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Abstract 
A path-integral representation of central spin system immersed in an antifer-
romagnetic environment was investigated. To carry out this study, we made 
use of the discrete-time propagator method associated with a basic set in-
volving coherent states of Grassmann variables which made it possible to ob-
tain the analytical propagator which is the centerpiece of the study. In this 
study, we considered that the environment was in the low-temperature and 
low-excitation limit and was split into 2 subnets that do not interact with each 
other. The evaluation of our system was made by considering the first neigh-
bor approximation. From the formalism of the path integrals, it is easy to 
evaluate the partition function and thermodynamic properties followed from 
an appropriate tracing over Grassmann variables in the imaginary time do-
main. We show that the energy of the system depends on the number of sites 
n when 0β → . 
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1. Introduction 

Since its appearance in the years 1942, the integral of path has become an ap-
proach widely used in various fields of physics [1]. From this approach, it is 
possible to assess several parameters, in this case the mechano-quantum propa-
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gator which has gained enormous popularity in recent years [2] [3]. This ap-
proach is particularly suitable for the semi-classical evaluation of the transition 
amplitudes in quantum mechanics and the thermodynamic properties of a sys-
tem [4]. Numerous attempts have been made to extend the path integrals ap-
proach to the operator space with the aim of extracting the information useful 
during the development of field operators [5], we still notice limits associated to 
systems with Fremi degrees of freedom formulated in terms of anticommuniting 
fields. In addition to the formalism of the path integrals based on the Lagrangian 
and the Hamiltonian, Klauder [6], Kuratsuji and Suzuki [7] simultaneously de-
veloped the formalism of the integral of the coherent state path, which has proved 
particularly suitable to the description of Bose quantum dynamics [8] and spin 
systems [6] [9]. Recently, studies of the time-dependent electronic nuclear dy-
namics of molecular collision processes have made it possible to study the qua-
si-classical properties of coherent states in rotation [10]. To overcome this prob-
lem, a method based on the representation of discretized coherent states during 
the study of the dynamics of quantum systems has been developed [11]. 

Recently, it has been proven that there are fundamental difficulties when us-
ing continuous time in the formalism of path integrals of coherent spin states 
[12]. This difficulty arises when studying a single spin system or when conduct-
ing studies in which one takes account of the fluctuations around the “classical 
path”. Such difficulty is also observed when it comes to the coherent state path 
integral. An explicit analysis of the origin of its difficulties sufficiently shows that 
the use of an appropriate discrete time formalism can prove to be effective. Al-
though the coherent state path integral is formally considered as an alternative 
to the conventional integral phase-space path, the former has a crucial advantage 
since it can be extended to a wider class of physical systems using “generalized 
coherent states” [6] [8] [9] [13]. The spin system is one of its fascinating and vi-
tal systems whose dynamics are perfectly described using path integrals in the 

( )2SU  (or spin) coherent state representation [14]. 
In general, the partitioning of Hilbert space into several coherent states makes 

it possible to introduce invariant functions for several groups, in this case the 
group ( )2SU , the study of which made it possible to determine its orbital spaces 
in representations 1 2j =  and 1j =  [15]. Integrals with respect to anticom-
muting variables have been used to rewrite partition and correlation functions in 
Ishing models in 2D and 3D as theories of fermionic fields [16]. For Ising 2D 
model, the partition function was discussed and the Grassmann representative was 
obtained using the transfer matrix method [17]. Pablo G. and Horacio Grinberg 
used the Short-time propagator algorithms and a discrete time formalism combine 
with Grassmann variables coherent states to get a many-body analytic propagator 
to study interacting spin systems and for 1D Ising and XY spin models respective-
ly. There are several spin models to describe the environment in quantum me-
chanics, which opens up a large field of research that requires investigation. 

