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Abstract 

Any particular classical system and its quantum version are normally viewed 
as separate formulations that are strictly distinct. Our goal is to overcome the 
two separate languages and create a smooth and common procedure that 
provides a clear and continuous passage between the conventional distinction 
of either a strictly classical or a strictly quantized state. While path integra-
tion, among other procedures, provides an alternative route to connect clas-
sical and quantum expressions, it normally involves complicated, model- de-
pendent, integrations. Our alternative procedures involve only model- inde-
pendent procedures, and use more natural and straightforward integrations 
that are universal in kind. To introduce the basic procedures our presentation 
begins with familiar methods that are limited to basic, conventional, canonical 
quantum mechanical examples. In the final sections we illustrate how alterna-
tive quantization procedures, e.g., spin and affine quantizations, can also have 
smooth paths between classical and quantum stories, and with a few brief re-
marks, can also lead to similar stories for non-renormalizable covariant scalar 
fields as well as quantum gravity. 
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1. Introduction 

1.1. Classical Formulations 

We start by describing phase space as a set of momenta (p) and coordinates (q), 
which have a measure ( d dp q ). Dynamical equations are time (t) dependent 
(p(t)) and (q(t)), which are dictated by stationary variations of a classical (c) ac-
tion functional 
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( ) ( ) ( ) ( )( ){ }0
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cA p t q t H p t q t t= −∫                 (1) 

that leads, with ( ) ( )d dq t q t t≡ , to 
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∫ 



           (2) 

with arbitrary ( )p tδ  and ( )q tδ  values, except that ( ) ( )0 0p T pδ δ= =  and 
( ) ( )0 0q T qδ δ= = . All this leads to the traditional classical equations of motion 

given by 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

, ,

, .

q t H p t q t p t

p t H p t q t q t

= ∂ ∂

= −∂ ∂





                 (3) 

A common example is ( ) ( )2 2 2, 2H p q p m m qω= + , which is an harmonic 
oscillator, and its dynamical equations are given by ( ) ( )q t p t m=  and 
( ) ( )2p t m q tω= − . It follows that ( ) ( )2q t q tω= −  with solutions  
( ) ( ) ( ) ( )0 0cos sinq t q t p m tω ω ω= + , where ( )0 0q q=  and ( )0 0p p= . 

1.2. Quantum Formulations 

The basic quantum operators are linked with suitably chosen classical variables, 
i.e., p P→  and q Q→ , which satisfy the rule [ ], 1lQP PQ Q P i− ≡ =  . Note: 
The rules used to choose the favored classical variables, p and q, that are pro-
moted to operators, P and Q, are addressed below. 

Various operators, such as ( ),P Q , act upon suitable Hilbert space vectors, 
such as Φ  leading to new Hilbert space vectors, ( ),P Q Φ . It is conven-
tionally observed that the operator Q is diagonalized when acting on selected ei-
genvectors. This leads to the relations that Q x x x=  while then  

( )P x i x x= − ∂ ∂ . A general Hilbert space vector Φ  then becomes  
( )x xΦ = Φ , and the normalization of a general vector is  

( ) 2
dx xΦ Φ = Φ < ∞∫ . While such relations formally are correct, it should be 

recognized that x  is strictly not a proper Hilbert space vector since 
x x = ∞  as follows from the fact that ( )x x x xδ′ ′= − . 
The algebra of quantum operators, such as the self-adjoint Hamiltonian oper-

ator ( ),P Q , act upon vectors from a suitable Hilbert space. Such vectors as 
Φ  are finite in normalization, as denoted by Φ Φ < ∞ . Indeed, normalized 

vectors, which means that 1Φ Φ = , play an important role. Quantum dy-
namics is expressed by time dependence of the vectors, e.g., ( )tΦ . The quan-
tum (q) action functional involves normalized vectors, and is given by 

( ) ( ) ( ) ( )
0

, d ,
T

qA t i t P Q t t= Φ ∂ ∂ − Φ  ∫               (4) 

and stationary variations of the quantum action functional lead to 
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( ) ( ) ( ) ( ){
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, d
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qA t i t P Q t

t i t P Q t t

δ δ

δ

= Φ ∂ ∂ − Φ  

+ Φ ∂ ∂ − Φ  
=

∫ 





           (5) 

This leads to two equations, one of which is 

( )( ) ( ) ( ), ,i t t P Q t∂ Φ ∂ = Φ                  (6) 

which is a version of “Schrödinger’s equation” [1]; the second equation is the 
adjoint of the first equation. 

