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Abstract 
This paper describes our implementation of several neural networks built on 
a field programmable gate array (FPGA) and used to recognize a handwritten 
digit dataset—the Modified National Institute of Standards and Technology 
(MNIST) database. We also propose a novel hardware-friendly activation 
function called the dynamic Rectified Linear Unit (ReLU)—D-ReLU function 
that achieves higher performance than traditional activation functions at no 
cost to accuracy. We built a 2-layer online training multilayer perceptron 
(MLP) neural network on an FPGA with varying data widths. Reducing the 
data width from 8 to 4 bits only reduces prediction accuracy by 11%, but the 
FPGA area decreases by 41%. Compared to networks that use the sigmoid 
function, our proposed D-ReLU function uses 24 - 41% less area with no loss 
to prediction accuracy. Further reducing the data width of the 3-layer net-
works from 8 to 4 bits, the prediction accuracies only decrease by 3 - 5%, with 
area being reduced by 9 - 28%. Moreover, FPGA solutions have 29 times fast-
er execution time, even despite running at a 60× lower clock rate. Thus, 
FPGA implementations of neural networks offer a high-performance, low 
power alternative to traditional software methods, and our novel D-ReLU ac-
tivation function offers additional improvements to performance and power 
saving. 
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1. Introduction 

Machine learning and deep learning algorithms and their applications are be-
coming increasingly prevalent. While these algorithms enhance system intelli-
gence, they also have the disadvantages of being compute-intensive and de-
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manding in terms of power consumption and execution time. Several recent 
machine learning programs combine software algorithms with hardware spe-
cially designed for such algorithms. For example, AlphaGo Zero [1] is a com-
puter program implemented on the Tensor Processing Unit (TPU) [2] designed 
by Google. A TPU is a domain-specific custom application specific integrated 
circuit (ASIC) designed to implement machine learning algorithms. The TPU is 
15 - 30 times faster and 30 - 80 times more power efficient than modern GPUs 
and CPUs when running machine learning algorithms.  

Field programmable gate arrays (FPGAs) offer similar advantages to ASICs, 
such as Google’s TPU, by providing the ability to configure hardware specific to 
machine learning algorithms, for example, to support the parallel execution re-
quired by machine learning algorithms. This hardware-specific design on an 
FPGA offers increased performance, lower power consumption, and decreased 
cost compared to a CPU implementation. It also offers the advantage over ASIC 
designs of increased flexibility, low cost for a small number of units, and de-
creased design to implementation time.  

One of the most compute-intensive steps of any machine learning algorithm is 
performing the activation function calculation. Commonly used activation func-
tions, such as sigmoid and tangent functions, are highly compute-intensive. In 
contrast, the ReLU function is an activation function that requires relatively 
simple calculations [3]. As emphasized by Krizhevsky, et al. [4], the advantages 
of using the ReLU function include faster training speed, decreased saturation 
problems, smaller numbers of epochs, and usually fewer samples. However, the 
conventional ReLU activation function has the disadvantages of potentially 
causing a neural network to explode (i.e., retain too much information) or die 
(i.e., retain too little information) during learning calculations. Several recent 
papers attempt to design ReLU functions that address these disadvantages, in-
cluding the Leaky ReLU [5], Parametric ReLU [6], and Randomized Leaky Re-
LU. In these functions, while the parameters are either fixed or modified during 
training, they are fixed during testing. In contrast, our proposed D-ReLU algo-
rithm allows for parameter modification during both training and testing. 

Currently, machine learning algorithms typically run on CPUs or GPUs, but 
these platforms have shortcomings, the most notable of which are fixed calcula-
tion resources and high power consumption. Systems built on an FPGA plat-
form, however, offer algorithm-specific hardware and low power consumption 
[7] [8], are easy to pipeline architecturally [7] [9] and algorithmically [10], and 
allow for quantization and compression of weights [8] [11]. Several current 
FPGA implementations of MLP networks exist [10] [11] [12] [13], but they have 
some disadvantages, such as low prediction accuracy [12] [13], the use of float-
ing point instead of fixed-point arithmetic [14], and large area requirements 
[15]. 

This paper describes our FPGA designs of MLP learning networks used to 
train and test data from the Modified National Institute of Standards and Tech-
nology (MNIST) database of handwritten digits. After introducing the overall 
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algorithm in the Methods section (Section 2), we continue by describing the 
hardware (FPGA) implementations of the MLP algorithm. We also propose a 
novel dynamic ReLU (D-ReLU) activation function in this section to simplify 
calculation and decrease area requirements and power consumption of neural 
networks. We apply this algorithm to 2- and 3-layer MLP networks designed 
both in software and in hardware on an FPGA. Section 3 describes the perfor-
mance and area usage of the FPGA design as compared to the software imple-
mentation. We also show results for varying bits of data width. Section 4 sum-
marizes our findings and conclusions. 

2. Methods 

This section describes the MLP algorithm, dataset, and the network architec-
tures. It then introduces the FPGA platforms, their functional units, and calcula-
tions. The section concludes by diving into the details of the activation function, 
It first describes the sigmoid function approximation method used to simplify 
computations and decrease FPGA area, and it then introduces the proposed dy-
namic ReLU function, that offers high prediction accuracy at low computation 
cost when compared to three other commonly used activation functions: the 
conventional ReLU function, the modified ReLU function, and the sigmoid 
function. 

2.1. Two-Layer Online Training MLP Neural Network 

The simplest machine learning network we designed is a two-layer fully con-
nected perceptron network that trains on the MNIST database of single handwrit-
ten digits ranging from 0 to 9. The goal of the network is, first, to train on a sub-
set of the handwritten data and, second, to then predict values (from 0 to 9) for 
the remaining test images of handwritten digits. 