This article aims to construct a functional integral representation for a central 
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spin system immersed in an antiferromagnetic environment under the applica-
tion of an external global magnetic field that involves non-orthogonal Grass-
mann coherent states integration variables. We will use Grassmann algebra to 
construct coherent states. The construction of the variables associated with this 
algebra will be used to evaluate the path integral representation of a transition 
amplitude and thereby the partition function. The choice of this system does not 
happen by chance. It has been proven that in some cases, central spin coupled 
with a spin environment (lattice nuclear spins, Ising spin bath, the device sub-
strates doped with spin impurities) may be more appropriate to represent the 
actual localized background spins or magnetic defects than the delocalized oscil-
lator bath that is usually used. Such a system was used by Xio-Zhong Yuan et al. 
with the aim of showing how the external magnetic field affect the decoherence 
of a central spin bathing in an antiferromagnetic environment [18]. 

This paper is organized as follows: in Section 2, we presented the Hamiltonian 
model and the spin wave approximation was applied to map the spin operators 
of the antiferromagnetic environment. Section 3, introduces the propagator in a 
basis of Grassmann generators of a spin Hamiltonian involving nearest neighbor 
correlations and assuming a uniform external magnetic field applied in the z-direc- 
tion. In Section 4, it was shown that the discrete-time formalism and short time 
algorithms provide a generating function for the given Hamiltonian from which 
an appropriate tracing in the imaginary time domain leads to the partition func-
tion for our models. In Section 5, we evaluated the thermodynamic parameters 
associated with our system. We concluded in Section 6, with the discussion of 
result. 

2. Hamiltonian Model 

We consider a central system having a spin 1/2 which is coupled to an antifer-
romagnetic environment consisting of 2N atoms each having a spin S. A global 
magnetic field is applied to both the central spin and the antiferromagnetic en-
vironment. The Hamiltonian that governs the dynamics of the system reads: 

( ) ,S SB BH t H H H= + +                      (1) 

where SH , BH  respectively represent the Hamiltonians of the central spin and 
the environment respectively, and SBH  is the interaction Hamiltonian [19] [20]. 
The Hamiltonian central can be written: 

0 ,z
S BH g BSµ= −                         (2) 

where g is the gyro magnetic Lande factor, Bµ  is the Bohr magneton and B is a 
uniform external magnetic field applied in the z-direction. The Hamiltonian of 
the environments is defined by 

( ) ( ), ,

, , , ,
, ,

,

z z
B B A a i B A b j

i j

a i b i b j a j
i j

H g B B S g B B S

J S S J S S

µ µ

+ + +

= − + − −

+ +

∑ ∑

∑ ∑δ δ δ
δ δ

          (3) 
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We assumed in this study that the spin structure of the environment may be 
divided into two interpenetrating sublattices (contains N atoms) a and b with the 
property that all nearest neighbors of an atom on a lie on b, and conversely [19]. 
At each atom of each sublattices a and b we associate spin operators ( )( ), ,a i a iS S  
where the indices i and j label the N atoms, whereas the vectors δ  connect atom 
i or j with its nearest neighbors. J being the exchange interaction and was posi-
tive for our environment AB  is the anisotropy field and assume to be positive, 
which approximates the effect of the crystal anisotropy energy, with the property 
of tending for positive magnetic moment Bµ  to align the spins on sublattice a 
in the positive z-direction and the spins on sublattice b in the negative z direc-
tion [18]. The effects of the next nearest-neighbor interactions in our environ-
ment antiferromagnetic are neglected, although they may be important in some 
real antiferromagnets. 

( )0 0
, , ,

z
z z

SB a i b i
i

J S
H S S

N
= − +∑                    (4) 

In this work, the Hamiltonian of interaction was of type Ising with 0J  being 
the coupling constant. The design of the Hamiltonian coupling between our two 
subsystem has been widely discussed by Rossini and al [21]. In order to diago-
nalize the Hamiltonian (1), we supposed the environment was in the low-tempe- 
rature and low-excitation limit which allowed us to approximate the Holstein- 
Primakov transformations in the following form , 2a i iS Sa+ ≥  and  

†
, 2b j jS b S− ≥ . This could be justified as in this limit, the number of excitation 

was small, and the thermal average †
i ia a  and †

i ib b  was expected to be of 
the order ( )1O N  and can be safely neglected with respected to 2S when N is 
very large [18]. The low excitations correspond to low temperatures, where  

NT T�  is the Nel temperature [22]. Neglecting all the terms containing prod-
ucts of four operators, the Hamiltonians BH  and SBH  can then be written in 
the spin-wave approximation as [21] [23] 

( )† †0 0
z

SB i i i i
i

J S
H b b a a

N
= − −∑                    (5) 

( )† † † †
0

,
2B i i i i i i i i

i i i
H E b b a a MSJ a b a bω ω− + + += + + + +∑ ∑ ∑ δ δ

δ

       (6) 

where 

( )( )2 B AMSJ g B Bω µ± = − ±
 

where M is the number of nearest neighbors of an atom and  

0 2 2 B AE NMSJ NSg Bµ= − − . 

