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Abstract 
The water resources reduction due to climate changes and also population 
increase, have contributed to increasing the constraint on water disponibility 
and accessibility. In the agricultural field, we need moderate soil and water 
resources management. This work aims to simulate water dynamics in soil 
under drip irrigation system in arid regions to better manage irrigation water. 
Simulations are done with soil physical properties of Burkina Faso. We assess 
maize plant water requirements for the whole growing season. With Hydrus 
2D, we simulate water supply in the soil column. We assign atmospheric con-
ditions on the top of the domain, zero flux of water on the lateral sides, and 
free drainage on the bottom boundary domain. We perform many irrigation 
events to analyze wetting pattern distribution around the emitter, which al-
lowed us to contain the amount of irrigation water applied, only around the 
area dominated by roots, and then reduce water losses that roots cannot up-
take. According to the different growing stages of the maize crop, we choose 
proper irrigation duration and frequency, and suggest irrigation schedule for 
the whole growing season. 
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1. Introduction 

The countries of sub-Saharan Africa like the other countries in the world face 
multiple problems linked to climate changes. These problems are: rainfall mod-
ification, season shift and the increase of extreme meteorological events such as 
drought or flood particularly in arid or semi-arid regions like Burkina Faso, 
which affect considerably water and soil resources. Water resources reduction 
due to climate changes, and also population increase, have contributed to in-
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creasing constraint on water supply and accessibility which were already an im-
portant problem in Sahelian countries. Furthermore, we have self-food suffi-
ciency problem. We will need irrigated agriculture to produce more food with 
less water and without deteriorating soil and water resources. Drip irrigation 
technology can face the challenge [1] [2]. It allows water and solute use more ef-
ficiently, reduces losses by allowing accurate supply of water and solutes in the 
crop base [3]. This work is performed in order to help farmers to improve water 
and soil management. The main objective of this study is to use Hydrus 2D to 
analyze water dynamics under drip irrigation in arid soil in Burkina Faso and 
guide farmers in the water management depending on the specific soil physical 
properties. The specific objectives are: 1) forecast infiltration, redistribution and 
evaporation in a soil column with Hydrus 2D; 2) forecast water losses by reduc-
ing the amount of irrigation water which reaches region unexplored by the roots; 
3) and suggest efficient water use model based on the crop used. Numerical si-
mulation is a fast and efficient tool to study optimal management of drip irriga-
tion technic [2] [4]. Several studies have shown the importance of numerical 
modeling to design and manage irrigation systems and ferti-irrigation too 
[5]-[18]. 

2. Methods and Materials 
2.1. Drip Irrigation 

It enables water supplying into the soil, directly in the plant base with small reg-
ular amounts of water. Drip irrigation improves water use efficiency, plants 
growth and production yield. It also improves the application of fertilizers and 
solutes, it reduces the risk of salinity, weeds and energy needs [19]. Drip irriga-
tion is the most efficient system for crop, vegetables, and fruit trees irrigation 
[20]. In arid regions or semi-arid regions, due to water scarcity and the increa-
singly use of water in agriculture drip irrigation is very important to ensure 
more efficient management of water resources. We distinguish surface drip irri-
gation system, sub-surface drip irrigation system and family drip irrigation. We 
called family drip irrigation system, a drip irrigation perform especially for fam-
ily production, operating in small area between 500 to 1000 m2. It is ideal for ru-
ral zones, where there is a water scarcity or water supply is limited, moreover no 
competency or expertize is required [21]. 