2.1.1. MNIST Dataset 
In this paper, we use the MNIST dataset (the Modified National Institute of 
Standards and Technology database of handwritten digits) to train and test the 
MLP networks. The MNIST dataset includes a training set of 60,000 images and 
their labels, and a testing set of 10,000 images and their labels. Figure 1 shows 
five image examples from the MNIST dataset with their labels shown above each 
image. Each image is 28 × 28 pixels (784 total pixels), as shown by the x and y 
labels on the images in Figure 1. 
 

 
Figure 1. Examples of digits in the MNIST dataset. 
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We use a subset of 55,000 training images in this paper. In the process of 
model learning, we introduce a validation phase to minimize overfitting. Specif-
ically, the 55,000 training images are divided into two sets: one set of 50,000 im-
ages are used as training data, the other set of 5,000 images are used as validation 
data. We use 100 iterations to find the optimal learning rate—in the range be-
tween 0.0 and 1.0, which is the amount that the weights are updated during 
training—based on the prediction accuracies in validation data, but the network 
is only trained by one epoch with the optimal learning rate. Finally, the trained 
network is used to process the test images. 

2.1.2. Network Architecture 
In a fully-connected two-layer MLP, the first layer consists of the inputs, the 
second layer is the output layer that sums the weighted inputs, and then goes 
through the activation function to produce the outputs, the prediction that the 
input image was one of the ten possible digits.  

The architecture of the MLP network is shown in Figure 2 and is described 
here. Because each MNIST image consists of 784 pixels, the input layer consists 
of 784 inputs, 0 1 783, , ,x x x . The second layer, also called the output layer, con-
tains calculation nodes, or neurons, that sum the weighted inputs [16] and send 
their outputs through the activation function to produce the outputs. With 10 
possible outputs (i.e., digits 0 - 9), the network has 10 neurons in the output 
layer, as shown in Figure 2. 

The weights matrix consists of ten weights (one for each possible digit) for 
each of the 784 input pixels. So the system has 784 × 10 = 7840 weights: 
( 0,0 0,1 0,2 0,9 783,0 783,9, , , , , , ,w w w w w w   ). Each weight represents a synaptic 
weight (activating or inhibiting). For example, with one bit of precision, activat-
ing would be 1 and inhibiting 0. But with higher precision, the weight is not bi-
nary but instead has fractional values. So, with 8 bits of precision, the weights 
have 256 fractional values between full activation (the maximum value) and 
complete inhibition (the minimum value). 

Each of the 10 neurons in the output layer corresponds to a given digit (0 - 9) 
and that neuron sums the input pixels using the weights corresponding to that 
digit. The outputs of these summations, called 0 1 9, , ,a a a , are then trans-
formed through an activation function to produce the final outputs. The final 
ten outputs of the MLP system are called 0 1 9, , ,y y y . The outputs give the 
probability that an image is a given digit; for example, 0y  gives the probability 
of the digit being 0, y1 gives the probability of the digit being 1, and so on. For 
example, an output of { } { }0 1 9 0.1,0.2,0.9,0.3,0.1,0.2,0.3,0.1,0.2,0.1, , ,y y y =  
would predict that the handwritten image was the digit 2. 

In this testing or forward propagation process described above, information 
flows from inputs to outputs, as represented by the arrows in Figure 2. During 
the training or back propagation process, the MLP calculates the errors between 
the predicted output probabilities and the actual outputs, provided by the image 
labels (see Figure 1). During back propagation, these errors are used to update  
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Figure 2. 2-layer Multilayer Perceptron Network. 

 
the synaptic weights and biases of each neuron so that the network can classify 
the MNIST characters with high probability. After back propagation is used to 
train the network to correctly classify digits, and after verifying the algorithm 
using the validation dataset, then forward propagation is used to classify new 
data. 

2.1.3. FPGA System 
This section describes the MLP network we built using SystemVerilog [17] on a 
Cyclone IVE FPGA. The system diagram of the MLP network is shown in Fig-
ure 3 and is described in detail in this section. We implemented the network 
using 4-, 5-, 6- and 8-bit precision for all inputs, outputs, and calculations.  

The MLP hardware system (see Figure 3) consists of a UART communica-
tions module, Image/Label RAM, and a Controller that directs the Computation 
Unit. The system also outputs results to a 7-segment display. The UART module 
transmits all training and test images and their labels from the PC to the FPGA. 
The system then stores these data in the Image/Label RAM. After a single image 
and its label are transferred to the FPGA, the Controller module is triggered to 
start either training or testing, depending on whether the system is in backward 
or forward propagation mode (described further in Section 2.1.4). As directed by 
the Controller module, the Computation Unit completes forward or backward 
propagation calculations, as described in Section 2.1.5.  

The Computation Unit reads the weights from the Weights RAM in testing 
mode and both reads and updates the weights in training mode. At startup, the  
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Figure 3. FPGA system architecture. 

 
Weights RAM is initialized to hold random values. During both training and 
testing, the Computation Unit reads the weights from the Weights RAM to per-
form the weighted sum of the inputs. During training, the Computation Unit 
then also calculates the errors between the calculated outputs and the actual val-
ues and updates the Weights RAM with calculated delta weights, as described in 
detail in Section 2.1.5. During this backward propagation process, the weights 
are updated after each training image is processed. 