3. Notation and Propagator of a Spin System in Terms of 
Grassmann Coherent States 

The generalized coherent states path integrals over the years has positioned itself 
as an excellent tool for studying quantum problems in many-body or in which 
we are dealing with a spin system [6] [7] [8]. In this work, we proposed to de-
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velop a functional integral from the propagator associated to a given spin 1/2 
Hamiltonian H in terms of a complete set of states 1 1, ,n nξ ζ ξ ξ ζ ζ= � �  
where 1nξ ξ�  and 1nζ ζ�  are Grassmann variables. To achieve this goal, we 
will use the method which consists in partitioning the time interval [ ],t t′  into 
N intervals by points rτ  with 0 , Nt tτ τ′≡ ≡  and ( )1r rrτ τ τ+∆ ≡ − . Using the 
partitioning technique the feynman, the propagator that joins two Grassmann 
coherent states ,ξ ζ  and ,ξ ζ  takes the form of an infinite product of short- 
time propagators. 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 2 2

max 0 0 1

, exp d ,

lim , 1 d , d ,
r

t

t

N N
r r r r n n

r r
r r

iT H

i H
τ

ξ ζ τ τ ξ ζ

ξ ζ τ τ ξ ζ µ ξ ξ µ ζ ζ

′

− −
+ +

∆ → = =

 ′ ′ − 
 
 = − ∆  

∫

∏ ∏∫

�

�

 

(7) 

where, the rule of discarding ( )2ϑ τ∆  terms has been employed.  
( ) ( )0,Nξ ξ ξ ξ ′= =  and ( ) ( )0,Nζ ζ ζ ζ ′= = , here T is the Dyson time-ordering 

operator, and the integration measure is given by: 

( ) ( ) ( )( )2 2
1 1 1 1

1
d , d , 1 1 d d d d

n
n n n n n n

n j n j n j n j
j

µ ξ ξ µ ζ ζ ξ ξ ζ ζ ξ ξ ζ ζ+ − + − + − + −
=

= − −∏  (8) 

with 

1 2 1 2d d d d and d d d dn n
n n= =� �                    (9) 

where, ξ=  or ζ . We therefore considered a system for which the particles 
can go to n-channels. The system being made up of two subsystems, we assumed 
that the vacuum state 0  is the product of the vacuum states of the respective 
subsystems a and b that we defined by 0a  and 0b . In this way, the state of 
the subsystems is defined as follows: 

( )† †

1
exp 0 exp 0

n

a j j a
j

a aξ ξ ξ
=

 
= =  

 
∑              (10) 

and 

( )† †

1
exp 0 exp 0

n

b j j b
j

b bζ ζ ζ
=

 
= =  

 
∑              (11) 

Assuming that the different states of each subsystem that makes up the global 
system are independent of each other, then the final state of the system can take 
the form ,ξ ζ ξ ζ= . The final state of the all the system can be represent 
on this form: 

( ) ( )† † †

1
, exp 0 exp 0

n

b j j j j
j

b a bξ ζ ζ ξ ζ
=

 
= = + 

 
∑          (12) 

where, 0 0 0a b=  avec 0a  and 0b  which respectively represent the fer- 
mion vacuum state for the sublattice a and b. For each degree of freedom, that 
the state for this 2n-site system can be represented by: 
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( ) ( )† †
1 1 1 1 1 1

1

0

, 0

0

n

n n n j n j n j n j
j

n

m m
m

a b

A B

ξ ξ ζ ζ δ ξ δ ζ+ − + − + − + −
=

=

= − −

=

∏

∑

� �
     (13) 

where, 0 0 1A B= =  and which can be generalized as follows: 

