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Abstract 

In the field of design theory, the most well-known design is a Steiner Triple 
System. In general, a G-design on H is an edge-disjoint decomposition of H 
into isomorphic copies of G. In a Steiner Triple system, a complete graph is 
decomposed into triangles. In this paper we let H be a complete graph with a 
hole and G be a complete graph on four vertices minus one edge, also re-
ferred to as a 4K e− . A complete graph with a hole, dK v+ , consists of a 
complete graph on d vertices, dK , and a set of independent vertices of size v, 
V, where each vertex in V is adjacent to each vertex in dK . When d is even, 
we give two constructions for the decomposition of a complete graph with a 
hole into copies of 4K e− : the Alpha-Delta Construction, and the Alpha- 
Beta-Delta Construction. By restricting d and v so that ( )2 1 5v d a= − − , we 

are able to resolve both of these cases for a subset of dK v+  using difference 
methods and 1-factors. 
 

Keywords 

Graph Decomposition, Combinatorial Design, Complete Graph with a Hole 

 

1. Introduction 

The Steiner Triple System is the most renowned problem in the study of design 
theory. In a Steiner Triple System, a complete graph on d vertices, dK , is de-
composed into edge-disjoint copies of a complete graph on three vertices, also 
referred to as a triple or K3. The first non-arbitrary case of a Steiner Triple Sys-
tem that can be designed is on K7. Since there are seven vertices in the complete 
graph K7, we can label each vertex {0, 1, 2, 3, 4, 5, 6}. The set of triples {{0, 1, 3}, 
{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {0, 4, 5}, {1, 5, 6}, {0, 2, 6}} forms the Steiner Triple 
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System of order seven. A Steiner Triple System can also be considered a com-
plete graph partitioned into a set of triangles. Figure 1 depicts a Steiner Triple 
System on nine vertices, i.e. a K9 decomposed into triangles or copies of K3. 

Similar to the Steiner Triple System, in this paper, we decompose a graph into 
subgraphs; however, we decompose complete graphs that contain a hole—also 
referred to as dK v+ . A complete graph with a hole can be described as a graph 
on d v+  vertices where each vertex in an independent set of vertices of size v 
(the hole), is adjacent to every vertex in a complete graph on d vertices, dK . 
Figure 2 depicts a complete graph with a hole denoted 4 2K + . K4 is the set of 
four vertices where each vertex is connected to every other vertex with an edge. 
The hole ( 2v = ) is a set of two vertices that are each connected to every vertex 
in K4, but share no edges with any elements in the hole. 

In our work, we decompose a complete graph with a hole into isomorphic 
copies of 4K e− . A 4K e−  can be described as a complete graph on four ver-
tices, minus one edge. Figure 3 depicts a 4K e− , where {a, b, c, d} represent 
four vertices, and where the only two vertices that are not adjacent are c and d. 

In this paper, we give two constructions for the decomposition of a complete 
graph with a hole into 4K e− . We call these the Alpha-Delta Construction and 
the Alpha-Beta-Delta Construction. By restricting d so that it is even and v so 
that ( )2 1 5v d a= − − , we are able to resolve both of these cases. 

2. Previous Work 

In 1977, Bermond and Schonheim determined that a complete graph nK  can 
be decomposed into 4K e− ’s without having any edges left over if and only if 

0n ≡  or 1 mod 5 and 6n ≥  [1]. In 1993, Hoffman, Lindner, Sharry, and Street 
solved the Maximum Packings Problem of nK . Their paper reveals exactly 
when there is a leave of two or three vertices after the maximum number of 

4K e− ’s are used in the total decomposition of nK  [2]. Hoffman, Lindner, 
Sharry, and Street solved the total decomposition of a complete graph using 

4K e− ’s in both cases: with a leave of two and a leave of three vertices. However, 
they did not use the idea of a hole in either solution. If we reinterpret each of the 
aforementioned discoveries to incorporate a hole, we can envision vertices that 
are left over after the decomposition to be vertices in the hole. In this way, we 
can guarantee solutions to the decomposition of dK v+  into 4K e− ’s when 

0,1v =  (Bermond and Schonheim’s decomposition) and when 2,3v =  (Maxi- 
mum Packings Problem). 