2.1.4. Controller 
The Controller module manages the two main processes: forward and backward 
propagation. It also displays the target and calculated outputs. Figure 4 shows 
the finite state machine (FSM) of the Controller. In the Idle state, the FSM waits 
for the start signal to assert. After the UART module receives and stores one 
image and its label into the Image/Data RAM, the UART module asserts the 
start signal, thus moving the FSM to the forward (Fwd) state and triggering the 
forward propagation process. After forward propagation computations are com-
plete, if the system is in testing mode, the FSM displays the image label (target 
result) and predicted results ( )0 9, ,y y  on the 7-segment displays and then 
returns to the Idle state to continue processing test images. However, if the sys-
tem is in training mode, the FSM moves from the forward propagation state 
(Fwd) to the backward propagation state (Back) to update the weights in the 
Weights RAM (see Section 2.1.3). After backward propagation is complete, the 
FSM displays the image label and training results on the 7-segment displays and 
then moves to the Idle state to continue processing images, as was done in test-
ing mode. 

2.1.5. Computation Unit 
The Computation unit acts as the ten system neurons by performing the calcula-
tions of the output layer. This unit also updates the weights when the system is 
in training mode. After being triggered by the Controller moving to the forward 
propagation (Fwd) state, the Computation Unit calculates the weighted sums of 
each input (a0-a9, see Equation (1)) and then passes these results through the ac-
tivation function to produce the outputs (y0 through y9, see Equation (2)).  

0 0,0 0 0,1 1 0,783 783

9 9,0 0 9,1 1 9,783 783
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Figure 4. Controller finite state machine (FSM). 
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                         (2) 

If the system is in backward propagation mode, the system still computes the 
outputs (y0 - y9) in the forward state (Fwd) but then also proceeds to the back-
propagation state (Back) to both compute the errors between the outputs and 
target results and update the weights. The error calculation for each digit i, 
where i is 0 to 9, is shown in Equation (3). The values of the actual results, 

itarget , are obtained from the Label RAM. 

i i ierror target y= −                         (3) 

We set the cost function for the training process as: 

( ) ( )21
2i if error error=                       (4) 

This cost function of the errors is then used to update the weights in the 
Weights RAM. The derivative of the cost function with respect to output errors 
is: 
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i

i

f
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∂

=
∂

                       (5) 

However, the errors are first passed through the activation function and then 
multiplied by the input pixels before being used to update the weights. So, we 
need to calculate the derivative of the activation function ( )f y :  
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The change in weights (that will be multiplied by the inputs before being 
added to the weights) is then calculated as given in Equation (7). 

( ) 
i

cost function sigmoid function
change i i

i i

f f
w error f y

error y
∂ ∂

′= ∗ = ∗
∂ ∂

        (7) 

This calculation can then be rewritten as: 

( ) ( )( )1
ichange i i iw error f y f y∗ ∗= −               (8) 

The MLP hardware system calculates the change for each weight by multiply-
ing the input by the calculated weight change, as shown in Equation (9), where 

,i jdeltaw  is the amount to change the weight, i is 0 to 9 for each of the digits, j is 0 
to 783 for each of the pixels in a single image, and jx  are the inputs to the 
MLP, that is, the value of each pixel in the training image. 

,i j idelta j changew x w= ∗                           (9) 

The weights used to process the next image are the updated weights, 
.i jneww , 

shown in Equation (10). 

. , ,i j i j i jnew old deltaw w w= +                         (10) 

The calculations for forward and backward propagation are summarized in 
Equation (11) and Equation (12), respectively. 

0,0 0 0,1 1 0,783 7830

1,0 0 1,1 1 1,783 7831
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w x w x w xy
w x w x w xy

f

w x w x w xy

 + + +    
     + + +     =     
      + + +         










              (11) 

( ) ( ) ( )
, ,

1
i j i jnew old j i i iw w x error f y f y = + ∗ ∗ ∗ −               (12) 

2.2. Three-Layer Offline Training MLP Neural Network 

The 3-layer MLP network has higher prediction accuracy than the 2-layer MLP 
network described in Section 2.1. The additional layer in the 3-layer MLP net-
work includes more trainable parameters. This added complexity enables in-
creased prediction accuracy, but it also increases the circuit complexity and size. 
For this reason, we train the network in software and only implement the for-
ward propagation path in hardware on an FPGA. 

2.2.1. Network Architecture 
The architecture of the 3-layer MLP network is shown in Figure 5. It is based on 
the structure of the 2-layer MLP network introduced in Section 2.1. In addition 
to input and output layers, the system includes one hidden layer, which contains 
128 neurons. Because each MNIST image consists of 784 pixels, the input layer 
has 784 inputs, 0 1 783, , ,x x x . The second layer, also called the hidden layer, 
contains 128 calculation nodes, or neurons, that sum the weighted inputs and 
send their outputs through the activation function to the output layer. Again, the 
10 neurons in the output layer sum the weighted inputs from the hidden layer  
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Figure 5. 3-layer Multilayer perceptron network. 
 
and then pass them through the activation function to produce the outputs. 
With ten possible outputs (i.e., digits 0 - 9), the network has ten neurons in the 
output layer, as shown in Figure 5. In addition to the weights between the two 
fully connected layers, we also add biases ( )1b  and ( )2b  for each non-output 
layer. As shown in equations (13) and (15), in the calculation of the following 
layer, weights control that how much any given layer input affects the output, 
and biases act as an offset. 

2.2.2. FPGA System 
The FPGA system architecture of the 3-layer neural network is similar to the 
architecture of the 2-layer neural network introduced in Section 2.1, but simpler.  

As shown in Figure 6, we save weights obtained through training in software 
in the Weights RAM upon initialization of the system. After the system begins, it 
receives testing images and their labels from a PC through the UART. At the 
same time, the system reads the weights generated during training from the 
Weights RAM. After all the input data is loaded into memory on the FPGA, the 
data is passed through the layers and the predicted value is calculated. After each 
image is processed, the predicted digit and the image’s label are shown on 
7-segment displays on the FPGA board. 
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Figure 6. FPGA system architecture. 

