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Abstract 
We first recall the sufficient conditions for the existence of a periodic output 
of a modified Elman neural network with a periodic input found by using 
Mawhin’s continuation theorem of coincidence degree theory. Using this re-
sult, we obtain sufficient conditions for the existence of a periodic output for 
an output hidden feedback Elman neural network with a periodic input. Ex-
amples illustrating these sufficient conditions are given. 
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1. Introduction 

Artificial neural networks are computational paradigms which implement sim-
plified models of their biological counterparts, biological neural networks. Bio-
logical neural networks are the local assemblages of neurons and their dendritic 
connections that form the (human) brain. Accordingly, artificial neural net-
works are characterized by 
• local processing in artificial neurons (or processing elements); 
• massively parallel processing, implemented by rich connection pattern be-

tween processing elements; 
• the ability to acquire knowledge via learning from experience; 
• knowledge storage in distributed memory, the synaptic processing element 

connections. 
Neural networks process information in a similar way the human brain does. 

The network is composed of a large number of highly interconnected processing 
elements (neurons) working in parallel to solve a specific problem. Neural net-
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works learn by example. 
An important application of neural networks is pattern recognition. Pattern 

recognition can be implemented by using a feed-forward neural network that 
has been trained accordingly. During training, the network is trained to associate 
outputs with input patterns. When the network is used, it identifies the input 
pattern and tries to output the associated output pattern. The power of neural 
networks comes to life when a pattern that has no output associated with it, is 
given as an input. In this case, the network gives the output that corresponds to a 
taught input pattern that is least different from the given pattern. 

Elman neural network [1] is a kind of recurrent neural network. Compared 
with traditional neural networks, an Elman neural network has additional inputs 
from the hidden layer, which forms a new layer—the context layer. So the stan-
dard back-propagation algorithm used in Elman neural network is called Elman 
back-propagation algorithm. Elman neural network can be applied to solve pre-
diction problems of discrete time sequences [2] [3] [4]. 

The Elman neural network is one of the most widely used and most effective 
neural network models in artificial neural networks and has powerful processing 
ability for nonlinear decisions [5] [6]. The Elman neural network can be consi-
dered as a special kind of feed forward neural network with additional memory 
neurons and local feedback. Because of its better learning efficiency, approxima-
tion ability, and memory ability than other neural networks, the Elman neural 
network can not only be used in time series prediction, but also in system identi-
fication and prediction [4] [7] [8] [9] [10]. 

Shi et al. [11] proposed Output Hidden Feedback (OHF) Elman neural net-
work based on modified Elman neural network [7] by introducing a feedback 
between the output layer and an additional, output context layer. 

The existence of periodic solutions is a classical problem of the qualitative 
theory of differential and difference equations. Numerous papers have been de-
voted to the existence of periodic solutions of different kinds of neural networks 
with continuous and discrete time. In [12], sufficient conditions were found for 
the existence and global exponential stability of a class of Hopfield neural net-
works with periodic impulses and finite distributed delays. In [13], the authors 
found sufficient conditions for the global exponential periodicity of a discrete-time 
counterpart of a bidirectional associative memory neural network. In [14], suffi-
cient conditions are obtained for the existence and global asymptotic stability of 
periodic solutions for delayed complex-valued simplified Cohen-Grossberg neural 
networks. 

In [15] [16], for two different classes of Hopfield-type neural networks with 
periodic impulses and finite distributed delays we introduced discrete-time coun-
terparts. Using different methods, we found sufficient conditions for the exis-
tence and global exponential stability of a unique periodic solution of the dis-
crete systems considered. In [17], sufficient conditions were found for the exis-
tence of periodic solutions for the discrete-time counterpart of a neutral-type 
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cellular neural network with time-varying delays and impulses. In [18], we found 
sufficient conditions for the existence of periodic solutions for the discrete-time 
counterpart of a complex-valued Hopfield neural network with time-varying de-
lays and impulses. In [19], we proved the global exponential periodicity of a class 
of Hopfield neural networks with distributed delays and impulses. In our recent 
paper [20], we obtained sufficient conditions for the existence of a periodic out-
put of a modified Elman neural network with a periodic input by using Maw-
hin’s continuation theorem of coincidence degree theory [21]. 