3. Preliminary Information 

Since there are no edges in V, there are only four types of 4K e−  blocks. We 
name these types of blocks: α , β , γ , and δ  as shown in Figure 4. In this 
paper, we describe a construction using α , β  and δ  type blocks that solves 
a case where d is even, and where there are additional restrictions on v. 
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Figure 1. The decomposition of K9 into copies of K3. 

 

 

Figure 2. A complete graph (K4) with a hole of size 2, denoted K4 + 2. 
 

 
Figure 3. A 4K e− . 

 

 

Figure 4. The four different ways to construct the 4K e− . 

 
Since d is even, we let 2d t=  and envision dK  as two subsets, where each 

subset is a complete graph on t vertices, tK . These two sets are denoted as 
{ }1t ×  and { }2t × , where the vertices in each subset are labeled from 0 to 

1t −  and all possible edges connect vertices between the two subsets. Figure 5 
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depicts a complete graph with a hole when d is even. In Figure 5, the hash marks 
between the two sub sets represent the edges that connect vertices from { }1t ×  
to vertices in { }2t × . We refer to all the edges and vertices in and between 

{ }1t ×  and { }2t ×  as upstairs and the vertices in V, the hole, as downstairs 
(Figure 5). 

3.1. Pure and Mixed Differences 

If a and b are integers, tb a− , the difference of a and b (mod t), can be defined 

as the smallest non-negative integer congruent to b a−  or a b−  (mod t). Any 
edge 1 1a b , in subset t , is defined to be of pure difference tb a− . So, the pure 

differences in dK  are 0
2t

tb a  ≤ − ≤   
. When t is divisible by two, the edge 

difference between 0 and 
2
t  is referred to as the half difference.  

Similarly, the edge 1 2a b  between sets { }1t ×  and { }2t ×  is said to be of 

mixed difference tb a−  (Figure 6). Therefore, the mixed differences in dK  

are 0 1tb a t≤ − ≤ − . There are t mixed differences. 

All edges in dK  can be described with either a mixed or pure difference. 
Each mixed difference describes a set of t edges. Every pure difference describes 

a set of 2t edges, and when t is divisible by two, the half difference, 
2
t , describes 

t edges. 
 

 

Figure 5. dK v+  when d is even is split into two subsets, where edges and vertices be-
tween the two complete graphs are the upstairs, and vertices in v are the downstairs. 

 

 

Figure 6. Mixed Differences describe edges between { }1t ×  and { }2t × . Pure Dif-

ferences describe edges within { }1t ×  and { }2t × . 
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3.2. Stern/Lenz 

The two main tools we use in our designs are difference methods and 1-factors. 
A 1-factor is a perfect matching, that is, a set of single edges that contains each 
vertex exactly once. When the edges of a graph are partitioned into a set of 
1-factors, this is called a 1-factorization. In a paper by Stern and Lenz, they 
prove the following lemma [3]. 

Lemma 1 Let G be a simple regular graph and G’ be an isomorphic copy of G. 
Form the graph H by adding an edge between each vertex in G and its isomor-
phic mate in G’. Then H, the graph shown below in Figure 7, has a 1-factoriza- 
tion.  

To ensure the use of this lemma, every time we use a pure difference from one 
subset, either { }1t ×  or { }2t × , we will use the same pure difference from 
the other subset. We will also ensure at least one mixed difference remains un-
used so that the lemma can still be applied. 

4. Necessary Conditions 

In this section, we present the conditions necessary to construct a 4K e−  de-
sign on dK v+ . 

4.1. Five Must Divide the Total Number of Edges 

The number of edges in 4K e−  must divide the number of edges in dK v+ . 