2.2.3. Controller 
The controller module manages the dataflow during forward propagation and its 
main module is the finite state machine (FSM) defined by the state transition 
diagram in Figure 7. In the Idle state, the FSM waits for the start signal to assert. 
After the UART module receives and stores one image and its label into the Im-
age/Data RAM, the UART module asserts the start signal, thus moving the FSM 
to the forward (Fwd) state and triggering the forward propagation process. After 
forward propagation computations are complete, the FSM displays the image 
label and predicted results ( )0 1 9, , ,y y y  on the 7-segment displays and then 
returns to the Idle state to continue processing the next image. 

2.2.4. Computation Unit 
This section describes the calculations performed by the 3-layer MLP during 
both forward and backward propagation. Because the multiplication of layer in-
put and weights, summation, and activation happen in each pair of fully connected 
layers, the 3-layer MLP’s computation unit requires more calculations than the 
2-layer MLP network. The 3-layer MLP network has 128 neurons in the hidden 
layer, and one bias ( ( ) ( )1 2,b b ) in each non-output layer. The computation unit 
calculates the weighted ( ( )1

0,0w  through ( )1
127,783w ) sums of each input ( ( )1

0L  through 
( )1
127L , see Equation (13)) and then passes these results through the activation 

function to produce the hidden layer ( ( )1
0y  through ( )1

127y , see Equation (14)). 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1
0 0,0 0 0,1 1 0,783 783

1 1 1 1 1
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=

                      (14) 

These results, ( )1
0y  through ( )1

127y , are then passed to the output layer and 
multiplied with another batch of weights ( ( )2

0,0w  through ( )2
9,127w ). Their sums 

( ( )2
0L  through ( )2

9L , see Equation (15)) are then passed through the activation 
function to produce the output layer ( ( )2

0y  through ( )2
9y , see Equation (16)). 
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Figure 7. Controller finite state machine (FSM). 

 
( ) ( )( )

( ) ( )( )

2 2
0 0

2 2
9 9

y Sigmoid L

y Sigmoid L

=

=

                       (16) 

For backward propagation, the error calculation for each digit i (where i is 0 
to 9) is shown in Equation (17). The values of the actual results, itarget , are ob-
tained from the Label RAM (as shown in Figure 6). 

( ) ( )2 2
i i ierror target y= −                      (17) 

with the same theory introduced in A.5, the change of the hidden layer weights 
( )2

ichangew  is then calculated as given in Equations (18) and (19). 

( )
( ) ( )

( ) ( )( )  2 2 2
2 2i

cost function sigmoid function
i ichange

i i

f f
w error f y
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∂ ∂
′= ∗ = ∗

∂ ∂
      (18) 

( ) ( ) ( )( ) ( )( )( )2 2 2 21
i i i ichangew error f y f y= ∗ ∗ −              (19) 

Having calculated the layer weight changes and using the learning rate η , the 
new bias of the hidden layer, ( )2

newb , is calculated using Equation (20). 
( ) ( ) ( )22 2

inew old changeb b wη= + ∗                      (20) 

According to the chain rule, to back-propagate ( )2
ichangew  to the hidden layer 

weights, we need to multiply the derivative of the weights in Equation (15). In 
Equation (15), the hidden layer weights are multiplied with hidden layer inputs, 
therefore, we need to multiply the weight changes by the inputs of the hidden 
layer ( )1

jy , in order to get ( )
,

2
i jdeltaw  (see Equation (21)). 
( ) ( ) ( )

,

2 2 1
i j i jdelta changew w y= ∗                      (21) 

Then we can produce new hidden layer weights by adding the multiplication 
of weight deltas and learning rate (see Equation (22)). 
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( ) ( ) ( )
, , ,

2 2 2
i j i j i jnew old deltaw w wη= + ∗                      (22) 

Similar to the error calculation in the output layer, we must also calculate the 
errors for the hidden layer neurons. But unlike the output layer, we cannot calculate 
these errors directly because we do not have a target, so we back-propagate them 
from the output layer. This is done by taking the errors from the output neurons 
and running them back through the weights to produce the hidden layer errors 
(see Equation (23), where m is 0 to 9 for each of the digits). 

( ) ( ) ( )( ) ( )( )( )( ) ( ) ( )( ) ( )( )( ),

1 22 2 2 1 1* 1 1
m i ji i i m mchange oldw error f y f y w f y f y= ∗ − ∗ ∗ ∗ −  (23) 

Having obtained the weight changes for ( )1w , we calculate the new bias ( )1
newb   

and weights ( )
,

1
m ndeltaw  for the input layer using the same method described for  

the hidden layer – see Equations (24) to (26), where n is 0 to 783 for each of the 
input pixels. 

( ) ( ) ( )11 1
inew old changeb b wη= + ∗                        (24) 

( ) ( )
,

1 1
m n m ndelta changew w x= ∗                        (25) 

( ) ( ) ( )
, , ,

1 1 1
m n m n m nnew old deltaw w wη= + ∗                     (26) 

These biases and weights are updated each time the system processes a new 
training image. 

2.3. Activation Function 

Activation functions in neural networks produce the decision boundary of the 
neuron output, which decide whether the neuron should be activated or not. So 
an activation function inhibits low inputs and accentuates high inputs. Com-
monly used activation functions include sigmoid, ReLU, Softmas and tanh func-
tions. In this way, activation functions reflect neuron behavior, where neurons 
require an input above some threshold to activate. 

2.3.1. Sigmoid Function 
A popular activation function is the sigmoid function shown in Equation (27) 
and Figure 8. As with other commonly used activation functions, such as Soft-
max and tangent functions, it is highly compute intensive. Along with the high 
prediction accuracy when using sigmoid function as the activation in MLP neur-
al networks, another consideration is that it can be easily differentiated (see Eq-
uation (6)), which is required for the training process. 