2.2. Hydrus 2D Software 

Hydrus is a worldwide known software used in many fields linked to soil 
sciences. The software gives a modelisation scheme that allows to analyze water 
flow, the movement of solutes and heat in variably-saturated media [22]. Hydrus 
can be used as a design tool to study and design drip irrigation system manage-
ment. Hydrus has been used successfully to simulate water flow under drip irri-
gation [4] [6] [22] [23]. The Hydrus program numerically solves the equation 
for water flow, heat and solutes transport [4] [6] [23]. The governing equation in 
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two dimension (X, Z) for water flow in a variably-saturated porous media in-
cluded in Hydrus is given in Equation (1) as: 

( ) ( ) ( ) ( )h hK h K h K h S h
t x x z z
θ∂ ∂ ∂ ∂ ∂   = + + −   ∂ ∂ ∂ ∂ ∂   

          (1) 

where x, z are the spatial coordinates (m); h is the soil water pressure head (m); t 
is the time (s); K is the hydraulic conductivity function (m∙s−1); θ  is the volu-
metric water content (m∙m−3) and S is the root water uptake term (s−1). The hy-
draulic conductivity function is given by the van-Genuchten (1980)-Mualem 
(1976) relationnships in Equation (2). 

( )

2
1 2 1

1 1
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r r
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           (2) 

where θ  is the volumetric water content; satθ  is the saturated volumetric wa-
ter content (m∙m−3); rθ  is the residual water content (m∙m−3) and m is a shape 
parameter given by the water retention curve suggested by van-Genuchten 
(1980). 

( ) ( ) ( )1
mnr

e
sat r

h
S h h

θ θ
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−−  = = + −
                 (3) 

Irrigation was conducted with constant flux, with water application rate of 1 
l∙h−1∙m−1 and emitter radius r = 1 cm. The water flux to supply is determined by 
Equation (4): 

3 1
11000 cm h 1.59 cm h

2 2 1 cm 100 cm
Qq

r

−
−⋅

= = = ⋅
× ×π π

             (4) 

q is the water flux (cm∙h−1); Q is the emitter discharge rate (l∙h−1∙m−1) and r the 
emitter radius (cm). 

2.3. Soil Physic Properties Used for Simulation 

The soil physic properties used to perform the simulations, come from the west 
Bobo Dioulasso city. This soil has general characteristics to many soils of Burki-
na Faso particulary in the Sahelian zone [24]. A complete characterization has 
been done by [24] to determine physic, morphologic and hydrodynamic proper-
ties. Soil was dug with 1 meter depth on 2.5 m × 2 m area. According to depth 3 
layers was determined as followed: from 0 to 30 cm superficial layer; from 30 cm 
to 70 cm the middle layer; and deep layer from 70 cm to 100 cm. The superficial 
layer (30 cm depth) is used in this study. Table 1 shows the properties used for 
the modelisation. 

 
Table 1. Soil hydraulic properties used for simulations [24]. 

Parameters rθ  satθ  α n Ks l 

Values 0 0.3655 0.107483 1.3922 268.932 0.5 

Units m∙m−3 m∙m−3 cm−1 - cm∙day−1 - 
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2.4. Field of Study and Boundary Conditions 

The transport domain is a vertical two dimensional plan (XZ) of the soil layer. We 
assume that the soil is completely dry before the simulations and the initial water 
content is assume to be zero, 0iθ = . The boundaries conditions counted during 
the simulation are shown in Figure 1 and presented in Table 2. We consider at-
mospheric conditions on the top of the domain; on the lateral sides far of 80 cm 
we assign zero flux of water; on the bottom boundary of the domain we apply free 
drainage that allows water which reach the bottom boundary to go free away. 

2.5. The Maize Crop 

As an application, we used the maize crop to optimize water supply under drip 
irrigation. The species of the maize crop used is the intermediate variety with a 
production duration of fourteen weeks. In Figure 2, we show the schedule to 
grow the maize suggested by the Ministry of Agriculture, Hydraulic and Fishe-
ries Resources of Burkina Faso. It allows to assess the plant water requirements 
depending on the growth stage. The water requirements was calculated from 
potential evapotranspiration (ET0) data of the Meteorology Department of Bur-
kina Faso. ET0 was calculated with the Penman-Monthei method. 