Since dK  is a complete graph, there are 
( )1

2
d d −

 edges in dK . Furthermore, 

every vertex in the hole V, is connected to every vertex upstairs, in dK . This 

generates dv more edges. Therefore, altogether, there are 
( )1

2
d d

dv
−

+  edges 

in dK v+ . Since a 4K e−  is composed of five edges, and since an edge used in 

a 4K e−  may not be reused, the total number of edges, 
( )1

2
d d

dv
−

+ , must be 

divisible by five. When 5 | d , this condition will be met. 
 

 

Figure 7. A simple regular graph that has a 1-factorization. 
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4.2. Necessary Condition for v 

All blocks use at least one edge upstairs. Therefore, the number of blocks must 
be less than or equal to the number of edges upstairs. This simplifies to 

( )2 1v d≤ − . 
Since the total number of edges in the graph must be divisible by five and 

( )2 1v d≤ − , this paper examines the case when ( )2 1 5v d a= − − . When we 
substitute this value for v in the equation for the total number of edges, 
( )1

2
d d

dv
−

+ , the result yields 15
2

dd a− − 
 

. Therefore, when  

( )2 1 5v d a= − − , the total number of edges is divisible by five, and both condi-
tions are satisfied. 

5. Alpha-Delta Construction 

Both α  and δ  blocks are used to decompose dK v+  in the α δ  construc-
tion. In the Alpha-Delta construction, we consider the case where d is even and 

( )2 1 5v d a= − − . Since each α  block uses exactly two vertices in the hole (V), 
and since each δ  block uses zero vertices in the hole, we consider the case 
where v is even. In order to ensure that v remains even, a must be even, as 
well. 

In the Alpha-Delta construction, since δ  blocks are not adjacent to any ver-
tices in V and are only used in complete graph dK , every edge of the δ  block 
is an edge in dK . Any remaining edges that are not used by the δ  blocks, are 

used in α  blocks. In total, there are 
2
ta  δ  blocks and 52 1

2
t t a − − 
 

 α  

blocks. 

5.1. Bridges 

We use bridges to construct the δ  blocks used in the decomposition of 

dK v+ . Each bridge has five components, three points, each representing a 
mixed difference, and two arcs, each representing a pure difference (see Figure 
8). Each bridge corresponds to a δ  base block as depicted below. 

Given 
2
dt = , the number of pure differences in each subset of the complete  

graph is 
2
t 

  
, and the number of mixed differences is t. The bridges are con-  

structed graphically by listing the mixed differences and connecting them with 
two arcs, where lengths of each represent pure differences. The bridges that 
use odd pure differences are constructed first, using the mixed differences  

from 0 to 
2
t 

  
, and are stacked in order to maximize the number of bridges.  

The bridges that use even pure differences are constructed using mixed differences  

from 
2
t 

  
 to t. An example of an entire bridge construction is pictured in Fig-

ure 9. 
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Figure 8. Conversion from Bridge to 4K e−  block. 
 

 

Figure 9. An example of the bridge placement. Each dot represents a mixed difference 
and each arc represents a pure differences in dK v+ . 

 

All the pure differences used in the arcs will be less than or equal to 
2
a . 

Therefore, the half difference, 
2
t , will never be used in the bridges, as 

2 2
a t
< . 

Recall that in this construction, we are only considering the case when a is even. 
When constructing bridges/δ  blocks, we are careful to use the same pure dif-
ferences in each copy of t , in order to ensure that we can use Lemma 1 on the 

remaining edges. In general, when all bridges are implemented, a total of 3
2
a 

 
 

 

mixed differences and 
2
a  pure differences are saturated. 

Each bridge can be translated into a mathematical notation that describes a set 
of δ  blocks: 

( ) ( ) ( ) ( )( )( )0 ,1 , , 2 , , 2 , ,1k b k c k b a k+ + + − +             (1) 

where ( )0 1k t≤ ≤ −  and where a, b, and c are the respective labels of the mixed 
differences in the bridge construction. 