The basic operators, P and Q, can generate various additional operators, such 
as an harmonic oscillator given by ( ) ( )2 2 2, 2P Q P m m Qω= + . For the Hil-
bert space “vectors” x , defined by Q x x x= , the ground-state eigenvector 
of the harmonic oscillator is 2exp 2x m xω ω = −  , i.e., namely a famili-
ar Gaussian function. 

2. Coherent States 

2.1. Choosing the Correct Quantum Operators 

Since classical mechanics has a long history, it is natural that the classical va-
riables are chosen before choosing what quantum operators to employ. That be-
havior has its natural difficulties because while there are many acceptable clas-
sical variables p and q, or p  and q , etc., provided the Hamiltonian function 
also is changed so that ( ),p p p q=  and ( ),q q p q= , along with the Poisson 
brackets { } { }, , 1p q p q= = , which leads to ( ) ( ), ,H p q H p q=  for all va-
riables. 

On the other hand, a promotion of classical variables to quantum operators, 
such as p P→  and q Q→ , but generally, ( ) ( ), ,H P Q H P Q≠ , and when 
the Hamiltonian operators are different, they definitely can lead to different 
physics. It is absolutely necessary to find a procedure whereby favored classical 
variables are the ones that are promoted to the correct quantum operators. Ac-
cepting an arbitrary choice of canonical variables to promote to quantum oper-
ators would most likely lead to a false quantization procedure. How a correct 
choice of canonical variables to promote to quantum operators can be made is 
the subject of this subsection. 

Dirac [2] has offered the clue to the task ahead. He claimed that the favored 
classical variables, p and q, are those that obey the relation ( ) ( ), ,H p q H P Q→ , 
i.e., the classical functional form equals the quantum functional form, and 
moreover, the classical variables must also be Cartesian coordinates, a rule that 
necessarily implies that ,p q−∞ < < ∞ . At the first glance this seems impossible 
because phase space—the home of the variables p and q—has no metric to de-
termine Cartesian coordinates. Dirac did not propose how to find such coordi-
nates, but the author has recently found a suitable procedure to do just that. 
That story is published in [3], and is recast here below. 

To seek Cartesian coordinates we first choose a family of canonical coherent 
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states. We start by choosing P and Q, such that [ ], 1lQ P i=  , and a pair of clas-
sical variables p and q. For our coherent states we choose Hilbert space vectors 
such as 

, e e ,iqP ipQp q ω−≡                        (7) 

where it is customary that ( ) 0Q iP ω ω+ = ; this choice will also play an im-
portant role later. It follows that ( ) 0Q iPω ω ω+ = , which implies that 

0P Qω ω ω ω= = . 
The coherent states span the Hilbert space as noted by the resolution of the 

identity, 1l , given by 

, , d d 2 1l .p q p q p q π =∫ 
                   (8) 

This expression will also have a role to play in our following analysis. 
At this stage, it is useful to assume Q (and q) are dimensionless so that P (and 

p), and also ω , have the dimensions of  . Next, a phase factor is added to the 
coherent states, which will be useful in what follows. Specifically, we add the 
phase factor to the coherent states as ( ), ,, : e ,iF p q bp q F p q≡ . Note that no 
operators appear in the real function ( ), ,F p q b  whose variables, p and q, and 
any other variable(s) b, can lead to an arbitrary phase modification of the cohe-
rent states. 

We next maintain that a special semi-classical connection exists between se-
lected classical and quantum expressions, and which, for clarity, our expressions 
are assumed to be polynomial Hamiltonians, given by 

( ) ( )
( )

( ) ( )

, , , ,

,

, ; , .

H p q p q P Q p q

P p Q q

p q p q

ω ω

=

= + +

= + 





 

                 (9) 

Observe first that each of the three lines of expression (9) are identical if one 
exchanges the coherent states vectors ,p q  for any of the phase modified co-
herent state vectors, , :p q F . In the limit that 0→ —which leads one to the 
true classical level—observe that the quantum function   equals the classical 
function H, just as Dirac required. 