In the present paper, we consider an OHF Elman neural network [4] with a 
periodic input. Using the result of [20], we find sufficient conditions for the exis-
tence of a periodic output of the neural network considered. Furthermore, for a 
subclass of these OHF Elman neural networks, we shall find the periodic output in 
a straightforward way using another sufficient condition. Examples illustrating 
these sufficient conditions are given. The calculations are done using MATLAB. 

2. Preliminaries: Modified Elman Neural Network 

Here we recall the results of our paper [20]. We consider a modified Elman 
neural network with r nodes in the input layer, n nodes in the hidden and context 
layers, respectively, and m nodes in the output layer, which adds a self-feedback 
factor α, 0 1α< < , in the context nodes, based on the traditional Elman neural 
network [4] [10]. Its mathematical model is: 

( ) ( ) ( )
1 1

1 , 1, , ,
n r

C
i i ij j ij j

j j
x k f a x k b u k i n k

= =

 
= + − = ∈ 

 
∑ ∑         (1) 

( ) ( ) ( )1 1 , 1, , ,C C
i i ix k x k x k i n kα= − + − = ∈            (2) 

( ) ( )
1

, 1, , .
n

i i ij j
j

y k g c x k i m k
=

 
= = ∈ 

 
∑                (3) 

Here   is the set of all positive integers, the input u is an r-dimensional 
vector, the output x of the hidden layer and the output Cx  of the context 
nodes are n-dimensional vectors, while the output y of the output layer is an 
m-dimensional vector. The weights ija , ijb , and ijc  respectively of the context 
nodes, input nodes and hidden nodes are entries of n n× -, n r× - and m n×
-dimensional matrices, respectively; if , 1,i n= , are the transfer functions of 
the hidden layer often taken as sigmoid functions, ig , 1,i m= , are the transfer 
functions of the output layer and are often taken as linear functions. An Elman 
neural network with 2r = , 3n =  and 4m =  is depicted in Figure 1. The 
values of the numbers r, n and m in Figure 1 and Figure 2 and Examples 1 and 
2 are chosen quite small for the sake of simplicity. 

Clearly, for a given input ( )u k , { }0k ∈  , and initial values ( )0x , 
( )0Cx , we can find the output ( )y k , k ∈ , from Equations (1)-(3). 

Now suppose that the input ( )u k  is N-periodic for some N ∈ , that is, 
( ) ( )u k N u k+ = , { }0k ∈  . We shall look for sufficient conditions for the 

existence of an N-periodic output ( )y k , k ∈ . This means that, for a suitable  
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Figure 1. An Elman neural network with 2r = , 3n =  and 4m = . 

 
choice of the initial values ( )0x , ( )0Cx , the output ( )y k  is N-periodic. For 
this purpose, it suffices that the output ( )x k  of the hidden layer is N-periodic. 
From now to the end of the present section, we restrict our attention to Equa-
tions (1), (2). 

Further on, for convenience, we consider Equations (1), (2) for k ∈ , that is, 

( ) ( ) ( )
1 1

1 , 1, , ,
n r

C
i i ij j ij j

j j
x k f a x k b u k i n k

= =

 
= + − = ∈ 

 
∑ ∑          (4) 

( ) ( ) ( )1 1 , 1, , ,C C
i i ix k x k x k i n kα= − + − = ∈             (5) 

where   is the set of all integers. We assume that ( ) ( )u k N u k+ =  for 
k ∈ . Sufficient conditions for the existence of an N-periodic solution ( )x k , 
k ∈ , of Equations (4), (5) are given below. 

We make the following assumptions: 
A1. 0 1α< < . 
A2. There exist positive constants iL , 1,i n= , such that 

( ) ( )i i i i i i if x f x L x x− ≤ −   for all ,i ix x ∈  , 1,i n= .       (6) 

A3. There exists a positive integer N such that 

( ) ( )i iu k N u k+ =  for all k ∈ , 1,i r= .             (7) 

A4. 
1, 1

1min 1 0
1

n

j jii n j
L a

α= =

 
− > − 

∑ . 