1
1 1

†
1

1 1
m

m m

mn

m m i
i

A a α α
α α α

ξ
−

+ −
> > > = =

 =  
 

∑ ∏ �
�

               (14) 

and 

1
1 1

†
1

1 1
m

m m

mn

m m i
i

B b β β
β β β

ξ
−

+ −
> > > = =

 =  
 

∑ ∏ �
�

               (15) 

with ( )1m ≥ . In the expressions [14] and [15], the notations jlkξ  and jlkζ  stands 
respectively for the products j l kξ ξ ξ  and j l kζ ζ ζ . We see that the state of each 
sublattice 1nξ ξ�  and 1nζ ζ�  contains all possible independent  
0,1,2, , n�  fermion states. Each of its states being associated with either mA  
and mB  or they are included only once and that any permutation of their oper-
ators is capable of generating dependent states [17]. The totality of these 2n-site 
states forms a complete set in the sense [12] 

�

�
( ) ( )

2

2 2
1 1 1 1

2

, , d , d , 1
n

n n
n n n n

n

ξ ξ ζ ζ ξ ξ ζ ζ µ ξ ξ µ ζ ζ =∫ ∫ ∫ ∫� � � � � �   (16) 

where, its evaluation used the standard properties of integration of Grassmann 
variables namely: 

( )
1
0

d 1
0
11

j j

j
j j j j

j

   
   
   − =   
       

∫

 


   


                 (17) 

Consider two coherent Grassmann states, by definition they are not ortho-
gonal and therefore overlap is given by: 

( )( )

† †

0

1

, , 0 0 0 0

1 1

n

a m m a b m m b
m

n

k k k k
k

A A B Bξ ζ ξ ζ

ξ ξ ζ ζ

=

=

′ ′ ′ ′=

′ ′= + +

∑

∏
           (18) 

with the fact that the matrix elements between states in the Fock space and co-
herent states contain Grassmann numbers, by imposing anti-periodic boundary 
conditions, it follows that the trace is worth. 

( ) ( )
2

2 2 2

2

d , d , , , 2
n

n n n

n

µ ξ ξ µ ζ ζ ξ ζ ξ ζ′ ′− − =∫ ∫ ∫ ∫
�����

�����
� �         (19) 

As expected, Equation (19) clearly represents the dimension of the Grassmann 
space with 2n generators, which corresponds to the number of all possible mix-
tures of up and down spins. By defining the matrix elements of rank m m×  is: 
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1

1 21, if
or , 1, ,

0, otherwisem

m
i i it i mθ θ

θ θ θ
θ α β

> > >
= = =


�

�
�       (20) 

this allows the elimination of restrictions in the sums of the Equation (18) which 
makes it possible to give the overlap of the two states the following form: 

( ) ( ) ( ) ( )
1 11 1 1 1

1 1

0 1;1
1;1

, , 1
m mm m m m

j
j

n n
r r r r

m j m
j m

t tα α β βα α α α β β β β
α
β

ξ ζ ξ ζ ξ ξ ζ ζ+ +

= = ≤ ≤
= ≤ ≤

′ ′ = + ∑ ∑ � �� � � �    (21) 

4. Fermionic Path Integral for a the Spin Hamiltonian 

In this section, we planned to study the spin system in interaction with the envi-
ronment via the path integral by using these Grassmann variables as a basis set. 
In quantum mechanics, all the information for the evalution of a system can be 
stored in the propagator between an initial state ,ξ ζ  and a final state ,ξ ζ  
at a time f it t t= − . This propagator as a function of the Grassamann variables 
can be written: 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 2 2

max 0 0 1

, exp ,

lim , 1 d , d ,
r

N N
r r r r n n

r r

i
H

i H

τ

τ

ξ ζ ξ ζ

τξ ζ ξ ζ µ ξ ξ µ ζ ζ
− −

+ +

∆ → = =

∆ ′ ′ − 
 

 ∆  = −     
∏ ∏∫ ∫

�

�
�

 (22) 
( )rξ  and ( )rζ  in the equation (22), stands for the state ( ) ( )( )1r

n nξ ξ�  and  
( ) ( )( )1r
n nξ ξ� . To simplify the notation, we have assumed  

( ) rt t t N Nτ τ′∆ = − ≡ ∆ = ∆  where the superscript r designates the Grassmann 
complex variables. For convenience, rewriting our Hamilton (3) in the form: 