( ) 1
1 e xf x −=
+

                        (27) 

Figure 9 shows the sigmoid function with 9 bits of precision. The inputs of 
the function vary from −256 to 255 instead of 0 to 1 as would be the case with 
1-bit precision. An input of −256 indicates complete inhibition and an input of 
255 indicates full activation. So, for example, an input of −256 to the sigmoid  
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Figure 8. Sigmoid function. 

 

 
Figure 9. Sigmoid function and its approximation using PLAN. 

 
function would result in an output very close to 0; an input of 0 would result in 
an output of 16, which means approximately half inhibition and half activation. 
The sigmoid function also rescales the output to only positive values in a range 
of 0 to 32, where 0 indicates inhibition and 32 is fully activated. So, as shown, the 
sigmoid function mimics neuron behavior by accentuating high values and mi-
nimizing low values, as desired. 

Table 1 shows the output y as a function of the input a given several input  
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Table 1. Implementation of PLAN [18]. 

Output: y = F(a) Input Value 

y' = 32 |a| ≥160 

y' = 0.03125a * a + 27 76 ≤ |a| < 160 

y' = 0.125b * a + 20 32 ≤ |a| < 76 

y' = 0.25c * a + 16 0 ≤ |a| < 32 

y = y' a ≥ 0 

y = 32 –y' a < 0 

Right shift 5 bits; bright shift 3 bits; cright shift 2 bits. 

 
ranges. So, for example, if the input is 16, the output would be 20. Thus, the 
PLAN approximation replaces the exponential and division operations (see Eq-
uation (27)) with multiplication and addition. 

2.3.2. D-ReLU Function 
This section introduces our D-ReLU activation function and contrasts it with the 
most common activation functions used in MLP networks: the ReLU, leaky Re-
LU, parametric ReLU (P-ReLU), and Randomized Leaky ReLU functions.  

The conventional ReLU function [3], which is shown in Equation (28) and 
Figure 10, is a piecewise function. It keeps the positive values unchanged, and 
outputs zero for negative inputs. Depending on the range of inputs, this beha-
vior can be problematic. If most of the numbers in a batch are positive, too 
much redundant information is retained and this results in wider bit-width cal-
culations or overflow for proceeding calculations. On the other hand, if most of 
the numbers are negative, zero is output for them and too much useful informa-
tion is discarded. This would prohibit the network from learning and potentially 
even cause the network’s death.  

0, if 0
, if 0

y x
y x x
= <
= ≥

                         (28) 

To address the problem of losing too much information, a few prior papers 
[5] [6] suggested modified ReLU functions, particularly the Leaky ReLU, Para-
metric ReLU, and Randomized Leaky ReLU functions. As shown in Figure 11 
and Figure 12. All of these modified ReLU functions tried to fix the negative 
input case. When the input is negative, instead of outputting zero, they would 
output the multiplication of the input with a smaller parameter. The difference 
among them is, this parameter could be fixed (Leaky ReLU), learnable (Parame-
tric ReLU), or random (Randomized Leaky ReLU). This parameter was fixed in 
the testing stage in all three of these modified ReLU functions. 

To alleviate the disadvantages in conventional ReLU and modified ReLU 
functions, we propose the dynamic ReLU (D-ReLU) function, with a dynamic 
threshold that changes in real-time. The two types of D-ReLU functions are the 
1) middle D-ReLU—where the threshold is the middle of the range of numbers 
in each layer input; and 2) mean D-ReLU—where the threshold is the average of  
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Figure 10. Conventional ReLU function. 

 

 
Figure 11. Leaky ReLU/Parametric ReLU function [5]. 

 

 
Figure 12. Randomized Leaky ReLU function [6]. 
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the numbers in each layer input. For example, suppose the value range of the 

inputs is from −4 to 8, the calculated threshold would be 4 8 2
2

− +
=  for the  

middle D-ReLU; The mean D-ReLU, on the other hand, uses the mean value of 
all of the inputs. In this way, the system could discard redundant information 
and preserve useful information dynamically, based on the pixel values of each 
image. Positive and negative threshold ReLU functions are shown in Figure 13. 

We replace the sigmoid function from Section 2 with our novel D-ReLU function. 
During forward propagation, the threshold of the D-ReLU function changes dy-
namically. Before activating the outputs of the hidden layer and of the output 
layer, the D-ReLU function calculates the range of activation function inputs and 
sets the middle or mean value of the inputs as the current threshold. Each layer 
shares the same threshold at any given time, and this threshold changes when 
the network processes a new image—during training, validation, or testing. 

2.3.3. Backward Propagation of the D-ReLU Function 
While the calculations of backward propagation in the D-ReLU function are 
similar to those described for the sigmoid function in Section 2.2.4, in many 
cases the calculations are simpler, as described here. 

Because the D-ReLU function is a piecewise function, we need to find the de-
rivative of its two segments. As shown in Figure 13, when the input is smaller 
than the threshold, the output would always be the threshold value. So in this 
case, the derivative is 0. When the input is equal to or larger than the threshold, 
the slope of the function is 1, i.e., the derivative is 1. In this way, the backward 
propagation calculations of the network change from those in Equation (18) and 
Equation (19) for the sigmoid function to Equation (29) and Equation (30) for 
the D-ReLU function. 

 

 
Figure 13. ReLU function with positive (left) and negative (right) thresholds. 
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( )
( )

0, if

1, if

f y y threshold

f y y threshold

′ = <

′ = ≥
                   (29) 

( )

( ) ( )

2

2 2

0, if

, if
i

i

ichange

i ichange

w y threshold

w error y threshold

= <

= ≥
               (30) 

And the ( )1
changew  from Equation (23) becomes the much simpler Equation (31). 

