
Journal of Computer and Communications, 2020, 8, 251-277
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2020.812021 Dec. 31, 2020 251 Journal of Computer and Communications

Neural Networks on an FPGA and
Hardware-Friendly Activation Functions

Jiong Si, Sarah L. Harris*, Evangelos Yfantis

University of Nevada, Las Vegas, USA

Abstract
This paper describes our implementation of several neural networks built on
a field programmable gate array (FPGA) and used to recognize a handwritten
digit dataset—the Modified National Institute of Standards and Technology
(MNIST) database. We also propose a novel hardware-friendly activation
function called the dynamic Rectified Linear Unit (ReLU)—D-ReLU function
that achieves higher performance than traditional activation functions at no
cost to accuracy. We built a 2-layer online training multilayer perceptron
(MLP) neural network on an FPGA with varying data widths. Reducing the
data width from 8 to 4 bits only reduces prediction accuracy by 11%, but the
FPGA area decreases by 41%. Compared to networks that use the sigmoid
function, our proposed D-ReLU function uses 24 - 41% less area with no loss
to prediction accuracy. Further reducing the data width of the 3-layer net-
works from 8 to 4 bits, the prediction accuracies only decrease by 3 - 5%, with
area being reduced by 9 - 28%. Moreover, FPGA solutions have 29 times fast-
er execution time, even despite running at a 60× lower clock rate. Thus,
FPGA implementations of neural networks offer a high-performance, low
power alternative to traditional software methods, and our novel D-ReLU ac-
tivation function offers additional improvements to performance and power
saving.

Keywords
Deep Learning, D-ReLU, Dynamic ReLU, FPGA, Hardware Acceleration,
Activation Function

1. Introduction

Machine learning and deep learning algorithms and their applications are be-
coming increasingly prevalent. While these algorithms enhance system intelli-
gence, they also have the disadvantages of being compute-intensive and de-

How to cite this paper: Si, J., Harris, S.L.
and Yfantis, E. (2020) Neural Networks on
an FPGA and Hardware-Friendly Activa-
tion Functions. Journal of Computer and
Communications, 8, 251-277.
https://doi.org/10.4236/jcc.2020.812021

Received: December 1, 2020
Accepted: December 28, 2020
Published: December 31, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.812021
https://www.scirp.org/
https://doi.org/10.4236/jcc.2020.812021
http://creativecommons.org/licenses/by/4.0/

J. Si et al.

DOI: 10.4236/jcc.2020.812021 252 Journal of Computer and Communications

manding in terms of power consumption and execution time. Several recent
machine learning programs combine software algorithms with hardware spe-
cially designed for such algorithms. For example, AlphaGo Zero [1] is a com-
puter program implemented on the Tensor Processing Unit (TPU) [2] designed
by Google. A TPU is a domain-specific custom application specific integrated
circuit (ASIC) designed to implement machine learning algorithms. The TPU is
15 - 30 times faster and 30 - 80 times more power efficient than modern GPUs
and CPUs when running machine learning algorithms.

Field programmable gate arrays (FPGAs) offer similar advantages to ASICs,
such as Google’s TPU, by providing the ability to configure hardware specific to
machine learning algorithms, for example, to support the parallel execution re-
quired by machine learning algorithms. This hardware-specific design on an
FPGA offers increased performance, lower power consumption, and decreased
cost compared to a CPU implementation. It also offers the advantage over ASIC
designs of increased flexibility, low cost for a small number of units, and de-
creased design to implementation time.

One of the most compute-intensive steps of any machine learning algorithm is
performing the activation function calculation. Commonly used activation func-
tions, such as sigmoid and tangent functions, are highly compute-intensive. In
contrast, the ReLU function is an activation function that requires relatively
simple calculations [3]. As emphasized by Krizhevsky, et al. [4], the advantages
of using the ReLU function include faster training speed, decreased saturation
problems, smaller numbers of epochs, and usually fewer samples. However, the
conventional ReLU activation function has the disadvantages of potentially
causing a neural network to explode (i.e., retain too much information) or die
(i.e., retain too little information) during learning calculations. Several recent
papers attempt to design ReLU functions that address these disadvantages, in-
cluding the Leaky ReLU [5], Parametric ReLU [6], and Randomized Leaky Re-
LU. In these functions, while the parameters are either fixed or modified during
training, they are fixed during testing. In contrast, our proposed D-ReLU algo-
rithm allows for parameter modification during both training and testing.

Currently, machine learning algorithms typically run on CPUs or GPUs, but
these platforms have shortcomings, the most notable of which are fixed calcula-
tion resources and high power consumption. Systems built on an FPGA plat-
form, however, offer algorithm-specific hardware and low power consumption
[7] [8], are easy to pipeline architecturally [7] [9] and algorithmically [10], and
allow for quantization and compression of weights [8] [11]. Several current
FPGA implementations of MLP networks exist [10] [11] [12] [13], but they have
some disadvantages, such as low prediction accuracy [12] [13], the use of float-
ing point instead of fixed-point arithmetic [14], and large area requirements
[15].

This paper describes our FPGA designs of MLP learning networks used to
train and test data from the Modified National Institute of Standards and Tech-
nology (MNIST) database of handwritten digits. After introducing the overall

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 253 Journal of Computer and Communications

algorithm in the Methods section (Section 2), we continue by describing the
hardware (FPGA) implementations of the MLP algorithm. We also propose a
novel dynamic ReLU (D-ReLU) activation function in this section to simplify
calculation and decrease area requirements and power consumption of neural
networks. We apply this algorithm to 2- and 3-layer MLP networks designed
both in software and in hardware on an FPGA. Section 3 describes the perfor-
mance and area usage of the FPGA design as compared to the software imple-
mentation. We also show results for varying bits of data width. Section 4 sum-
marizes our findings and conclusions.

2. Methods

This section describes the MLP algorithm, dataset, and the network architec-
tures. It then introduces the FPGA platforms, their functional units, and calcula-
tions. The section concludes by diving into the details of the activation function,
It first describes the sigmoid function approximation method used to simplify
computations and decrease FPGA area, and it then introduces the proposed dy-
namic ReLU function, that offers high prediction accuracy at low computation
cost when compared to three other commonly used activation functions: the
conventional ReLU function, the modified ReLU function, and the sigmoid
function.

2.1. Two-Layer Online Training MLP Neural Network

The simplest machine learning network we designed is a two-layer fully con-
nected perceptron network that trains on the MNIST database of single handwrit-
ten digits ranging from 0 to 9. The goal of the network is, first, to train on a sub-
set of the handwritten data and, second, to then predict values (from 0 to 9) for
the remaining test images of handwritten digits.

2.1.1. MNIST Dataset
In this paper, we use the MNIST dataset (the Modified National Institute of
Standards and Technology database of handwritten digits) to train and test the
MLP networks. The MNIST dataset includes a training set of 60,000 images and
their labels, and a testing set of 10,000 images and their labels. Figure 1 shows
five image examples from the MNIST dataset with their labels shown above each
image. Each image is 28 × 28 pixels (784 total pixels), as shown by the x and y
labels on the images in Figure 1.