To complete the story, we introduce a Fubini-Study (F-S) metric [4], which 
features a differential of the coherent state vectors such that they involve rays in-
stead of vectors, a property which means that the coherent state vectors belong 
in ray sets which are completely insensitive to any phase factor ( ), ,F p q b  and, 
effectively, are such that ( ), , 0F p q b ≡ . When the vectors  

( ), ,, ; e ,iF p q bp q F p q=  become completely independent of ( ), ,F p q b , it im-
plies that ( ), ,F p q b  carries no physics. In particular, we choose an F-S expres-
sion as a formula designed to be independent of ( ), ,F p q b  and given by 

( ) 2 22 1 2 2d , 2 d , , d , d d ,p q p q p q p q p qσ ω ω− ≡ − = +  
      (10) 

which leads to the fact that p and q are Cartesian variables after all, as Dirac had 
sought. Thus, for this example, we have confirmed that p and q are the favored 
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classical variables to promote to the physically correct quantum operators, P and 
Q.1 

2.2. The Quantum Action Functional Restricted to Coherent States 

In (4) we have outlined the quantum action functional. Its stationary variations 
lead to the Schrödinger equation in its abstract form. This equation is a funda-
mental relation in the quantum story. However, as classical observers, we are not 
able to vary all quantum vectors, but rather to a subset of vectors such as our 
family of coherent states. That proposal leads us to a semi-classical relation, 
helped by 0P Qω ω ω ω= = , and given by 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )( ) ( ) ( ) ( )( ){ }

( ) ( ) ( ) ( )( ){ }

0

0

0

, , , d

, d

, d ,

T
sc

T

T

A p t q t i t P Q p t q t t

q t P p t p t Q P p t Q q t t

p t q t H p t q t t

ω ω

= ∂ ∂ −  

= + − − + +

= −

∫

∫

∫



 





    (11) 

an equation that appears just like a classical action functional, but is only 
semi-classical in reality because   still has its normal positive value. Even the 
dynamical equations that stationary variations lead to, specifically 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

,

,

q t H p t q t p t

p t H p t q t q t

= ∂ ∂

= −∂ ∂





                 (12) 

have to deal with 0> . Stated briefly, the quantum story fits well into the 
semi-classical story. The limit 0→  leads to the usual classical story in which 

0= . But 0=  is not good physics because Mother Nature decided long ago 
that 0>  so that atoms don’t collapse and all the consequences that would 
imply. For further discussion of this general topic, see [5]. 

As already noted, the expression ( ),H p q  admits the relation  
( ) ( ) ( ), , ; ,H p q p q p q= +   , for which the second term is generally ignored 

because it is usually incredibly tiny; such a term is then dropped, and this action 
leads to the usual classical story, which then effectively pretends that 0= . 

These equations show that the quantum action passes smoothly to the classic-
al action. We next ask if it would be possible to have the classical action pass 
smoothly to the quantum action; our surprising answer shows that it can be 
done! 

3. The Union of Classical and Quantum Systems 

Having traced the semi-classical action functional to (11) we are in position to 
break the integrand being integrated in the top line into two separate partners, 
namely ( ) ( ) ( ),A p t q t i t= ∂ ∂

 and ( ) ( ) ( ), ,B P Q p t q t= − . With this 
division we can even adopt two different times and thus choose the two vectors 
to be distinct, which, for example, leads to ( ),A p q i t′ = ∂ ∂  and  

 

 

1The paper [6] is devoted to how to choose favored classical variables for systems for which Carte-
sian coordinates are appropriate as well as other systems where Cartesian coordinates are not ap-
propriate. 
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( ), ,B P Q p q′ ′ ′= − , and now involves two different vectors. Based on (8) we 
can make use of two coherent state resolutions of the identity, namely 

( ) ( ) ( ) ( ), , d d 2A t p q p q i t p q t i t′′ = Φ ∂ ∂ = Φ ∂π ∂∫   
 and  

( ) ( ) ( ) ( ), , , d d 2 ,B P Q p q p q t p q P Q t′′ ′ ′ ′ ′ ′ ′= Φ = − Φπ− ∫   . Finally, we 
restore the two parts together, i.e., A B′′ ′′+ , and integrate the time t, which leads 
to the expression 

( ) ( ) ( ) ( )
0

, d ,
T

qA t i t P Q t t= Φ ∂ ∂ − Φ  ∫              (13) 

which is exactly the quantum action functional created by fleshing out the 
semi-classical expression in (11). 