( ) ( ) ( )0 1 2H H H H= + +                     (23) 

where ( )0H  and ( )1H  have the follow form: 

( )0
0 0 ,z

BH g BS Eµ= − +                     (24) 

and 
( )1 † †

1 2 ,i i i i
i i

H a a b bω ω= +∑ ∑                   (25) 

with 

( ) 0
1,2 2 2 ,

z

B A
gS

MSJ g B B
N

ω µ= − ± ±
 

1 2 4 2 BMSJ g Bω ω ω µ= + = −  

and 
( ) ( )2 † †

,
2 i i i i

i
H MSJ a b a b+ += +∑ δ δ

δ
                 (26) 

We easily find that each short-time propagator involved in Equation (22) can 
be expressed as 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 1

1 1 0 , 1 1 , 1 2 , 1

0

, 1 ,

, ,

r r r r

n
r r r r r r r r r r

mm mm mm
m

i t H

i t H H H

ξ ζ ξ ζ

ξ ζ ξ ζ

+ +

+ + + + +

=

∆
−

∆
= − + +∑

�

�

    (27) 

For its evaluation, it is now a question of calculating the following matrix ele-
ments: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 , 1

0 0
, , 0 0

n n
r r r r r r r r r r

m m m m mm
m m

H B A H A B H γγ γξ ζ ξ ζ+ + + + +

= =

= =∑ ∑† †  (28) 

with 0,1,2γ = . ( )r
mA  and ( )r

mB  are given by Equations (14) and (15), corres-
ponds to the rth point of the time partition. Knowing that 0 0 1A B= = , the cal-
culation of the zero-th order matrix elements ( )0 , 1r r

mmH +  give 
( )0 , 1 0

00 ,r rH H+ =  
( ) ( ) ( ) ( ) ( )0 , 1 1 10

11
1

,
n

r r r r r r
j j j j

j
H H ξ ξ ζ ζ+ + +

=

= ∑
 

( ) ( ) ( ) ( ) ( )0 , 1 1 10
22

1
,

n
r r r r r r

jl lj jl lj
l j

H H ξ ξ ζ ζ+ + +

> =

= ∑
 

( ) ( ) ( ) ( ) ( )0 , 1 1 10
33

1

n
r r r r r r

jlk klj jlk klj
k l j

H H ξ ξ ζ ζ+ + +

> > =

= ∑
 

By recurrence, we get the general form of order m, 

( ) ( ) ( ) ( ) ( ) ( )
1 11 1 1 1

1 10 , 1 0

1;1
1;1

1
m mm m m m

j
j

n
r r r rr r

mm
j m
j m

H H t t mα α β βα α α α β β β β
α
β

ξ ξ ζ ζ+ ++

= ≤ ≤
= ≤ ≤

= ≥∑ � �� � � �   (29) 

Analogously, the first-order matrix elements ( )1 , 1 0r r
mmH + =  gave us: 

( ) ( ) ( ) ( ) ( ) ( )
1 11 1 1 1

1 11 , 1
...

1;1
1;1

1
m mm m m m

j
j

n
r r r rr r

mm
j m
j m

H m t t mα α β βα α α α β β β β
α
β

ω ξ ξ ζ ζ+ ++

= ≤ ≤
= ≤ ≤

= ≥∑ � �� � �    (30) 

where, ( )1 , 1
00 0r rH + =  for 0k < . Taking into account that  

† †0 0 0 0 0i i i ia b a b+ += =δ δ  then the thrid-order matrix elements ( )2 , 1 0r r
mmH + = . 