( )

( ) ( ) ( )
,

1

1 22

0, if or

, if or
m

m i j

i mchange

i i mchange old

w y y threshold

w error w y y threshold

= <

= ≥∗
        (31) 

As shown above, using the D-ReLU derivative during back propagation, in-
stead of the more complex sigmoid derivative, means that we multiply with ei-
ther 0 or 1. Thus, using the D-ReLU simplifies the calculations and reduces the 
required hardware and calculation time. 

3. Results and Discussion 

The experimental results described in this section show that neural networks 
implemented on an FPGA result in lower execution time and lower clock fre-
quency without loss in prediction accuracy, which also indicates potential power 
saving. Moreover, by comparing different bit-widths of 2-layer MLP networks 
on FPGA, we can obtain different hardware resource saving solutions. At last, by 
applying the D-ReLU function, we can further improve these networks’ perfor-
mance on an FPGA.  

3.1. Two-Layer Online Training MLP Neural Network 

This section compares the prediction accuracy and execution time of the soft-
ware solution with our proposed 2-layer Online Training MLP Neural Network 
and discusses the FPGA area requirements with varying bits of precision.  

3.1.1. Prediction Accuracy 
The prediction accuracy of the 4-, 5-, 6- and 8-bit hardware designs vary from 73 
- 89% as compared to the 32-bit precision software implementation that achieves 
a prediction accuracy of 68-89%, depending on the number of training images. 
Figure 14 summarizes these results. The horizontal axis shows the number of 
training images (up to 55,000), and the vertical axis represents the prediction 
accuracy, the percentage of correct predictions using 10,000 test images. The 
8-bit FPGA solution’s prediction accuracy reaches (and slightly exceeds) that of 
the 32-bit software solution when using the maximum number of training im-
ages (55,000). Moreover, it has double the convergence speed—the 8-bit FPGA 
solution requires only 20,000 training images to achieve the highest prediction 
accuracy, while the 32-bit software solution requires 40,000 training images to 
converge.  

Further reducing the bits of precision results in only 6% - 11% drops in pre-
diction accuracy (when using 55,000 training images), as shown in Figure 14 
and summarized in Table 2. Compared with the 8-bit hardware solution, the  
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Figure 14. Software solution prediction accuracy vs. FPGA solutions prediction accuracy. 
 
Table 2. Prediction accuracy.  

Implementation Average Prediction Accuracy 

32-bit software 89% 

8-bit FPGA 89% 

6-bit FPGA 83% 

5-bit FPGA 78% 

4-bit FPGA 80% 

 
6-bit solution’s prediction accuracy drops by only 6%, and the 5- and 4-bit solu-
tions have accuracies that are only 9 - 11% lower than the 8-bit solution. So, re-
ducing the precision by 50% from 8 bits to 4 bits results in a prediction accuracy 
decrease of only 9%. Table 2 shows that accuracy is not affected when decreas-
ing precision from 32 to 8 bits, but additional decreases in precision cost ap-
proximately 4% in prediction accuracy per bit decrease in precision. 

3.1.2. Performance 
The performance differences, as measured by execution time in hardware or 
software, are summarized in Table 3. The clock frequency of the software solu-
tion is the CPU frequency (3.6 GHz), and the clock frequency of the FPGA de-
signs (25 MHz) is the highest frequency at which the designs can run on the 
Cyclone IVE FPGA. The execution time measured includes both training and 
testing time when using 55,000 training images and 10,000 test images. Execu-
tion time of both the software and hardware designs is almost identical: 3.7 
seconds in software and 3.8 seconds for each FPGA solution.  
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Table 3. Performance.  

Solution Clock Frequency Execution Time Performance 

Software 3.6 GHz 3.7 seconds 1× 

Hardware 25 MHz 3.8 secondsd 140× 

dIncludes calculation time for forward and backward propagation (but not UART transfer). 

 
While the FPGA hardware designs complete the computations in essentially 

the same time as the software implementation, the clock frequency of the soft-
ware implementation is 144 times faster than that of the FPGA designs. Thus, to 
compare solutions running at the same frequency, the hardware solution run-
ning at 3.6 GHz would have a performance 140 times faster (144 × 3.7 s/3.8s) 
than the software solution. On the other hand, keeping the lower frequency of 
the hardware design produces an approximate 140× decrease in power con-
sumption for training and testing calculations, using the relationship that power 
is proportional to operating frequency. Thus, the FPGA hardware designs offer 
higher performance or lower power alternatives when compared to the software 
implementation. 

3.1.3. FPGA Area 
The FPGA area requirements for the MLP hardware design using 4, 5, 6, and 8 
bits of precision are 20 - 34 k logic elements (LEs). Table 4 summarizes the FPGA 
area requirements of each hardware design as well as the percent use of the 
FPGA’s total LEs. As expected, lower bit width solutions require fewer logic ele-
ments, with the 4-bit solution using about 40% less area than the 8-bit solution. 

Figure 15 shows the FPGA area usage (relative to the 8-bit version) versus 
prediction accuracy for varying bit width solutions when using 55,000 training 
images and 10,000 test images. The 6-bit solution uses 24% fewer logic elements 
than the 8-bit solution, and its accuracy only decreases by 6% (from 89% to 
83%), as shown in Figure 15. The 5-bit solution saves another 11% of the logic 
elements compared with the 6-bit solution but only has a 5% prediction accuracy 
drop (from 83% to 78%). The 4-bit design requires 6% fewer logic elements than 
the 5-bit design while maintaining prediction accuracies similar to that design. 
Figure 15 shows the actual prediction accuracy decrease with decreasing preci-
sion as well as a trend line. As the trend line shows, from 8-bit precision to 4-bit 
precision, the prediction accuracy drops 11% (from 89% to 78%), and the area 
decreases by 41%. So area decreases at approximately 4% per percent decrease in 
prediction accuracy. 