Figure 1. Examples of digits in the MNIST dataset.

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 254 Journal of Computer and Communications

We use a subset of 55,000 training images in this paper. In the process of
model learning, we introduce a validation phase to minimize overfitting. Specif-
ically, the 55,000 training images are divided into two sets: one set of 50,000 im-
ages are used as training data, the other set of 5,000 images are used as validation
data. We use 100 iterations to find the optimal learning rate—in the range be-
tween 0.0 and 1.0, which is the amount that the weights are updated during
training—based on the prediction accuracies in validation data, but the network
is only trained by one epoch with the optimal learning rate. Finally, the trained
network is used to process the test images.

2.1.2. Network Architecture
In a fully-connected two-layer MLP, the first layer consists of the inputs, the
second layer is the output layer that sums the weighted inputs, and then goes
through the activation function to produce the outputs, the prediction that the
input image was one of the ten possible digits.

The architecture of the MLP network is shown in Figure 2 and is described
here. Because each MNIST image consists of 784 pixels, the input layer consists
of 784 inputs, 0 1 783, , ,x x x . The second layer, also called the output layer, con-
tains calculation nodes, or neurons, that sum the weighted inputs [16] and send
their outputs through the activation function to produce the outputs. With 10
possible outputs (i.e., digits 0 - 9), the network has 10 neurons in the output
layer, as shown in Figure 2.

The weights matrix consists of ten weights (one for each possible digit) for
each of the 784 input pixels. So the system has 784 × 10 = 7840 weights:
(0,0 0,1 0,2 0,9 783,0 783,9, , , , , , ,w w w w w w  ). Each weight represents a synaptic
weight (activating or inhibiting). For example, with one bit of precision, activat-
ing would be 1 and inhibiting 0. But with higher precision, the weight is not bi-
nary but instead has fractional values. So, with 8 bits of precision, the weights
have 256 fractional values between full activation (the maximum value) and
complete inhibition (the minimum value).

Each of the 10 neurons in the output layer corresponds to a given digit (0 - 9)
and that neuron sums the input pixels using the weights corresponding to that
digit. The outputs of these summations, called 0 1 9, , ,a a a , are then trans-
formed through an activation function to produce the final outputs. The final
ten outputs of the MLP system are called 0 1 9, , ,y y y . The outputs give the
probability that an image is a given digit; for example, 0y gives the probability
of the digit being 0, y1 gives the probability of the digit being 1, and so on. For
example, an output of { } { }0 1 9 0.1,0.2,0.9,0.3,0.1,0.2,0.3,0.1,0.2,0.1, , ,y y y =
would predict that the handwritten image was the digit 2.

In this testing or forward propagation process described above, information
flows from inputs to outputs, as represented by the arrows in Figure 2. During
the training or back propagation process, the MLP calculates the errors between
the predicted output probabilities and the actual outputs, provided by the image
labels (see Figure 1). During back propagation, these errors are used to update

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 255 Journal of Computer and Communications

Figure 2. 2-layer Multilayer Perceptron Network.

the synaptic weights and biases of each neuron so that the network can classify
the MNIST characters with high probability. After back propagation is used to
train the network to correctly classify digits, and after verifying the algorithm
using the validation dataset, then forward propagation is used to classify new
data.

2.1.3. FPGA System
This section describes the MLP network we built using SystemVerilog [17] on a
Cyclone IVE FPGA. The system diagram of the MLP network is shown in Fig-
ure 3 and is described in detail in this section. We implemented the network
using 4-, 5-, 6- and 8-bit precision for all inputs, outputs, and calculations.

The MLP hardware system (see Figure 3) consists of a UART communica-
tions module, Image/Label RAM, and a Controller that directs the Computation
Unit. The system also outputs results to a 7-segment display. The UART module
transmits all training and test images and their labels from the PC to the FPGA.
The system then stores these data in the Image/Label RAM. After a single image
and its label are transferred to the FPGA, the Controller module is triggered to
start either training or testing, depending on whether the system is in backward
or forward propagation mode (described further in Section 2.1.4). As directed by
the Controller module, the Computation Unit completes forward or backward
propagation calculations, as described in Section 2.1.5.

The Computation Unit reads the weights from the Weights RAM in testing
mode and both reads and updates the weights in training mode. At startup, the

 a0 a0

 a1 a1

 a9 a9

WeightsWeights Activation FunctionActivation Function

x783x783

 x1 x1

 x0 x0

 y0 y0

 y1 y1

 y9 y9

∑0∑0

∑1∑1

∑9∑9

1. Input Layer1. Input Layer 2. Output Layer2. Output Layer

 xi xi

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 256 Journal of Computer and Communications

Figure 3. FPGA system architecture.

Weights RAM is initialized to hold random values. During both training and
testing, the Computation Unit reads the weights from the Weights RAM to per-
form the weighted sum of the inputs. During training, the Computation Unit
then also calculates the errors between the calculated outputs and the actual val-
ues and updates the Weights RAM with calculated delta weights, as described in
detail in Section 2.1.5. During this backward propagation process, the weights
are updated after each training image is processed.

2.1.4. Controller
The Controller module manages the two main processes: forward and backward
propagation. It also displays the target and calculated outputs. Figure 4 shows
the finite state machine (FSM) of the Controller. In the Idle state, the FSM waits
for the start signal to assert. After the UART module receives and stores one
image and its label into the Image/Data RAM, the UART module asserts the
start signal, thus moving the FSM to the forward (Fwd) state and triggering the
forward propagation process. After forward propagation computations are com-
plete, if the system is in testing mode, the FSM displays the image label (target
result) and predicted results ()0 9, ,y y on the 7-segment displays and then
returns to the Idle state to continue processing test images. However, if the sys-
tem is in training mode, the FSM moves from the forward propagation state
(Fwd) to the backward propagation state (Back) to update the weights in the
Weights RAM (see Section 2.1.3). After backward propagation is complete, the
FSM displays the image label and training results on the 7-segment displays and
then moves to the Idle state to continue processing images, as was done in test-
ing mode.

2.1.5. Computation Unit
The Computation unit acts as the ten system neurons by performing the calcula-
tions of the output layer. This unit also updates the weights when the system is
in training mode. After being triggered by the Controller moving to the forward
propagation (Fwd) state, the Computation Unit calculates the weighted sums of
each input (a0-a9, see Equation (1)) and then passes these results through the ac-
tivation function to produce the outputs (y0 through y9, see Equation (2)).