Thus, it follows from Equations ((29), (30)) that the sum of the diagonal matrix 
elements of the Hamiltonian (23) can be expressed as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )1 11 1 1 1

1 1

1 1 0

0 1;1
1;1

, 1 ,

1 1
m mm m m m

j
j

r r r r

n n
r r r r

m j m
j m

i t H

i tt t H mα α β βα α α α β β β β
α
β

ξ ζ ξ ζ

ξ ξ ζ ζ ω

+ +

+ +

= = ≤ ≤
= ≤ ≤

∆
−

∆ = + − + 
 

∑ ∑ � �� � � �

�

�

 (31) 

The evaluation of ( ) ( )( )2 2
1 ,I ξ ζ ξ ζ′ ′  which represents the propagator between 

the states ( )2,′   allows to evaluate the proponent of our system which is given 
in Equation (24). 

( ) ( )( ) �
�

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
2 2 1 1

1

2

1 1 2 2 2 2

, , 1 ,

, 1 , d , d ,

n
' '

n

n n

i tI H

i t H

ξ ζ ξ ζ ξ ζ ξ ζ

ξ ζ ξ ζ µ ξ ξ µ ζ ζ

∆′ ′ = −

∆
× −

∫ ∫ ∫ ∫� �
�

�

 (32) 
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Using integration properties of Grassmann variables (17) you have: 

( ) ( ) ( )1 1 1 11 1

2
2 2 0

0 1;1
1;1

, 1 ,

1 1
m m m mm m

j
j

n n

m j m
j m

i t H

i tt t H mα α α α α α β βα α β β
α
β

ξ ζ ξ ζ

ξ ζ ξ ζ ω
= = ≤ ≤

= ≤ ≤

∆′ ′ −

∆ ′ ′= + − + 
 

∑ ∑ � � � �� �

�

�

 (33) 

By carrying out N − 1 integrations of this type and by making repeated use of 
the completeness relation (16), the propagator (22) can easily be expressed in the 
following manner: 

1 1 1 1 1 1

0
...0 0 1;1

1;1

, 1 ,

lim 1 1 ( )
m m m m m m

j
j

Nn n

t m j m
j m

i t H

i tt t H mα α β β α α α α α α β β
α
β

ξ ζ ξ ζ

ξ ζ ξ ζ ω
∆ → = = ≤ ≤

= ≤ ≤

∆′ ′ −

 
∆  ′ ′= + − +    

 

∑ ∑ � � � � �

�

�

 (34) 

Thus, in the limit N →∞  and t Nτ∆ = ∆  we get 

( )1 1 1 1 1 1

0

0 1;1
1;1

, 1 ,

1 exp 1
m m m m m m

j
j

n n

m j m
j m

i t H

i tt t H mα α β β α α α α α α β β
α
β

ξ ζ ξ ζ

ξ ζ ξ ζ ω
= = ≤ ≤

= ≤ ≤

∆′ ′ −

∆ ′ ′= + − + 
 

∑ ∑ � � � � � �

�

�

 (35) 

The expression (35) represents the propagator of our Hamiltonian from the 
path integrals assuming discrete time. Insofar as we consider N, time can be as-
sumed to be continuous. This consideration should not sow confusion with the 
formalism which takes into account continuous time [12]. 

5. Thermadynamic Parameter 

In order to express the imaginary time partition function, involving the antipe-
riodic boundary condition ( ) ( ) ( ) ( )0 N

k k k k′− ≡ − = ≡     ( )1,2, ,k n= �  perfor- 
ming an analytic continuation to Euclidean times through the Wick rotation,  

iτ τ∆ → − ∆ , and, the subsequent substitution ( )1 kTτ β∆ → ≡� , the trace for- 
mula therefore makes it possible to define the partition function in the following 
manner: 

( )

�

�
( ) ( )

2

2 2

2

exp

, , d , d , ,

r

n

n n

n

Z T H

H

β

ξ ζ β ξ ζ µ ξ ξ µ ζ ζ

= −

= − − −∫ ∫ ∫ ∫� �
      (36) 

By entering (14) and (15) and using Equation (17) the evaluation of the 4n- 
dimensional integrals of the Equation (36) gives us: 