An image of the construction of one bridge (a, b, c), and how it can be con-
verted into a δ  block, can be found in Figure 8. 

As shown in Figure 8, each bridge takes the form of (a, b, c). Bridges that are 
made using odd pure differences can be described as: 

When 0 1
4
ai  ≤ ≤ −  

 

1 , , 3 1
4 4 4
a a ai i i

           − − + − −                      
              (2) 

The bridges that use even pure differences can be described as: 
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When 1
4
aj  ≤ ≤   

, 

3 , 3 , 3 2
4 4 4 4 2
a a a a aj j j

               + − + + − +                             
         (3) 

When the notation (1) is applied to the general bridges, every δ  block is ex-
plicitly defined by the following: 

Bridges using odd pure differences generate the following blocks: 

When 2 2
2
ai≤ ≤ , 

( ) ( )0 ,1 , 3 ,2 , 3 2 ,2 , 2 ,1
4 4 2
a a ak k i k i i k

       + + + + + + − +              
     (4) 

where i∈  and ( )0 1k t≤ ≤ − . 
Bridges using even pure differences generate the following blocks: 

When 1 2 2
2
aj≤ + ≤ , 

( ) ( )0 ,1 , , 2 , 3 1 ,2 , 2 1 ,1
4 4
a ak k j k j j k

       + + + − + − + +              
     (5) 

where j∈  and ( )0 1k t≤ ≤ − . 

In this way, we partition dK v+  into 
2
a  δ  base blocks that are then de-

veloped mod t to complete the decomposition. 

5.2. Ensuring Conditions Are Satisfied 

Recall that in order to apply Lemma 1, there must be at least one unused mixed 
difference. This construction guarantees at least two unused mixed differenc-
es—one from under each arc of length two. For example, in Figure 9, mixed dif-
ferences 11 and 14 are not connected with an arc of pure difference length; thus, 
Lemma 1 can still be applied. Additionally, we must ensure that there are enough 
pure and mixed differences available to build the necessary number of blocks. 
Since each bridge, or δ  block, uses three mixed differences, and there will al-
ways be two mixed differences left over, the number of mixed differences  

in dK v+  must be greater than or equal to 3 2
2
a  + 

 
 to ensure that there are 

enough mixed difference to accommodate the maximum number of δ  base 

blocks, 
2
a . Since the number of mixed differences is t, or 

2
d , we can say 

3 4d a≥ +  in order to accommodate the maximum amount of δ  base blocks, 

2
d 

 
 

. 

Along with ensuring that there are enough mixed differences, there must also 

be enough pure differences. In general, all of the δ  base blocks use up 
2
a  

pure differences in total. Therefore, in order to ensure that there are enough 
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pure differences, the number of bridges must always be less than the total 

amount of pure differences, which we know to be 
2
t 

  
. So, 

2 2
a t <   

. There-

fore, 
2 4
a d <   

, and 2d a>  also holds. Since 3 4d a≥ +  (from the mixed dif-

ferences) is more restrictive on d than 2d a> , we need 3 4d a≥ +  to ensure 
there are enough mixed and pure differences for the α δ  construction. 

In this way, we have demonstrated how to construct 
2
a  δ  base blocks, which, 

when developed (mod t), yield 
2
ta  δ  blocks with 55 5

2
at t − − 

 
 edges left 

over. Since the conditions of Lemma 1 have been met, we are ensured a 
1-factorization of the remaining edges. As a result, the remaining differences can 

be used entirely in 52 1
2

t t a − − 
 

 α  blocks. This is the α δ  construction. 

5.3. Final Remarks on the Alpha-Delta Construction 

The Alpha-Delta Construction results in the following theorem: 
Theorem 2 There exists a 4K e−  design on dK v+  when the following 

conditions hold: 
1) d is even.  
2) ( )2 1 5v d a= − − .  
3) a is even.  
4) 3 4d a≥ + .  