0 0,0 0 0,1 1 0,783 783

9 9,0 0 9,1 1 9,783 783

a w x w x w x

a w x w x w x

= + + +

= + + +






 (1)

Weights
RAM

Weights
RAM

ControllerController DisplayDisplayImage/Label
RAM

Image/Label
RAMUARTUART

Computation
Unit

Computation
Unit

ImageImage

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 257 Journal of Computer and Communications

Figure 4. Controller finite state machine (FSM).

()

()

0 0

9 9

y sigmoid a

y sigmoid a

=

=

 (2)

If the system is in backward propagation mode, the system still computes the
outputs (y0 - y9) in the forward state (Fwd) but then also proceeds to the back-
propagation state (Back) to both compute the errors between the outputs and
target results and update the weights. The error calculation for each digit i,
where i is 0 to 9, is shown in Equation (3). The values of the actual results,

itarget , are obtained from the Label RAM.

i i ierror target y= − (3)

We set the cost function for the training process as:

() ()21
2i if error error= (4)

This cost function of the errors is then used to update the weights in the
Weights RAM. The derivative of the cost function with respect to output errors
is:

cost function
i

i

f
error

error
∂

=
∂

 (5)

However, the errors are first passed through the activation function and then
multiplied by the input pixels before being used to update the weights. So, we
need to calculate the derivative of the activation function ()f y :

() ()() 1sigmoid functionf
f y f y

y
∂

= ∗ −
∂

 (6)

bp_donebp_done

fp_donefp_donestartstart

IdleIdle FwdFwd

BackBackDisplayDisplay

startstart

fp
_d

on
e

&
 tr

ai
n

fp
_d

on
e

&
 tr

ai
n

bp_donebp_done

fp_
do

ne
 &

 te
st

fp_
do

ne
 &

 te
st

resetreset

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 258 Journal of Computer and Communications

The change in weights (that will be multiplied by the inputs before being
added to the weights) is then calculated as given in Equation (7).

()
i

cost function sigmoid function
change i i

i i

f f
w error f y

error y
∂ ∂

′= ∗ = ∗
∂ ∂

 (7)

This calculation can then be rewritten as:

() ()()1
ichange i i iw error f y f y∗ ∗= − (8)

The MLP hardware system calculates the change for each weight by multiply-
ing the input by the calculated weight change, as shown in Equation (9), where

,i jdeltaw is the amount to change the weight, i is 0 to 9 for each of the digits, j is 0
to 783 for each of the pixels in a single image, and jx are the inputs to the
MLP, that is, the value of each pixel in the training image.

,i j idelta j changew x w= ∗ (9)

The weights used to process the next image are the updated weights,
.i jneww ,

shown in Equation (10).

. , ,i j i j i jnew old deltaw w w= + (10)

The calculations for forward and backward propagation are summarized in
Equation (11) and Equation (12), respectively.

0,0 0 0,1 1 0,783 7830

1,0 0 1,1 1 1,783 7831

9,0 0 9,1 1 9,783 7839

w x w x w xy
w x w x w xy

f

w x w x w xy

 + + +    
     + + +     =     
      + + +         










 (11)

() () ()
, ,

1
i j i jnew old j i i iw w x error f y f y = + ∗ ∗ ∗ −  (12)

2.2. Three-Layer Offline Training MLP Neural Network

The 3-layer MLP network has higher prediction accuracy than the 2-layer MLP
network described in Section 2.1. The additional layer in the 3-layer MLP net-
work includes more trainable parameters. This added complexity enables in-
creased prediction accuracy, but it also increases the circuit complexity and size.
For this reason, we train the network in software and only implement the for-
ward propagation path in hardware on an FPGA.

2.2.1. Network Architecture
The architecture of the 3-layer MLP network is shown in Figure 5. It is based on
the structure of the 2-layer MLP network introduced in Section 2.1. In addition
to input and output layers, the system includes one hidden layer, which contains
128 neurons. Because each MNIST image consists of 784 pixels, the input layer
has 784 inputs, 0 1 783, , ,x x x . The second layer, also called the hidden layer,
contains 128 calculation nodes, or neurons, that sum the weighted inputs and
send their outputs through the activation function to the output layer. Again, the
10 neurons in the output layer sum the weighted inputs from the hidden layer

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 259 Journal of Computer and Communications

Figure 5. 3-layer Multilayer perceptron network.

and then pass them through the activation function to produce the outputs.
With ten possible outputs (i.e., digits 0 - 9), the network has ten neurons in the
output layer, as shown in Figure 5. In addition to the weights between the two
fully connected layers, we also add biases ()1b and ()2b for each non-output
layer. As shown in equations (13) and (15), in the calculation of the following
layer, weights control that how much any given layer input affects the output,
and biases act as an offset.

2.2.2. FPGA System
The FPGA system architecture of the 3-layer neural network is similar to the
architecture of the 2-layer neural network introduced in Section 2.1, but simpler.

As shown in Figure 6, we save weights obtained through training in software
in the Weights RAM upon initialization of the system. After the system begins, it
receives testing images and their labels from a PC through the UART. At the
same time, the system reads the weights generated during training from the
Weights RAM. After all the input data is loaded into memory on the FPGA, the
data is passed through the layers and the predicted value is calculated. After each
image is processed, the predicted digit and the image’s label are shown on
7-segment displays on the FPGA board.

y(2)y(2)

Activation FunctionActivation Function
y(1)y(1)

L(2)L(2)

L(1)L(1)

w(2)w(2)

w(1)w(1)

x783x783

 x1 x1

 x0 x0

y0
(2)y0
(2)

y1
(2)y1
(2)

y9
(2)y9
(2)

1. Input Layer1. Input Layer 3. Output Layer3. Output Layer

 xi xi

∑0∑0

∑1∑1

∑2∑2

∑127∑127

∑9∑9

∑1∑1

∑0∑0

2. Hidden Layer2. Hidden Layer

b(1)b(1)
b(2)b(2)

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 260 Journal of Computer and Communications

Figure 6. FPGA system architecture.

2.2.3. Controller
The controller module manages the dataflow during forward propagation and its
main module is the finite state machine (FSM) defined by the state transition
diagram in Figure 7. In the Idle state, the FSM waits for the start signal to assert.
After the UART module receives and stores one image and its label into the Im-
age/Data RAM, the UART module asserts the start signal, thus moving the FSM
to the forward (Fwd) state and triggering the forward propagation process. After
forward propagation computations are complete, the FSM displays the image
label and predicted results ()0 1 9, , ,y y y on the 7-segment displays and then
returns to the Idle state to continue processing the next image.

