδ . Although they are supported by the same line, 

D−  is the delta measure on the set ( ) ( ){ }3

2
1 1, |R x t x x t t δτ+ ≤ + −  and D+  is 

the delta measure on the set ( ) ( ){ }3

2
1 1, |R x t x x t t δτ+ ≥ + −  respectively. 

From (23), we obtain  
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( ) ( ) ( ) ( )( ) .xu u u u t u tρ ρ ρ δ β β δ+ + − − − − + + ′= − + +             (25) 

Substituting (24) and (25) into the first equation of (1), we obtain  
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Case 2: S J+  and Sδ . 
In this case, a shock wave followed by a contact discontinuity emits from 

( ),0ε−  and a delta shock wave emits from ( ),0ε  (Figure 3). The propagating 
speed of the contact discontinuity is 1 *mu uτ = = , and the propagating speed of 
the delta shock wave satisfies the δ -entropy condition  

1 m m
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− < < < − < . It easy to see that J will overtake 1Sδ  at 

( )1 1,x t  which given by  

1

1 1

1 1

,
.

mx u t
x tδ

ε
ε τ

+ =
 − =

                         (26) 

From (26), we get  
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The delta shock wave 1Sδ  will pass through J with the same speed as before 
but the strength changes due to the difference between *ρ  and mρ . We still 
denote it with 1Sδ  after the time 1t , and  
( ) ( ) ( )

11 m m mt u uδβ ρ ρ τ ρ ρ+ + += − − − . 
From the δ -entropy condition  
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Figure 3. Interaction of S + J and δS. 
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The new initial data will be formulated at ( )2 2,x t  as follows  
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*
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A new delta shock wave will be generated after the interaction of S and 1Sδ , 
denoted by 2Sδ  here. It satisfies that  
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As 2t t> , the delta shock wave 2Sδ  will propagate with the invariant speed 

2δ
τ  which is given by (15) with ( ),u ρ+ +  and ( ),u ρ− −  as its right and left 

state. Furthermore, from the condition m
Bu u u uαρ− − −
−

< − < <  we know the δ

-entropy condition for the new delta shock wave 
2δ

τ  holds which shows 
2δ

τ  

is an overcompresive wave. 
Case 3: R J+  and Sδ . 
When t is small enough, the solution of the initial value problem (1) (3) and (5) 

can be described by (Figure 4)  
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Similar with the above case, the contact discontinuity J will overtake the delta 
shock wave 1Sδ  at the point ( )1 1,x t  given by (27). The delta shock wave 1Sδ  
will pass through J with the same speed as before but the strength changes due to 
the difference between *ρ  and mρ . We still denote it with 1Sδ  after the time  
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. The strength of 1Sδ  at ( )2 2,x t  

can be calculated by ( ) ( ) ( )( )12 * * * 2t u u tδβ ρ ρ τ ρ ρ+ + += − − − . At the same time, 

a new delta shock wave 2Sδ  with varying speed is generated. Here we use 

( ) 2: , x x t t tΓ = ≥  to express the curve of 2Sδ  and it is given in the following 
form  

( )
( )

( )

*
*

1 ,      ,
1 1,

,                                                   ,

x Bu x x t
tu x t

u x x t

α

ε α
α α ρ

+

  −
+ − + <  − −=   

 >

       (33) 

( ) ( )( ) ( )

( )

( ) ( )

1
1

*
*

1 ,   ,,

                                                    ,

,

x BB u x x tx t t

x x t

t D t D

α
α

α

εαρ ρ

ρ

β β

−

+

− +
− Γ + Γ

 
 −  − − + < =    

>  

+ +

      (34) 
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Figure 4. Interaction of R + J and δS1. 

 
where ( ) ( ) ( )t D t D t Dβ β β− +

Γ − Γ + Γ= +  is a split delta function on the new delta 
shock, and ( ) ( ) ( )t t tβ β β− += +  is the strength of the new delta shock at the 
time t. 

When u u+ −> , the delta shock wave cannot penetrate the rarefaction wave; 
when u u+ −≤ , the delta shock wave can penetrate the rarefaction wave completely. 

4. Conclusions 

Now we construct the unique solution of the elementary wave interactions and 
get the following main conclusion. Using the characteristic analysis method, i.e., 
by analyzing the elementary wave curves in the phrase plane, we get the unique 
solution of the initial problem (1) with the state equation (3) and the initial 
values (4). We observe that the elementary wave interactions have a much simpler 
structure for Temple class than general systems of conservation laws since the 
wave interaction of the same family does not generate wave of other families for 
Temple systems. It is important to study the elementary waves interactions for (1) 
not only because of their significance in practical applications in the traffic flow 
system for the generalized Chaplygin gas, but also because of their basic role as 
building blocks for the general mathematical theory of the traffic flow system. 

Theorem 4.1 The Riemann solutions of the initial value problem (1) (3) with 
the initial data (4) are constructed which are stable under such small perturbation 
on the initial data.  
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