6. Alpha-Delta-Beta Construction 

In this construction, α , β , and δ  blocks are used to decompose dK v+ . 
Similar to the Alpha-Delta construction, the necessary conditions include that d 
is even, and that ( )2 1 5v d a= − − . Unlike the Alpha-Delta construction, three 
must divide t. In the Alpha-Delta-Beta construction, exactly three β  blocks are 
always used. Each β  block is composed of exactly one vertex in V, three vertices 
in t , and two edges in t  of pure difference length one and two. In this way, 
the three β  blocks used in this construction saturate three vertices in V and all 
edges of pure difference one and two. In order to ensure that all edges of pure 
difference one and two in the graph are saturated, it is a necessary condition that t 
is divisible by three, since each β  block uses three vertices in t . 

Recall that α  blocks use exactly two vertices in V and δ  blocks use no ver-
tices in V. Since α  and δ  blocks always use an even number of vertices in V, 
and since β  blocks always use three vertices in V, there will always be an odd 
number of vertices depleted in the hole. Thus, a must be odd to ensure that all 
vertices in the hole are saturated, as a is related to the number of blocks. This is 
another difference from the Alpha-Delta construction, where a is even. In this  

construction, 1
2

at − 
 
 

 δ  blocks and 2t β  blocks are exhausted. Any other 
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remaining 1-factors that are not used in δ  or β  blocks will be used in α  
blocks, where each α  block uses one 1-factor. From this, we find that 

12 1 4 3
2

at t a −  − − +  
  

 α  blocks are used. 

6.1. Using Beta Blocks 

In the Alpha-Delta-Beta Construction construction, β  blocks are formed using 
edges in dK  of pure difference length one and two, and three vertices in V. 
Each β  connects a vertex in V with 3 vertices in t  partitioned into three 
parallel classes. Each class contains t/3 disjoint sets of size 3. These sets of size 3, 
along with a single vertex in V, will create a β  block using an edge of pure dif-
ference 1 and 2. Each of the three classes uses t/3 edges of each difference 1 and 2 
therefore exhausting all 2t edges of these differences. Let 1,2l =  to indicate 

{ }1t ×  or {2}. The β  blocks can be found as follows: 

( ) ( ) ( ) ( )( )0,3 , 0 3 , , 1 3 , , 2 3 ,k l k l k l+ + +                (6) 

( ) ( ) ( ) ( )( )1,3 , 1 3 , , 2 3 , , 3 3 ,k l k l k l+ + +                (7) 

( ) ( ) ( ) ( )( )2,3 , 2 3 , , 3 3 , , 4 3 ,k l k l k l+ + +                (8) 

Each developed (mod t), where k ∈  and 0
3
tk≤ ≤ . 

6.2. Bridges 

The second element of the Alpha-Delta-Beta Construction is the δ  block. 

When a is odd, 1
2

a −
∆ = , where ∆  is the number of δ  blocks in the con- 

struction. Recall from Section 5.1 that each δ  block can be represented by a 
bridge. Since the pure differences one and two are used by the β  blocks, the 
smallest odd pure difference the bridges use is three, and the smallest even is 
four. Since a pure difference from each subset t  must be used, each pure dif-
ference is used twice. This leaves at least ten mixed differences unused. 

Like the Alpha-Delta Construction, each bridge can be translated into a δ  
block. If we split dK  in half to form two equal subset graphs of size t, we can 
label label vertices { }1t ×  or {2}. Each bridge can then be converted into a δ  
block using the following notation: 

( ) ( ) ( ) ( )( )0,1 , , 2 , , 2 , ,1b c b a−                  (9) 

where a, b, and c are the respective labels of the mixed differences in the bridge 
construction. 