2.2.4. Computation Unit
This section describes the calculations performed by the 3-layer MLP during
both forward and backward propagation. Because the multiplication of layer in-
put and weights, summation, and activation happen in each pair of fully connected
layers, the 3-layer MLP’s computation unit requires more calculations than the
2-layer MLP network. The 3-layer MLP network has 128 neurons in the hidden
layer, and one bias (() ()1 2,b b) in each non-output layer. The computation unit
calculates the weighted (()1

0,0w through ()1
127,783w) sums of each input (()1

0L through
()1
127L , see Equation (13)) and then passes these results through the activation

function to produce the hidden layer (()1
0y through ()1

127y , see Equation (14)).
() () () () ()

() () () () ()

1 1 1 1 1
0 0,0 0 0,1 1 0,783 783

1 1 1 1 1
127 127,0 0 127,1 1 127,783 783

L w x w x w x b

L w x w x w x b

= + + + +

= + + + +







 (13)

() ()()

() ()()

1 1
0 0

1 1
127 127

y Sigmoid L

y Sigmoid L

=

=

 (14)

These results, ()1
0y through ()1

127y , are then passed to the output layer and
multiplied with another batch of weights (()2

0,0w through ()2
9,127w). Their sums

(()2
0L through ()2

9L , see Equation (15)) are then passed through the activation
function to produce the output layer (()2

0y through ()2
9y , see Equation (16)).

() () () () () () () ()

() () () () () () ()

2 2 1 2 1 2 1 2
0 0,0 0 0,1 1 0,127 127

2 2 1 2 2 1 2(1)
9 9,0 0 9,1 1 9,127 127

L w y w y w y b

L w y w y w y b

= + + + +

= + + + +







 (15)

Weights
RAM

Weights
RAM

ControllerController DisplayDisplayImage/Label
RAM

Image/Label
RAMUARTUART

Computation
Unit

Computation
Unit

ImageImage

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 261 Journal of Computer and Communications

Figure 7. Controller finite state machine (FSM).

() ()()

() ()()

2 2
0 0

2 2
9 9

y Sigmoid L

y Sigmoid L

=

=

 (16)

For backward propagation, the error calculation for each digit i (where i is 0
to 9) is shown in Equation (17). The values of the actual results, itarget , are ob-
tained from the Label RAM (as shown in Figure 6).

() ()2 2
i i ierror target y= − (17)

with the same theory introduced in A.5, the change of the hidden layer weights
()2

ichangew is then calculated as given in Equations (18) and (19).

()
() ()

() ()() 2 2 2
2 2i

cost function sigmoid function
i ichange

i i

f f
w error f y

error y

∂ ∂
′= ∗ = ∗

∂ ∂
 (18)

() () ()() ()()()2 2 2 21
i i i ichangew error f y f y= ∗ ∗ − (19)

Having calculated the layer weight changes and using the learning rate η , the
new bias of the hidden layer, ()2

newb , is calculated using Equation (20).
() () ()22 2

inew old changeb b wη= + ∗ (20)

According to the chain rule, to back-propagate ()2
ichangew to the hidden layer

weights, we need to multiply the derivative of the weights in Equation (15). In
Equation (15), the hidden layer weights are multiplied with hidden layer inputs,
therefore, we need to multiply the weight changes by the inputs of the hidden
layer ()1

jy , in order to get ()
,

2
i jdeltaw (see Equation (21)).
() () ()

,

2 2 1
i j i jdelta changew w y= ∗ (21)

Then we can produce new hidden layer weights by adding the multiplication
of weight deltas and learning rate (see Equation (22)).

fp_
do

ne
 &

 te
st

fp_
do

ne
 &

 te
st

fp_donefp_donestartstart

IdleIdle FwdFwd

DisplayDisplay

startstartresetreset

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 262 Journal of Computer and Communications

() () ()
, , ,

2 2 2
i j i j i jnew old deltaw w wη= + ∗ (22)

Similar to the error calculation in the output layer, we must also calculate the
errors for the hidden layer neurons. But unlike the output layer, we cannot calculate
these errors directly because we do not have a target, so we back-propagate them
from the output layer. This is done by taking the errors from the output neurons
and running them back through the weights to produce the hidden layer errors
(see Equation (23), where m is 0 to 9 for each of the digits).

() () ()() ()()()() () ()() ()()(),

1 22 2 2 1 1* 1 1
m i ji i i m mchange oldw error f y f y w f y f y= ∗ − ∗ ∗ ∗ − (23)

Having obtained the weight changes for ()1w , we calculate the new bias ()1
newb

and weights ()
,

1
m ndeltaw for the input layer using the same method described for

the hidden layer – see Equations (24) to (26), where n is 0 to 783 for each of the
input pixels.

() () ()11 1
inew old changeb b wη= + ∗ (24)

() ()
,

1 1
m n m ndelta changew w x= ∗ (25)

() () ()
, , ,

1 1 1
m n m n m nnew old deltaw w wη= + ∗ (26)

These biases and weights are updated each time the system processes a new
training image.

2.3. Activation Function

Activation functions in neural networks produce the decision boundary of the
neuron output, which decide whether the neuron should be activated or not. So
an activation function inhibits low inputs and accentuates high inputs. Com-
monly used activation functions include sigmoid, ReLU, Softmas and tanh func-
tions. In this way, activation functions reflect neuron behavior, where neurons
require an input above some threshold to activate.

2.3.1. Sigmoid Function
A popular activation function is the sigmoid function shown in Equation (27)
and Figure 8. As with other commonly used activation functions, such as Soft-
max and tangent functions, it is highly compute intensive. Along with the high
prediction accuracy when using sigmoid function as the activation in MLP neur-
al networks, another consideration is that it can be easily differentiated (see Eq-
uation (6)), which is required for the training process.

() 1
1 e xf x −=
+

 (27)

Figure 9 shows the sigmoid function with 9 bits of precision. The inputs of
the function vary from −256 to 255 instead of 0 to 1 as would be the case with
1-bit precision. An input of −256 indicates complete inhibition and an input of
255 indicates full activation. So, for example, an input of −256 to the sigmoid

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 263 Journal of Computer and Communications

Figure 8. Sigmoid function.

Figure 9. Sigmoid function and its approximation using PLAN.

function would result in an output very close to 0; an input of 0 would result in
an output of 16, which means approximately half inhibition and half activation.
The sigmoid function also rescales the output to only positive values in a range
of 0 to 32, where 0 indicates inhibition and 32 is fully activated. So, as shown, the
sigmoid function mimics neuron behavior by accentuating high values and mi-
nimizing low values, as desired.

Table 1 shows the output y as a function of the input a given several input

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 264 Journal of Computer and Communications

Table 1. Implementation of PLAN [18].

Output: y = F(a) Input Value

y' = 32 |a| ≥160

y' = 0.03125a * a + 27 76 ≤ |a| < 160

y' = 0.125b * a + 20 32 ≤ |a| < 76

y' = 0.25c * a + 16 0 ≤ |a| < 32

y = y' a ≥ 0

y = 32 –y' a < 0

Right shift 5 bits; bright shift 3 bits; cright shift 2 bits.

ranges. So, for example, if the input is 16, the output would be 20. Thus, the
PLAN approximation replaces the exponential and division operations (see Eq-
uation (27)) with multiplication and addition.