 

 
Figure 1. Transport domain and boundary conditions. 

 
Table 2. Boundaries conditions assigned to the domain. 

Applied conditions 
Atmospheric 

conditions 
Zero water flux  

and heat 
Free drainage Variable flux 

Boundaries Top boundary Lateral side Bottom boundary Emitter 

 

 
Figure 2. Maize crop schedule suggest by the ministry of agricluture. 
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2.6. Water Requirements for Irrigation 

Irrigation scheduling is done at 100% of crop evapotranspiration (ETc). The val-
ues of potential evapotranspiration used to calculate the crop evapotranspiration 
are those collected by the meteorology agency. The water requirements to supply 
climatic needs (ETc) was determined Equation (5), and the different values are 
shown in Table 3. 

0c cET ET K= × .                        (5) 

where ETc is the crop water evapotranspiration (mm/day); ET0 the potential 
evapotranspiration (mm/day) and Kc is the dimensionless maize crop coefficient 
depending on plant growth. 

3. Results and Discussion 

We perform simulation according to each growing stage and we show some of 
theses results. 

3.1. Initial Stage of Growing 

Considering 1 mm/day rain depth like 1 liter volume of water spreaded in an 
area of 1 m−2, for the initial stage an irrigation event will end off after 2.5 hours 
of water application with flow rate of 1 l∙h−1∙m−1 to supply a crop evapotranspira-
tion value of 2.6684 mm/day. Assuming a daily water supply frequency. Figure 3 
shows the water content distribution into the soil at t = 1 hour corresponding to 
first day and at t = 120 hours five days later. We notice water content value of θ 
= 0.197 m3∙m−3 at 13 cm around the emitter. This value exceeds considerably the 
water requirements just needed for the first days of germination. After many at-
tempts in order to reduce the water flux, we will contain the length of the water 
content distribution around the emitter by spacing water flow supplying. Finally 
to manage water flow supplying for the initial stage, we assume 3 days frequen-
cy, which reduce water losses. We also avoid a hydric stress to the plant. We 
present in Figure 4. The water content distribution around the emitter accord-
ing to the new frequency adopted. 

3.2. Growth Stage 

At this step, the initial condition for water content and temperature are taken to 
be equal to the final water content and temperature in the initial stage. Further-
more, ETc = 6.3176 mm/day, thus we will need approximatively 6 hours of  

 
Table 3. Water requirements and crop coefficient. 

Growth cycle Initial stage Growth stage Middle stage Harvest stage 

Duration (weeks) 0 - 3 3 - 6 6 - 9 9 - 14 

Kc 0.40 0.80 1.15 0.70 

ET0 6.671 7.897 6.2858 6.5644 

ETc 2.6684 6.3176 7.2287 4.5951 
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Figure 3. Water content distribution for initial stage of growing at t = 1 hour (a) and at t = 120 hours (b). 
 

 
Figure 4. (a) Water content distribution 1st day, and 21 day later (b), irrigation frequency 3 day. 
 

irrigation to supply the plant water requirements. In Figure 5, we show the wa-
ter content distribution corresponding to the first experiments. 

For water content value θ = 0.113 m3∙m−3, the wetted area extend to 14 cm 
around the emitter concerning the first day. At the last day of the simulation the 
wetted area reach 35 cm around the emitter for the same water content. The area 
reached by the water strongly exceed the area hold by roots. We can then reduce 
the quantities of water supplied by keeping the wetted area to the zone colonized 
by roots. The irrigation frequency kept is 3 days, we obtain a wetted zone of 25 
cm around the emitter with water content θ = 0.111 m3∙m−3. The water volume is 
restricted to the optimum volume hold by the roots. In Figure 6 we present the 
water content new distribution for the new frequency chosed. 
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For the last two growth stages, we take into account root water uptake para-
meter to perfom simulations. 