When this notation is applied to the general bridges, the δ  blocks in the 
Alpha-Delta-Beta construction are found as follows: 

When 23 2 3
2

aj + ≤ + ≤   
, 
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( ) 2 10,1 , 2 ,2 , 3 3 ,2 ,
4 4

2 1 3 2 ,1
4 4

a ak j k j

a a k j

  −   −    + + + + + −             
 − −    + + + +         

        (10) 

developed (mod t), where j∈  and ( )0 1k t≤ ≤ − . 

When 24 2 2
2

ai + ≤ + ≤   
, 

( )

( )

1 10,1 , 3 6 ,2 ,
4 4

13 7 ,2 , 2 2 ,1
2

a a k i

a k i k i

  − −    + + + +         
+  + + − + +  

  

              (11) 

developed (mod t), where i∈  and ( )0 1k t≤ ≤ − . 

6.3. Ensuring Conditions Are Satisfied 

In order for Lemma 1.1 apply, there must be at least one unused mixed differ-
ence; however, in this construction, there will be at least ten unused mixed dif-
ferences. This is because the smallest, even pure difference is four, and an arc of 
length four will leave three mixed differences unused. Because every pure dif-
ference other than the half difference generates two 1-factors, the δ  blocks use 
arcs of each pure difference length twice to saturate the two 1-factors generated 
by one pure difference. In other words, each pure difference appears twice in the 
δ  blocks. Thus, an arc of length four will leave six (3 × 2) unused mixed dif-
ferences after all δ  blocks are implemented. Moreover, the smallest odd pure 
difference used in the bridges is three. One arc of pure difference length three 
leaves two mixed differences unused. Two arcs of length three will leave four 
unused mixed differences. Therefore, in total, there will be at least ten unused 
mixed differences. 

To ensure there are enough mixed differences for the Alpha-Delta-Beta con-
struction the number of mixed differences, t, must be less than 3 17a + . This is 

because each δ  block uses three mixed differences: 13
2

a −  
  
  

, and ten 

mixed differences remain unused (as mentioned above). Since there are t, or 
2
d  

mixed differences, 3 17d a≥ +  to ensure that there are enough mixed differ-

ences to accommodate the maximum number of δ  blocks, 1
2

a − 
 
 

. 

Along with ensuring that there are enough mixed differences, we must also 
ensure there are enough pure differences. In general, a δ  block contributes to 
the saturation of one pure difference. This is because each δ  block uses five 
1-factors, two of which are generated by pure differences. Because one pure dif-
ference generates two 1-factors, using two 1-factors of the same pure difference 
value use up one pure difference. Although not every δ  block uses two arcs of 
the same pure difference length in a single bridge, by the time all δ  blocks are 
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implemented, all arcs will have used an arc of each pure difference length twice. 
For this reason, we can say that, generally, each δ  block uses up two 1-factors 
generated by pure differences, and thus, one entire pure difference. In order to 
ensure that there are enough pure differences in the construction, the total 
number of δ  blocks, ∆ , must always be less than the total amount of  

pure differences, which we know to be 
2
t 

  
. So, 1

2 4
a d−  <   

. If 1
2 4

a d−  <   
 is 

true, then 2 6d a> +  also holds*. Since 3 17d a≥ +  is more restrictive on d 
than 2 6d a> + , we can use 3 17d a≥ +  to ensure there are enough mixed and 
pure differences for the Alpha-Delta-Beta construction. 

6.4. Final Remarks on the Alpha-Delta-Beta Construction 

The Alpha-Delta-Beta Construction results in the following theorem: 
There exists a 4K e−  design on dK v+  when the following conditions 

hold: 
1) d is a multiple of 6.  
2) ( )2 1 5v d a= − − .  
3) a is odd.  
4) 3 17d a≥ + . 

7. Future Work 

In our future work, we will complete the case when d is not divisible by 5 and a 
is even, as well as when 3 4d a≤ + . We also can work to find a 4K e−  design 
when a is odd and 5 | d , as well as a design when 10 | d . In the future, we can 
also work on the cases when d is odd. 
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