2.3.2. D-ReLU Function
This section introduces our D-ReLU activation function and contrasts it with the
most common activation functions used in MLP networks: the ReLU, leaky Re-
LU, parametric ReLU (P-ReLU), and Randomized Leaky ReLU functions.

The conventional ReLU function [3], which is shown in Equation (28) and
Figure 10, is a piecewise function. It keeps the positive values unchanged, and
outputs zero for negative inputs. Depending on the range of inputs, this beha-
vior can be problematic. If most of the numbers in a batch are positive, too
much redundant information is retained and this results in wider bit-width cal-
culations or overflow for proceeding calculations. On the other hand, if most of
the numbers are negative, zero is output for them and too much useful informa-
tion is discarded. This would prohibit the network from learning and potentially
even cause the network’s death.

0, if 0
, if 0

y x
y x x
= <
= ≥

 (28)

To address the problem of losing too much information, a few prior papers
[5] [6] suggested modified ReLU functions, particularly the Leaky ReLU, Para-
metric ReLU, and Randomized Leaky ReLU functions. As shown in Figure 11
and Figure 12. All of these modified ReLU functions tried to fix the negative
input case. When the input is negative, instead of outputting zero, they would
output the multiplication of the input with a smaller parameter. The difference
among them is, this parameter could be fixed (Leaky ReLU), learnable (Parame-
tric ReLU), or random (Randomized Leaky ReLU). This parameter was fixed in
the testing stage in all three of these modified ReLU functions.

To alleviate the disadvantages in conventional ReLU and modified ReLU
functions, we propose the dynamic ReLU (D-ReLU) function, with a dynamic
threshold that changes in real-time. The two types of D-ReLU functions are the
1) middle D-ReLU—where the threshold is the middle of the range of numbers
in each layer input; and 2) mean D-ReLU—where the threshold is the average of

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 265 Journal of Computer and Communications

Figure 10. Conventional ReLU function.

Figure 11. Leaky ReLU/Parametric ReLU function [5].

Figure 12. Randomized Leaky ReLU function [6].

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 266 Journal of Computer and Communications

the numbers in each layer input. For example, suppose the value range of the

inputs is from −4 to 8, the calculated threshold would be 4 8 2
2

− +
= for the

middle D-ReLU; The mean D-ReLU, on the other hand, uses the mean value of
all of the inputs. In this way, the system could discard redundant information
and preserve useful information dynamically, based on the pixel values of each
image. Positive and negative threshold ReLU functions are shown in Figure 13.

We replace the sigmoid function from Section 2 with our novel D-ReLU function.
During forward propagation, the threshold of the D-ReLU function changes dy-
namically. Before activating the outputs of the hidden layer and of the output
layer, the D-ReLU function calculates the range of activation function inputs and
sets the middle or mean value of the inputs as the current threshold. Each layer
shares the same threshold at any given time, and this threshold changes when
the network processes a new image—during training, validation, or testing.

2.3.3. Backward Propagation of the D-ReLU Function
While the calculations of backward propagation in the D-ReLU function are
similar to those described for the sigmoid function in Section 2.2.4, in many
cases the calculations are simpler, as described here.

Because the D-ReLU function is a piecewise function, we need to find the de-
rivative of its two segments. As shown in Figure 13, when the input is smaller
than the threshold, the output would always be the threshold value. So in this
case, the derivative is 0. When the input is equal to or larger than the threshold,
the slope of the function is 1, i.e., the derivative is 1. In this way, the backward
propagation calculations of the network change from those in Equation (18) and
Equation (19) for the sigmoid function to Equation (29) and Equation (30) for
the D-ReLU function.

Figure 13. ReLU function with positive (left) and negative (right) thresholds.

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 267 Journal of Computer and Communications

()
()

0, if

1, if

f y y threshold

f y y threshold

′ = <

′ = ≥
 (29)

()

() ()

2

2 2

0, if

, if
i

i

ichange

i ichange

w y threshold

w error y threshold

= <

= ≥
 (30)

And the ()1
changew from Equation (23) becomes the much simpler Equation (31).

()

() () ()
,

1

1 22

0, if or

, if or
m

m i j

i mchange

i i mchange old

w y y threshold

w error w y y threshold

= <

= ≥∗
 (31)

As shown above, using the D-ReLU derivative during back propagation, in-
stead of the more complex sigmoid derivative, means that we multiply with ei-
ther 0 or 1. Thus, using the D-ReLU simplifies the calculations and reduces the
required hardware and calculation time.

3. Results and Discussion

The experimental results described in this section show that neural networks
implemented on an FPGA result in lower execution time and lower clock fre-
quency without loss in prediction accuracy, which also indicates potential power
saving. Moreover, by comparing different bit-widths of 2-layer MLP networks
on FPGA, we can obtain different hardware resource saving solutions. At last, by
applying the D-ReLU function, we can further improve these networks’ perfor-
mance on an FPGA.

3.1. Two-Layer Online Training MLP Neural Network

This section compares the prediction accuracy and execution time of the soft-
ware solution with our proposed 2-layer Online Training MLP Neural Network
and discusses the FPGA area requirements with varying bits of precision.

3.1.1. Prediction Accuracy
The prediction accuracy of the 4-, 5-, 6- and 8-bit hardware designs vary from 73
- 89% as compared to the 32-bit precision software implementation that achieves
a prediction accuracy of 68-89%, depending on the number of training images.
Figure 14 summarizes these results. The horizontal axis shows the number of
training images (up to 55,000), and the vertical axis represents the prediction
accuracy, the percentage of correct predictions using 10,000 test images. The
8-bit FPGA solution’s prediction accuracy reaches (and slightly exceeds) that of
the 32-bit software solution when using the maximum number of training im-
ages (55,000). Moreover, it has double the convergence speed—the 8-bit FPGA
solution requires only 20,000 training images to achieve the highest prediction
accuracy, while the 32-bit software solution requires 40,000 training images to
converge.

Further reducing the bits of precision results in only 6% - 11% drops in pre-
diction accuracy (when using 55,000 training images), as shown in Figure 14
and summarized in Table 2. Compared with the 8-bit hardware solution, the

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 268 Journal of Computer and Communications

Figure 14. Software solution prediction accuracy vs. FPGA solutions prediction accuracy.

Table 2. Prediction accuracy.

Implementation Average Prediction Accuracy

32-bit software 89%

8-bit FPGA 89%

6-bit FPGA 83%

5-bit FPGA 78%

4-bit FPGA 80%

6-bit solution’s prediction accuracy drops by only 6%, and the 5- and 4-bit solu-
tions have accuracies that are only 9 - 11% lower than the 8-bit solution. So, re-
ducing the precision by 50% from 8 bits to 4 bits results in a prediction accuracy
decrease of only 9%. Table 2 shows that accuracy is not affected when decreas-
ing precision from 32 to 8 bits, but additional decreases in precision cost ap-
proximately 4% in prediction accuracy per bit decrease in precision.