Figure 16 shows data width versus area and a trend line for each FPGA MLP 
design. As depicted in the figure, the trend line shows that area grows at ap-
proximately 10% per bit of precision. 

However, in many cases, online training is not always necessary. For example, 
for image recognition on mobile phone, we just need to train the network on a 
server or cloud and the mobile phone need only perform the testing function, 
thus reducing the hardware and power requirements of the mobile phone. Table 5  
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Table 4. Fpga area of training and testing. 

FPGA Solution Logic elements (% usee) 

8-bit 34 k (29%) 

6-bit 26 k (23%) 

5-bit 22 k (19%) 

4-bit 20 k (17%) 

eIntel’s Cyclone IVE FPGA. 

 

 
Figure 15. Prediction accuracy (percentage of correct predictions) vs. FPGA area (relative 
to 8-bit version) for the 4-, 5-, 6-, and 8-bit MLP FPGA designs. 
 

 
Figure 16. Data width vs. FPGA area (number of FPGA logic elements). 
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Table 5. FPGA area of testing (forward propagation). 

FPGA Solution Logic elements (% usef) 

8-bit 27 k (24%) 

6-bit 21 k (18%) 

5-bit 17 k (15%) 

4-bit 14 k (12%) 

fIntel’s Cyclone IVE FPGA. 

 
shows the FPGA area requirement of the 2-layer MLP network when working on 
different data widths after removing the training hardware. On average, includ-
ing only the testing hardware requires 20% less hardware than including both 
testing and training hardware. 

Additional advantages of offline training are described in Section 3.2. 

3.2. Two- and Three-Layer Offline Training MLP Neural Networks 

The advantages of the D-ReLU function over the sigmoid function are that it has 
lower execution time in software, requires less area in hardware, and is poten-
tially more power-efficient with little loss in prediction accuracy, as described in 
detail in this section. 

3.2.1. Prediction Accuracy 
This section compares the prediction accuracy of networks using the sigmoid or 
D-ReLU activation function. Note that the designs are all trained in software and 
then tested in either software or hardware. The software designs use 32-bit 
floating point calculations, and the FPGA implementations use 8-bit fixed-point 
calculations. The system preprocesses the input image data and parameters as 
8-bit integers before sending them to the FPGA. 

As shown in Table 6, the 3-layer MLP network with the sigmoid activation 
function has higher prediction accuracy than the 2-layer MLP network we built 
in Section 2.1. The prediction accuracy increases by 6.5% by adding one more 
layer, adjusting the biases associated with each non-output layer, and adjusting 
the learning rate η . The prediction accuracy of the 3-layer MLP network with a 
sigmoid activation function achieves 95.5% prediction accuracy, which is 6.5% 
higher than the 2-layer MLP network in Section 2.1. 

When working in software, the three 2-layer MLP networks achieve similar 
accuracies (~90%) across platforms and type of activation function. The accura-
cies of the 3-layer MLP network using the middle D-ReLU function achieves 
92.9% prediction accuracy, only 2.6% less than the 95.5% of the network using 
the sigmoid activation function. The accuracies of the 3-layer MLP network with 
mean D-ReLU activation function are even slightly higher than the networks 
with sigmoid activation function. 

When working on an FPGA, the prediction accuracies are not affected by the 
data and parameter preprocessing. The 2-layer MLP network has the same  
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Table 6. Prediction accuracy. 

 2-layer MLP 3-layer MLP 

w/ sigmoid in software 90.2% 95.5% 

w/ middle D-ReLU in software 90.0% 92.9% 

w/ mean D-ReLU in software 90.0% 95.8% 

w/ sigmoid in hardware (on an FPGA) 90.3% 95.6% 

w/ middle D-ReLU in hardware (on an FPGA) 89.6% 92.7% 

w/ mean D-ReLU in hardware (on an FPGA) 89.6% 96.0% 

 
prediction accuracy (~90%) whether implemented in software or built using an 
FPGA. The 3-layer MLP networks achieve similar prediction accuracies for both 
hardware and software implementations: ~95% when using the sigmoid activa-
tion function and ~93% and ~96% when using the D-ReLU activation function. 

3.2.2. Performance 
This section compares the execution time and power consumption of the MLP 
networks across activation functions (sigmoid vs. D-ReLU) and across platforms 
(software vs. hardware).  

First, we consider only the software implementations of the networks. As ex-
pected, networks using the D-ReLU activation function have faster execution 
times than those using sigmoid activation functions. As discussed in Section 2.3, 
the calculations of the D-ReLU function are much simpler than the sigmoid 
function, so it requires less computation, and thus less execution time. As shown 
in Table 7 and Table 8, compared with the systems using the sigmoid activation 
functions, the 2-layer MLP network with the D-ReLU function executes 14% 
faster, and the 3-layer MLP network with the D-ReLU function is 57% faster. 
Note that the execution time accounts for forward propagation time only be-
cause training is completed in software for all systems. 

When built in hardware on an FPGA, the activation function used does not 
affect execution time, but all four MLP networks show potential for lower power 
consumption in the FPGA design over the software implementation due to faster 
execution times and lower system clock frequency. As shown in Table 7 and 
Table 8, the execution time of the 2-layer MLP network is 145 and 125 times 
less, respectively when using sigmoid and D-ReLU functions, than their software 
solutions. Similarly, the execution time of the 3-layer MLP network is 66 and 29 
times less, respectively when using sigmoid and D-ReLU functions, than their 
software solutions. Moreover, the 2-layer MLP networks’ FPGA clock frequency 
is 14.4 times slower than the software frequency, and the 3-layer MLP networks’ 
FPGA clock frequency is 60 times slower than the software clock frequency. Us-
ing the relationship that power is proportional to operating frequency, hardware 
designs require about 14.4× and 60× less power due to clock speed alone. When 
combining the effects of both decreased execution time and decreased clock fre-
quency of the FPGA design over the software implementation, these four MLP 
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networks offer a potential of more than a 1700× decrease in power consumption 
when working on an FPGA. Thus, the FPGA hardware designs offer higher per-
formance or lower power alternatives when compared to software implementa-
tions. 