�

�
( ) ( )1 1 1 1 1 1

2

2 2

1;1
2 1;1

2

d , d ,

,

m m m m m m
j
j

n
n

n n

j m
n j m

t t

n
m

α α β β α α β β α α β β
α
β

ξ ζ ξ ζ µ ξ ξ µ ζ ζ
= ≤ ≤
= ≤ ≤

′ ′

 
=  
 

∑∫ ∫ ∫ ∫ � � � � � �� �

 (37) 
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It therefore becomes obvious to write the imaginary time partition function in 
the following simplified form: 

( ) ( )
2

0

0
1 exp

n

m

n
Z n m H

m
β ω

=

   = + − +    
∑              (38) 

which allows us to have the expression of free energy in the following form 

( ) ( )

( )

2
0 0

0

2
0

0

exp

1 exp

n
m

n
m

n
m H m H

m
E

n
k m H

m

ω β ω

β ω

=

=

   + − +    =
     + − +      

∑

∑
          (39) 

within the limit of very high temperatures 0β →  and assuming that  
2

1 n
m

n
m
 
 
 

∑� , the energy of the system gives 

( )
2 1

02 1
1

n n
E n n H

n m
ω

−−   
= +   −   

                 (40) 

In the thermodynamic limit, β →∞ , the energy in our system is zero. Sever-
al other parameters can be determined from this partition function. The magne-
tization is 

( ) ( ) ( )
2

0
0

0
2 exp

n
zB

m

ngM m S m H
mnZ n

β µ
β ω

=

   = + − +    
∑         (41) 

with   represents the number of spins per unit volume. From magnetization 
we easily deduce the isothermal susceptibility: 

( ) ( ) ( )

( )( ) ( ) ( )

2 22
1 0

00

0

1 2 exp

1 1

niB
T

mi

z

ng m m H
mn Z n

iZ n S i mZ n

β µ
χ β ω+

==

      − − +          


+ − + − 


∑∏


    (42) 

Usually for a spin system without interaction this susceptibility is normalized 
to the Curie value. Considering Equation (38), we found that the Helmholtz free 
energy can be found from the statistical mechanical definition: 

( )
2

0

0
ln 1 exp

n

B
m

n
F Tk m H

m
β ω

=

     = − + − +      
∑           (43) 

We find the Boltzmann entropy as S 

( ) ( )

( )

2
0 0

0

2
0

0

exp

1 exp

n
m

n
m

n
m H m H

m
S

n
T m H

m

ω β ω

β ω

=

=

   + − +    =
     + − +      

∑

∑
          (44) 

and the specific heat capacity at a constant volume 
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( ) ( )

( )

2
0 0

02

2
2 0

0

exp

1 exp

n
m

v
B n

B m

n
m H m H

mSC
k n

k T m H
m

ω β ω

β ω

=

=

   + − +    = +
     + − +      

∑

∑
        (45) 

From the results obtained, we observe that all the thermodynamic parameters 
of our system depend fundamentally on the parameter  

( )
2

0
0 expn

m

n
m H

m
β ω

=

     − +      
∑  which is an exponential function which de-

pends on the number of particles which constitute the system.  

( )
2

0
0 expn

m

n
m H

m
β ω

=

     − +      
∑  then represents a control parameter of our 

system. 

6. Conclusion 

In this article, we have developed a formalism based on path integrals to study 
the dynamics of a central spin coupled to an antiferromagnetic environment to-
gether bathing in an external magnetic field. To achieve this objective, we made 
use of the discrete-time propagator method associated with a basic set involving 
coherent states of Grassmann variables which made it possible to obtain the ana-
lytical propagator. In the study, Hamiltonian was expressed in quadratic form 
using the creation and anihilation operators. From this transformation, the en-
vironment was split into two subnets. The quadratic form involved in the model 
was diagonalized and naturally led us to a complete set of states from which it 
was evident by using the coherent states of the Grassmann variables to evaluate 
the propagator. Thanks to the propagator, it becomes obvious to evaluate the 
partition function as well as the thermodynamic parameters. Since the partition 
function Z extends over all quantum states. The evaluation of this partition func-
tion Z shows that it extends over all quantum states. Grassmann’s coherent states 
positioned itself as a perfect tool for studying open quantum system consisting 
of spin. Our study shows that the energy of our system depends on the number 
of atom sites that make up the system when 0β → . 
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