3.3. Middle-Stage of Growth 

At this growth stage, crop water requirements raised again with ETc = 7.2287 
mm/day. An irrigation event will take approximately 7 hours per day to supply 
plant water requirement. The initial water content and initial temperature cor-
respond respectively to the final water content and temperature of the previous 
growth stage. Figure 7 shows the corresponding water content distribution in 
the soil. 

We notice that the wetting zone reach an area of 30 cm around the emitter 
concerning the first day and 36 cm area at the 21st day of the stage. The available 
water in soil after roots uptake is so important. At the end of the simulation θ =  

 

 

Figure 5. (a) Water content distribution 1st day, and 21 day later (b), daily irrigation frequency. 
 

 

Figure 6. Water content distribution, growth stage at t = 21 day, irrigation frequency 3 
days. 
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0.124 m3∙m−3 for 36 cm depth. To reduce the quantities of water used to simulate 
this phase, we space the water supplying. And then reduce water stored in soil 
and the quantities of water non-uptake. To avoid water stress condition by using 
less water to supply the plant, we chose an irrigation frequency of 3 days. Figure 
8. The water content distribution in the soil with the new frequency. 

3.4. Harvest Stage 

To compare with the middle-stage, we get a diminution of water requirements 
with ETc = 4.5951/day. Nevertheless, to supply crop water requirements, an irri-
gation event will take 5 hours. We simulated water flux to supply during 35 days. 
In Figure 9, the wetting zone extend to 14 cm depth at the first day of water  

 

 
Figure 7. Water content distribution : middle-stage of growth, daily irrigation frequency, (a) t = 1 day and (b) t = 21 day later. 
 

 

Figure 8. Water content distribution, middle-stage of growth at t = 21st day, irrigation 
frequency 3 days. 
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supplying and reach 25 cm depth at 30th day and remain at this depth until 35th 
day. Analyzing the wetting zone on the 35th day we get an important available 
water content in 25 cm area around the emitter. For better use of water provide 
to the maize crop, we will space water supplying. Adopting 3 days of irrigation 
frequency, we present the corresponding wetting shape in the soil. Water con-
tent is about θ = 0.068 m3∙m−3 at 12 cm around the emitter that shows a reduc-
tion of available water. We keep this frequency to supply water at the harvest 
stage. Figure 10 show the water content distribution for new frequency adopted. 
The different simulations lead us to manage water supplying depending on 

 

 
Figure 9. Water content distibution, harvest stage, daily frequency; (a) t = 1st day, (b) at t = 35th later. 
 

Table 4. Irrigation scheduling of maize cycle production for fourteen weeks. 

 Growth stage Initial stage Growth stage Middle stage Harvest stage 

Flow rate 
Q = 1 l∙h−1∙m−1 

Irrigation duration 2.5 hours 6 hours 7 hours 5 hours 

Frequency 3 days 3 days 3 days 3 days 

 

 

Figure 10. Water content distribution, harvest stage at t = 35th day, irrigation frequency 
3 days. 
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different growth stage, to compensate crop water requirements. Taking into ac-
count all these irrigation frequencies chosen, we suggest an irrigation scheduling 
in Table 4. 

4. Conclusion 

The purpose of this study was to analyze water dynamics in soil under drip irri-
gation in arid zone and, hence to manage properly irrigation water according to 
soil physical properties. Therefore we assessed water requirements 500 mm/day 
to supply for maize crop production and carried out many simulations with Hy-
drus 2D. The study of the wetting zone dimensions, allowed us to schedule water 
supply by taking irrigation duration and frequency according to crop growth 
stages. So we restricted the amount of irrigation water applied around the root 
zone and then reduced also water losses. Finally, we suggest irrigation schedul-
ing for the whole maize growing season. Nevertheless, it could be interesting to 
carry out some experiments to assess the crop yield depending on the amount of 
irrigation water used, in order to enhance production yield and water manage-
ment under drip irrigation. 
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