A Bridge Leading Smoothly between the  
Classical Realm and the Quantum Realm 

The purpose of cutting the semi-classical expression in (11) into two pieces was 
to officially justify introducing two different coherent states. However, the read-
er should be willing to accept that ( ) ( ), , ,p q i t P Q p q′ ′∂ ∂ −    , a purely 
mathematical expression that is not part of any classical or quantum elements, is 
an expression that can act as a “bridge”, first to lead to “classical-land” by means 
of 

( ) ( ) ( ) ( )
( ) ( ) ( )2

, , , , ,

, , d d d d 2 ,

p t q t p q p q i t P Q p q

p q p t q t p q p q

′ ′∂ ∂ −  

′ ′ ′ ′× π

∫∫ 




        (14) 

and second to lead to “quantum-land” by means of 

( ) ( ) ( )
( ) ( )2

, , , ,

, d d d d 2 ,

t p q p q i t P Q p q

p q t p q p q

′ ′Ψ ∂ ∂ −  

′ ′ ′ ′× Ψ π

∫∫ 




          (15) 

which defines two action functional integrands, one for the classical action func-
tional, an “island” surrounded by a larger “main-land”, representing the quan-
tum action functional, and where each “speck of soil” represents a unique, nor-
malized, Hilbert space vector. On the “island”, there is a “flag-pole on which the 
flag ,p q ” is displayed, and on the “main-land” there is a “flag-pole on which 
the flag Ψ ” is displayed. Although the “classical-land” can be reached more 
easily from the “bridge”, the author wanted to show that a very similar proce-
dure may be used to reach either the “classical-land” or the “quantum-land”.2 

4. Classical and Quantum Stories for  
Additional Quantization Processes 

In the analysis in several previous sections we relied heavily on coherent states. 
To analyze the major tasks in this section it is helpful to initially find suitable  

 

 

2This story has covered “canonical classical-land”, but there are two other “bridges” that reach two 
other “islands”, one for “spin classical-land” and the other for “affine classical-land”, both of which 
are detailed in following sections. It is rumored that the “spin flag is ,θ ϕ ” on their “island”, and 

the “affine flag is ;p q ” on their “island”. Unfortunately, these other “islands” are well off to each 
side and not displayed in Figure 1. 
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Figure 1. A representation of the “bridge” connecting “quantum-land” with “classic-
al-land”. 

 
coherent states. These coherent states rely on seeking suitable basic quantum 
operators. 

1) Spin coherent states 
For our spin quantization story we will involve three operators, namely 

1 2,S S , and 3S , where [ ]1 2 3,S S i S=  , as well as cyclic rotations of the opera-
tors. The spin coherent states, for ( )2SU  and ( )3SO , are chosen as 

3 2, e e , ,i S i S s sϕ θθ ϕ − −≡                      (16) 

where ϕ−π < ≤ π  and 2 2θ−π ≤ ≤ π , and the normalized fiducial vector, 
,s s , has the highest eigenvalue for 3 , ,S s m m s m=  , where  

{ }, , 1,m s s s∈ − − , and ( )2 2 2 2
1 2 3 1 1l sS S S s s+ + = + . Here { }1 1,2,3,4,

2
s∈  , 

and the resolution of the identity [7] is given by 

( ) ( )1l , , 2 1 sin d d 4 .s sθ ϕ θ ϕ θ θ ϕ= + π∫             (17) 

2) Affine coherent states 
For our affine quantization story we will involve two operators, namely Q and 

D, where 0 Q< < ∞  and [ ],Q D i Q=  . Since 0Q >  the operator P cannot be 
self adjoint and it is replaced by ( ) 2D PQ QP= + , and both Q and D can be 
self adjoint. The coherent state parameters are p−∞ < < ∞  and 0 q< < ∞ , 
and, for simplicity, we choose q and Q to be dimensionless; hence p, D, and β , 
below, have the dimensions of  . The affine coherent states are chosen as 

( )ln; e e .i q DipQp q β−≡ 

                    (18) 

In this case, the normalized fiducial vector is chosen as β , where 
( )1 0Q iD β β− + =   , which implies that 1Qβ β =  and 0Dβ β = . 