3.1.2. Performance
The performance differences, as measured by execution time in hardware or
software, are summarized in Table 3. The clock frequency of the software solu-
tion is the CPU frequency (3.6 GHz), and the clock frequency of the FPGA de-
signs (25 MHz) is the highest frequency at which the designs can run on the
Cyclone IVE FPGA. The execution time measured includes both training and
testing time when using 55,000 training images and 10,000 test images. Execu-
tion time of both the software and hardware designs is almost identical: 3.7
seconds in software and 3.8 seconds for each FPGA solution.

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 269 Journal of Computer and Communications

Table 3. Performance.

Solution Clock Frequency Execution Time Performance

Software 3.6 GHz 3.7 seconds 1×

Hardware 25 MHz 3.8 secondsd 140×

dIncludes calculation time for forward and backward propagation (but not UART transfer).

While the FPGA hardware designs complete the computations in essentially

the same time as the software implementation, the clock frequency of the soft-
ware implementation is 144 times faster than that of the FPGA designs. Thus, to
compare solutions running at the same frequency, the hardware solution run-
ning at 3.6 GHz would have a performance 140 times faster (144 × 3.7 s/3.8s)
than the software solution. On the other hand, keeping the lower frequency of
the hardware design produces an approximate 140× decrease in power con-
sumption for training and testing calculations, using the relationship that power
is proportional to operating frequency. Thus, the FPGA hardware designs offer
higher performance or lower power alternatives when compared to the software
implementation.

3.1.3. FPGA Area
The FPGA area requirements for the MLP hardware design using 4, 5, 6, and 8
bits of precision are 20 - 34 k logic elements (LEs). Table 4 summarizes the FPGA
area requirements of each hardware design as well as the percent use of the
FPGA’s total LEs. As expected, lower bit width solutions require fewer logic ele-
ments, with the 4-bit solution using about 40% less area than the 8-bit solution.

Figure 15 shows the FPGA area usage (relative to the 8-bit version) versus
prediction accuracy for varying bit width solutions when using 55,000 training
images and 10,000 test images. The 6-bit solution uses 24% fewer logic elements
than the 8-bit solution, and its accuracy only decreases by 6% (from 89% to
83%), as shown in Figure 15. The 5-bit solution saves another 11% of the logic
elements compared with the 6-bit solution but only has a 5% prediction accuracy
drop (from 83% to 78%). The 4-bit design requires 6% fewer logic elements than
the 5-bit design while maintaining prediction accuracies similar to that design.
Figure 15 shows the actual prediction accuracy decrease with decreasing preci-
sion as well as a trend line. As the trend line shows, from 8-bit precision to 4-bit
precision, the prediction accuracy drops 11% (from 89% to 78%), and the area
decreases by 41%. So area decreases at approximately 4% per percent decrease in
prediction accuracy.

Figure 16 shows data width versus area and a trend line for each FPGA MLP
design. As depicted in the figure, the trend line shows that area grows at ap-
proximately 10% per bit of precision.

However, in many cases, online training is not always necessary. For example,
for image recognition on mobile phone, we just need to train the network on a
server or cloud and the mobile phone need only perform the testing function,
thus reducing the hardware and power requirements of the mobile phone. Table 5

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 270 Journal of Computer and Communications

Table 4. Fpga area of training and testing.

FPGA Solution Logic elements (% usee)

8-bit 34 k (29%)

6-bit 26 k (23%)

5-bit 22 k (19%)

4-bit 20 k (17%)

eIntel’s Cyclone IVE FPGA.

Figure 15. Prediction accuracy (percentage of correct predictions) vs. FPGA area (relative
to 8-bit version) for the 4-, 5-, 6-, and 8-bit MLP FPGA designs.

Figure 16. Data width vs. FPGA area (number of FPGA logic elements).

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 271 Journal of Computer and Communications

Table 5. FPGA area of testing (forward propagation).

FPGA Solution Logic elements (% usef)

8-bit 27 k (24%)

6-bit 21 k (18%)

5-bit 17 k (15%)

4-bit 14 k (12%)

fIntel’s Cyclone IVE FPGA.

shows the FPGA area requirement of the 2-layer MLP network when working on
different data widths after removing the training hardware. On average, includ-
ing only the testing hardware requires 20% less hardware than including both
testing and training hardware.

Additional advantages of offline training are described in Section 3.2.

3.2. Two- and Three-Layer Offline Training MLP Neural Networks

The advantages of the D-ReLU function over the sigmoid function are that it has
lower execution time in software, requires less area in hardware, and is poten-
tially more power-efficient with little loss in prediction accuracy, as described in
detail in this section.

3.2.1. Prediction Accuracy
This section compares the prediction accuracy of networks using the sigmoid or
D-ReLU activation function. Note that the designs are all trained in software and
then tested in either software or hardware. The software designs use 32-bit
floating point calculations, and the FPGA implementations use 8-bit fixed-point
calculations. The system preprocesses the input image data and parameters as
8-bit integers before sending them to the FPGA.

As shown in Table 6, the 3-layer MLP network with the sigmoid activation
function has higher prediction accuracy than the 2-layer MLP network we built
in Section 2.1. The prediction accuracy increases by 6.5% by adding one more
layer, adjusting the biases associated with each non-output layer, and adjusting
the learning rate η . The prediction accuracy of the 3-layer MLP network with a
sigmoid activation function achieves 95.5% prediction accuracy, which is 6.5%
higher than the 2-layer MLP network in Section 2.1.

When working in software, the three 2-layer MLP networks achieve similar
accuracies (~90%) across platforms and type of activation function. The accura-
cies of the 3-layer MLP network using the middle D-ReLU function achieves
92.9% prediction accuracy, only 2.6% less than the 95.5% of the network using
the sigmoid activation function. The accuracies of the 3-layer MLP network with
mean D-ReLU activation function are even slightly higher than the networks
with sigmoid activation function.

When working on an FPGA, the prediction accuracies are not affected by the
data and parameter preprocessing. The 2-layer MLP network has the same

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 272 Journal of Computer and Communications

Table 6. Prediction accuracy.

 2-layer MLP 3-layer MLP

w/ sigmoid in software 90.2% 95.5%

w/ middle D-ReLU in software 90.0% 92.9%

w/ mean D-ReLU in software 90.0% 95.8%

w/ sigmoid in hardware (on an FPGA) 90.3% 95.6%

w/ middle D-ReLU in hardware (on an FPGA) 89.6% 92.7%

w/ mean D-ReLU in hardware (on an FPGA) 89.6% 96.0%

prediction accuracy (~90%) whether implemented in software or built using an
FPGA. The 3-layer MLP networks achieve similar prediction accuracies for both
hardware and software implementations: ~95% when using the sigmoid activa-
tion function and ~93% and ~96% when using the D-ReLU activation function.