3.2.3. FPGA Area 
The D-ReLU activation function requires less area and fewer computation cycles 
than the sigmoid activation function when built on an FPGA. In order to high-
light the contribution of the two kinds of activation functions, we compare the 
FPGA area of each network’s computation unit only. As shown in Table 9, 2- 
and 3-layer MLP networks using the D-ReLU function use 41% and 24% less 
area, respectively, compared with networks using the sigmoid activation func-
tion. Moreover, the D-ReLU function uses two fewer clock cycles to complete 
the calculations in each layer than the sigmoid activation function.  

By reducing the data width from 8 bits to 6, 5, and 4 bits as we did in Section 
2.1, we can also get a similar trend of trading off prediction accuracy for FPGA 
area. As shown in Table 10, if we reduce the precision from 8 to 4 bits for the 
two types of 3-layer neural networks, the prediction accuracy of the networks 
drop by only 2.7% and 4.8% respectively. At the same time, their FPGA area re-
quirements reduced by 28% and 9% respectively.  

Figure 17 and Figure 18 show the data width versus area and a trend line for  
 
Table 7. 2-layer MLP execution time and power. 

 Clock Frequency Execution Time Power Saving 

w/sigmoid in SW 3.6 GHz 2.9 seconds 1.0× 

w/D-ReLU in SW 3.6 GHz 2.5 seconds 1.2× 

w/sigmoid in HW 250 MHz 0.02 seconds 2088× 

w/D-ReLU in HW 250 MHz 0.02 seconds 1800× 

 
Table 8. 3-layer MLP execution time and power saving.  

 Clock Frequency Execution Time Power Saving 

w/sigmoid in SW 3.6 GHz 9.9 seconds 1.0× 

w/D-ReLU in SW 3.6 GHz 4.3 seconds 2.3× 

w/sigmoid in HW 60 MHz 0.15 seconds 3960× 

w/D-ReLU in HW 60 MHz 0.15 seconds 1740× 

 
Table 9. FPGA area. 

FPGA Solution 
Logic Elementsg 

2-layer MLP 3-layer MLP 

w/sigmoid 308 564 

w/D-ReLU 183 428 

gIntel’s Cyclone IVE FPGA. 
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Table 10. FPGA area. 

FPGA Solution Bit Precision Logic Elementsh Prediction accuracy 

3-layer network 
w/sigmoid 

8-bit 564 95.6% 

6-bit 495 95.1% 

5-bit 459 94.7% 

4-bit 404 92.9% 

3-layer network 
w/D-ReLU 

8-bit 428 92.7% 

6-bit 416 90.3% 

5-bit 407 88.6% 

4-bit 386 87.9% 

hIntel’s Cyclone IVE FPGA. 

 

 
Figure 17. Data width vs. FPGA area of 3-layer network with sigmoid. 

 

 
Figure 18. Data width vs. FPGA area of 3-layer network with D-ReLU. 
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each network implemented on an FPGA. As depicted by the trend lines, the 
FPGA area of the 3-layer network with sigmoid function grows by ~9% per bit 
of precision, and the FPGA area of the 3-layer network with the D-ReLU func-
tion grows by ~3% per bit of precision. 

4. Conclusions 

The FPGA hardware design of the MLP learning network presented here offers a 
high-performance, low power alternative to traditional software methods. The 
8-bit hardware design of the 2-layer online training MLP neural network per-
forms with similar execution time (3.8 seconds) and prediction accuracy (89%) 
as the 32-bit software solution running at a clock speed 144 times greater than 
the hardware design (3.6 GHz vs. 25 MHz). This difference in clock frequency 
indicates that the hardware solution offers either lower power consumption or 
potential increased performance of 144 times, at no cost to prediction accuracy, 
as compared to the software solution. Furthermore, a reduction in precision 
from 32 to 8 bits results in no decrease in prediction accuracy. Additional reduc-
tions in precision below 8 bits result in only small reductions in prediction ac-
curacy (4% prediction accuracy reduction per bit of reduced precision), mod-
erate area decreases (10% decreased area per bit of precision), and a resulting 
area decrease that falls off more quickly than the decrease in prediction accuracy 
(4% decrease in area per percent decrease in prediction accuracy).  

The D-ReLU activation function proposed in this paper offers a more flexible 
and accurate algorithm than the traditional ReLU function. It also results in a 
faster, more power-efficient design when compared to the software implementa-
tion without incurring loss in prediction accuracy. Compared with networks us-
ing sigmoid activation functions, networks using the proposed D-ReLU activa-
tion function are 57% faster during the testing phase and use 41% less FPGA 
area. Furthermore, if we reduce the bit precision of the 3-layer neural networks, 
their prediction accuracies drop by only 2.7% and 4.8% with 28% and 9% FPGA 
area savings. Moreover, because they operate at a lower clock frequency and re-
quire less execution time, FPGA solutions of MLP networks offer a low power 
alternative to traditional software methods. In this paper, MLP networks imple-
mented on an FPGA offered the potential of being 1700× more power efficient 
than comparable software solutions. 

In all, FPGA solutions of neural networks provide fast, power efficient, low-cost 
and portable alternatives to the software solutions, which could be integrated 
into low-power portable devices in the future. Moreover, FPGA solutions offer 
flexible, customizable, and secure solutions that protect privacy, which could be 
integrated into customized FPGA/ASIC SoC systems with ease. 
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