In this case, the resolution of the identity [7] is given by 

[ ]{ }1l ; ; 1 2 2 d d ,p q p q p qβ= − π∫  
             (19) 

provided 2β >  . 
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4.1. Additional Quantum to Classical and  
Classical to Quantum Stories 

4.1.1. The Spin Story 
The classical spin Hamiltonian is ( ),G θ ϕ  and the classical spin action func-
tional is given by 

( )( ) ( ) ( ) ( )( ){ }0
cos , d .

T
cA s t t G t t tθ ϕ θ ϕ= −∫ 

            (20) 

Using the facts that 3, ,s s S s s s=   and 1 2, , , , 0s s S s s s s S s s= = , 
the affine spin semi-classical action functional is given by 

( ) ( ) ( ) ( ) ( ) ( ){ }
( )( ) ( ) ( ){ ( )( ) ( )( )(

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ) }

( )( ) ( ) ( ) ( )( ){ }

1 2 30

3 2 10

3 2

2 1 3

3 1

0

, , , , d

, cos cos cos

cos sin sin ,

cos sin cos sin sin ,

cos sin , d

cos , d .

T
sc

T

T

A t t i t S S S t t t

s s t t S t S t t S

t t S t S

t S t t S t t S

t S t S s s t

s t t G t t t

θ ϕ θ ϕ

θ ϕ θ ϕ θ

ϕ θ θ

ϕ ϕ θ ϕ θ

θ θ

θ ϕ θ ϕ

 = ∂ ∂ − 

= + −

+ −

− +

− 

= −

∫

∫

∫














  (21) 

The passage from semi-classical spin functional and twice applying the two 
pieces of the identity, and then reuniting the two separate parts together, as was 
done for the canonical story, leads to the quantum affine functional. 

4.1.2. The Affine Story 
The classical affine Hamiltonian is ( ),H pq q′ , where 0 q< < ∞  and  

pq−∞ < < ∞ , and the classical affine action functional is given by 

( ) ( ) ( ) ( ) ( )( ){ }0
, d .

T
cA p t q t H p t q t q t t′= − −∫             (22) 

The quantum affine Hamiltonian is given by ( ),D Q′ , where 0Q >  and 
the dilation operator ( ) 2D PQ QP= + . The quantum action functional is giv-
en by 

( ) ( ) ( ) ( )
0

, d .
T

qA t i t D Q t t′= Φ ∂ ∂ − Φ  ∫              (23) 

Finally, the semi-classical affine action functional is given by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ){ }

0

0

0

; , ; d

, d

, d ,

T
sc

T

T

A p t q t i t D Q p t q t t

p t q t Q q t D q t D p t q t Q q t Q t

p t q t H p t q t q t t

β β

′= ∂ ∂ −  

 ′= − + − + 

′= − −

∫

∫

∫



 





  (24) 

thanks to the facts that 1Qβ β =  and 0Dβ β = . 
The passage from semi-classical affine functional and twice applying the two 

pieces of the identity, and then reuniting the two separate parts together, as was 
done for the canonical story, leads to the quantum affine functional. 

L. Gouba has examined an affine quantization of a free particle and an 
half-harmonic oscillator, where both problems require that 0 q< < ∞ , and was 
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able to extract the eigenfunctions and eigenvalues for the half-oscillator problem 
[8]. While the eigenfunctions are quite different, the eigenvalues for this example 
are equivalent to those of a full-harmonic oscillator in that they are equally 
spaced. This puts these results within the larger set of harmonic oscillator type 
problems. 

4.2. Additional Examples of a Smooth and  
Combined Quantum and Classical Story 

The article [9] summarizes the author’s approach to non-renormalizable cova-
riant scalar fields as well as his approach to quantum gravity. While a canonical 
quantization approach to these problems has faced difficulties, an affine quanti-
zation has come through with flying colors. Readers of the present paper may 
have noticed that an affine approach is very similar to a canonical approach to 
quantization, the only difference between the two procedures is that (favored) 
canonical variables, such as p and q, are promoted to quantum operators, while 
(favored) affine variables, such as pq and q, are promoted to quantum operators. 
In [10], the reader would find a natural analysis that this choice of basic affine 
variables to promote to quantum operators makes good sense. 

Affine procedures that are applied to the difficult problems being considered 
here already have equations, such as their Schrödinger equations, which are 
ready for approximate—or perhaps even exact—solutions to be found. Hopeful-
ly, smooth procedures between classical and quantum systems may play a help-
ful role in further analysis. 
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