3.2.2. Performance
This section compares the execution time and power consumption of the MLP
networks across activation functions (sigmoid vs. D-ReLU) and across platforms
(software vs. hardware).

First, we consider only the software implementations of the networks. As ex-
pected, networks using the D-ReLU activation function have faster execution
times than those using sigmoid activation functions. As discussed in Section 2.3,
the calculations of the D-ReLU function are much simpler than the sigmoid
function, so it requires less computation, and thus less execution time. As shown
in Table 7 and Table 8, compared with the systems using the sigmoid activation
functions, the 2-layer MLP network with the D-ReLU function executes 14%
faster, and the 3-layer MLP network with the D-ReLU function is 57% faster.
Note that the execution time accounts for forward propagation time only be-
cause training is completed in software for all systems.

When built in hardware on an FPGA, the activation function used does not
affect execution time, but all four MLP networks show potential for lower power
consumption in the FPGA design over the software implementation due to faster
execution times and lower system clock frequency. As shown in Table 7 and
Table 8, the execution time of the 2-layer MLP network is 145 and 125 times
less, respectively when using sigmoid and D-ReLU functions, than their software
solutions. Similarly, the execution time of the 3-layer MLP network is 66 and 29
times less, respectively when using sigmoid and D-ReLU functions, than their
software solutions. Moreover, the 2-layer MLP networks’ FPGA clock frequency
is 14.4 times slower than the software frequency, and the 3-layer MLP networks’
FPGA clock frequency is 60 times slower than the software clock frequency. Us-
ing the relationship that power is proportional to operating frequency, hardware
designs require about 14.4× and 60× less power due to clock speed alone. When
combining the effects of both decreased execution time and decreased clock fre-
quency of the FPGA design over the software implementation, these four MLP

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 273 Journal of Computer and Communications

networks offer a potential of more than a 1700× decrease in power consumption
when working on an FPGA. Thus, the FPGA hardware designs offer higher per-
formance or lower power alternatives when compared to software implementa-
tions.

3.2.3. FPGA Area
The D-ReLU activation function requires less area and fewer computation cycles
than the sigmoid activation function when built on an FPGA. In order to high-
light the contribution of the two kinds of activation functions, we compare the
FPGA area of each network’s computation unit only. As shown in Table 9, 2-
and 3-layer MLP networks using the D-ReLU function use 41% and 24% less
area, respectively, compared with networks using the sigmoid activation func-
tion. Moreover, the D-ReLU function uses two fewer clock cycles to complete
the calculations in each layer than the sigmoid activation function.

By reducing the data width from 8 bits to 6, 5, and 4 bits as we did in Section
2.1, we can also get a similar trend of trading off prediction accuracy for FPGA
area. As shown in Table 10, if we reduce the precision from 8 to 4 bits for the
two types of 3-layer neural networks, the prediction accuracy of the networks
drop by only 2.7% and 4.8% respectively. At the same time, their FPGA area re-
quirements reduced by 28% and 9% respectively.

Figure 17 and Figure 18 show the data width versus area and a trend line for

Table 7. 2-layer MLP execution time and power.

 Clock Frequency Execution Time Power Saving

w/sigmoid in SW 3.6 GHz 2.9 seconds 1.0×

w/D-ReLU in SW 3.6 GHz 2.5 seconds 1.2×

w/sigmoid in HW 250 MHz 0.02 seconds 2088×

w/D-ReLU in HW 250 MHz 0.02 seconds 1800×

Table 8. 3-layer MLP execution time and power saving.

 Clock Frequency Execution Time Power Saving

w/sigmoid in SW 3.6 GHz 9.9 seconds 1.0×

w/D-ReLU in SW 3.6 GHz 4.3 seconds 2.3×

w/sigmoid in HW 60 MHz 0.15 seconds 3960×

w/D-ReLU in HW 60 MHz 0.15 seconds 1740×

Table 9. FPGA area.

FPGA Solution
Logic Elementsg

2-layer MLP 3-layer MLP

w/sigmoid 308 564

w/D-ReLU 183 428

gIntel’s Cyclone IVE FPGA.

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 274 Journal of Computer and Communications

Table 10. FPGA area.

FPGA Solution Bit Precision Logic Elementsh Prediction accuracy

3-layer network
w/sigmoid

8-bit 564 95.6%

6-bit 495 95.1%

5-bit 459 94.7%

4-bit 404 92.9%

3-layer network
w/D-ReLU

8-bit 428 92.7%

6-bit 416 90.3%

5-bit 407 88.6%

4-bit 386 87.9%

hIntel’s Cyclone IVE FPGA.

Figure 17. Data width vs. FPGA area of 3-layer network with sigmoid.

Figure 18. Data width vs. FPGA area of 3-layer network with D-ReLU.

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 275 Journal of Computer and Communications

each network implemented on an FPGA. As depicted by the trend lines, the
FPGA area of the 3-layer network with sigmoid function grows by ~9% per bit
of precision, and the FPGA area of the 3-layer network with the D-ReLU func-
tion grows by ~3% per bit of precision.

4. Conclusions

The FPGA hardware design of the MLP learning network presented here offers a
high-performance, low power alternative to traditional software methods. The
8-bit hardware design of the 2-layer online training MLP neural network per-
forms with similar execution time (3.8 seconds) and prediction accuracy (89%)
as the 32-bit software solution running at a clock speed 144 times greater than
the hardware design (3.6 GHz vs. 25 MHz). This difference in clock frequency
indicates that the hardware solution offers either lower power consumption or
potential increased performance of 144 times, at no cost to prediction accuracy,
as compared to the software solution. Furthermore, a reduction in precision
from 32 to 8 bits results in no decrease in prediction accuracy. Additional reduc-
tions in precision below 8 bits result in only small reductions in prediction ac-
curacy (4% prediction accuracy reduction per bit of reduced precision), mod-
erate area decreases (10% decreased area per bit of precision), and a resulting
area decrease that falls off more quickly than the decrease in prediction accuracy
(4% decrease in area per percent decrease in prediction accuracy).

The D-ReLU activation function proposed in this paper offers a more flexible
and accurate algorithm than the traditional ReLU function. It also results in a
faster, more power-efficient design when compared to the software implementa-
tion without incurring loss in prediction accuracy. Compared with networks us-
ing sigmoid activation functions, networks using the proposed D-ReLU activa-
tion function are 57% faster during the testing phase and use 41% less FPGA
area. Furthermore, if we reduce the bit precision of the 3-layer neural networks,
their prediction accuracies drop by only 2.7% and 4.8% with 28% and 9% FPGA
area savings. Moreover, because they operate at a lower clock frequency and re-
quire less execution time, FPGA solutions of MLP networks offer a low power
alternative to traditional software methods. In this paper, MLP networks imple-
mented on an FPGA offered the potential of being 1700× more power efficient
than comparable software solutions.

In all, FPGA solutions of neural networks provide fast, power efficient, low-cost
and portable alternatives to the software solutions, which could be integrated
into low-power portable devices in the future. Moreover, FPGA solutions offer
flexible, customizable, and secure solutions that protect privacy, which could be
integrated into customized FPGA/ASIC SoC systems with ease.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jcc.2020.812021

J. Si et al.

DOI: 10.4236/jcc.2020.812021 276 Journal of Computer and Communications

References
[1] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al.

(2017) Mastering the Game of Go without Human Knowledge. Nature, 550, 354-359.
https://doi.org/10.1038/nature24270

[2] Jouppi, N.P., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., et al.
(2017) In-Datacenter Performance Analysis of a Tensor Processing Unit. Proceed-
ings of the 44th Annual International Symposium on Computer Architecture, To-
ronto, June, 2017, 1-12. https://doi.org/10.1145/3079856.3080246

[3] Wikipedia (2020) Rectifier (Neural Networks).
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

[4] Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with
Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90.

[5] Maas, A.L., Hannun, A.Y. and Ng, A.Y. (2013) Rectifier Nonlinearities Improve
Neural Network Acoustic Models. Proceedings of the 30th International Conference
on Machine Learning, Atlanta, 16-21 June 2013, 6.

[6] He, K.M., Zhang, X.Y., Ren, S.Q. and Sun, J. (2015) Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. 2015 IEEE In-
ternational Conference on Computer Vision, Santiago, 7-13 December 2015, 1026-1034.
https://doi.org/10.1109/ICCV.2015.123

[7] Zhang, C., Li, P., Sun, G.Y., Guan, Y.J., Xiao, B.J. and Cong, J. (2015) Optimizing
FPGA-Based Accelerator Design for Deep Convolutional Neural Networks. Pro-
ceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, February 2015, 161-170.
https://doi.org/10.1145/2684746.2689060

[8] Qiu, J.T., Wang, J., Yao, S., Guo, K.Y., Li, B.X., Zhou, E.J., Yu, J.C., Tang, T.Q., et al.
(2016) Going Deeper with Embedded FPGA Platform for Convolutional Neural
Network. 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey, February 2016, 26-35.
https://doi.org/10.1145/2847263.2847265

[9] Li, H.M., Fan, X.T., Jiao, L., Cao, W., Zhou, X.G. and Wang, L.L. (2016) A High
Performance FPGA-Based Accelerator for Large-Scale Convolutional Neural Net-
works. 2016 26th International Conference on Field Programmable Logic and Ap-
plications, Lausanne, 29 August-2 September 2016, 1-9.
https://doi.org/10.1109/FPL.2016.7577308

[10] Lu, L.Q., Liang, Y., Xiao, Q.C. and Yan, S.G. (2017) Evaluating Fast Algorithms for
Convolutional Neural Networks on FPGAs. IEEE 25th Annual International Sym-
posium on Field-Programmable Custom Computing Machines, Napa, 30 April-2
May 2017, 101-108. https://doi.org/10.1109/FCCM.2017.64

[11] Han, S., Mao, H. and Dally, W.J. (2015) Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding. Inter-
national Conference on Learning Representations 2016, San Juan, 2-4 May 2016,
1-14.

[12] Bouvett, E., Casha, O., Grech, I., Cutajar, M., Gatt, E. and Micallef, J. (2012) An
FPGA Embedded System Architecture for Handwritten Symbol Recognition. 2012
16th IEEE Mediterranean Electrotechnical Conference, Yasmine, 25-28 March 2012,
653-656. https://doi.org/10.1109/MELCON.2012.6196516

[13] Suyyagh, A. and Abandah, G. (2013) FPGA Parallel Recognition Engine for Handwritten
Arabic Words. Journal of Signal Processing Systems, 78, 163-170.
https://doi.org/10.1007/s11265-013-0848-x

https://doi.org/10.4236/jcc.2020.812021
https://doi.org/10.1038/nature24270
https://doi.org/10.1145/3079856.3080246
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1109/FPL.2016.7577308
https://doi.org/10.1109/FCCM.2017.64
https://doi.org/10.1109/MELCON.2012.6196516
https://doi.org/10.1007/s11265-013-0848-x

J. Si et al.

DOI: 10.4236/jcc.2020.812021 277 Journal of Computer and Communications

[14] Huynh, T. (2014) Design Space Exploration for a Single-FPGA Handwritten Digit
Recognition System. 2014 IEEE 5th International Conference on Communications
and Electronics, Danang, 30 July-1 August 2014, 291-296.
https://doi.org/10.1109/CCE.2014.6916717

[15] Moradi, M., Pourmina, M.A. and Razzazi, F. (2010) FPGA-Based Farsi Handwritten
Digit Recognition System. International Journal of Simulation: Systems, Science and
Technology, 11, 17-22.

[16] Nahmias, M.A., Shastri, B.J., Tait, A.N. and Prucnal, P.R. (2013) A Leaky Inte-
grate-and-Fire Laser Neuron for Ultrafast Cognitive Computing. IEEE Journal on
Selected Topics in Quantum Electronics, 19, 1-12.
https://doi.org/10.1109/JSTQE.2013.2257700

[17] Kudrolli, K., Shah, S. and Park, D. (2015) Handwritten Digit Classification on FPGA.

[18] Amin, H., Curtis, K.M. and Hayes-Gill, B.R. (1997) Piecewise Linear Approxima-
tion Applied to Nonlinear Function of a Neural Network. IEE Proceedings—Circuits,
Devices and Systems, 144, 313-317.
http://dx.doi.org/10.1049/ip-cds:19971587

https://doi.org/10.4236/jcc.2020.812021
https://doi.org/10.1109/CCE.2014.6916717
https://doi.org/10.1109/JSTQE.2013.2257700
http://dx.doi.org/10.1049/ip-cds:19971587

	Neural Networks on an FPGA and Hardware-Friendly Activation Functions
	Abstract
	Keywords
	1. Introduction
	2. Methods
	2.1. Two-Layer Online Training MLP Neural Network
	2.1.1. MNIST Dataset
	2.1.2. Network Architecture
	2.1.3. FPGA System
	2.1.4. Controller
	2.1.5. Computation Unit

	2.2. Three-Layer Offline Training MLP Neural Network
	2.2.1. Network Architecture
	2.2.2. FPGA System
	2.2.3. Controller
	2.2.4. Computation Unit

	2.3. Activation Function
	2.3.1. Sigmoid Function
	2.3.2. D-ReLU Function
	2.3.3. Backward Propagation of the D-ReLU Function

	3. Results and Discussion
	3.1. Two-Layer Online Training MLP Neural Network
	3.1.1. Prediction Accuracy
	3.1.2. Performance
	3.1.3. FPGA Area

	3.2. Two- and Three-Layer Offline Training MLP Neural Networks
	3.2.1. Prediction Accuracy
	3.2.2. Performance
	3.2.3. FPGA Area

	4. Conclusions
	Conflicts of Interest
	References