In order to formulate our main result, we introduce the n n× -matrix 

https://doi.org/10.4236/jsea.2020.1312023


V. Covachev, Z. Covacheva 
 

 

DOI: 10.4236/jsea.2020.1312023 352 Journal of Software Engineering and Applications 
 

, , 1, ,
1

i
ij ij

L
a i j nδ

α
 = − = − 

                   (8) 

where ijδ  is the Kronecker delta, and assume that: 
A5. The matrix   is an M-matrix. 
Assumption A5 implies that the matrix   is nonsingular and its inverse has 

only nonnegative entries [22] [23]. 
The main result of [20] is the following theorem. 
Theorem 1. Suppose that assumptions A1-A5 hold. Then the system of Equ-

ations (4), (5) has at least one N-periodic solution ( )x k . 
Theorem 1 is proved using Mawhin’s continuation theorem [[21], p. 40]. 
Example 1. Consider a modified Elman neural network with 2r = , 3n =  

and 4m =  (as in Figure 1). Suppose that the transfer functions ( )if x ,  

1,3i = , of the hidden layer all equal the sigmoid function ( ) 1
1 e xf x −=
+

, 

1
2

α = , 1u , 2u  are arbitrary N-periodic functions for some positive integer N, 

say, 

( ) ( ) { }1 2, 1 , 0 ,k ku k k N u k k N k
N N

   = − = + − ∈      
         (9) 

where [ ]ν  is the greatest integer in the real number ν , that is, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

1 1 1 1

0 0, 1 1, , 1 1, 0,

1 1, , 2 1 1, 2 0, 2 1 1, ;

u u u N N u N

u N u N N u N u N

= = − = − =

+ = − = − = + =



 

  (10) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

0 1, 1 2, , 1 , 1,

1 2, , 2 1 , 2 1, 2 1 2,

u u u N N u N

u N u N N u N u N

= = − = =

+ = − = = + =



 

   (11) 

(a) Further on, let us assume that the weights ija , , 1,3i j = , of the context 

nodes all equal 
1
2

, the transfer functions ig , 1,4i = , the weights ijb ,  

1,3, 1, 2i j= = , of the input nodes and ijc , 1, 4, 1,3i j= = , of the hidden nodes 
are arbitrary. 

Then, assumption A2 is satisfied with 
1
4iL = , 1,3i = , assumption A4 is also 

satisfied since 
3

1

1 11 , 1,3.
1 4j ji

j
L a i

α =

− = =
− ∑                  (12) 

Finally, the matrix 
3 1 1
4 4 4
1 3 1
4 4 4
1 1 3
4 4 4

 − − 
 
 = − − 
 
 − − 
 

                     (13) 

is an M-matrix with inverse 
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1

2 1 1
1 2 1 .
1 1 2

−

 
 =  
 
 

                       (14) 

Since all assumptions of Theorem 1 are satisfied, the modified Elman neural 
network under consideration has an N-periodic output ( )iy k , k ∈ . 

Let us assume that, moreover, 
1
2ijb = , 1,3, 1,2i j= = , and 3N = . Then the 

system of Equations (4), (5) takes the form 

( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 1 2
1 1 1 ,
2

C C C
ix k f x k x k x k u k u k = + + + − + − 

 
     (15) 

( ) ( ) ( )1 1 1 , , 1,3,
2

C C
i i ix k x k x k k i= − + − ∈ =           (16) 

where 

( )
( )
( )
( )

( )
( )
( )
( )

1 2

1, 1 mod3 , 2, 1 mod3 ,
2, 2 mod3 , 3, 2 mod3 ,
0, 0 mod3 , 1, 0 mod3 .

k k
u k k u k k

k k

≡ ≡ 
 = ≡ = ≡ 
 ≡ ≡ 

      (17) 

For ,k ∈   and N ∈ , we recall that ( )modk N≡   (k and   are con-

gruent modulo N) if and only if k
N
−

∈
  . For instance, ( )1 mod3k ≡  means 

that 3 1k κ= +  for some { }0κ ∈  . 

It suffices to find the initial values ( )0ix , ( )0C
ix , 1,3i = , so that 

( ) ( ) ( ) ( )3 0 , 3 0 , 1,3.C C
i i i ix x x x i= = =               (18) 

Equations (15), (16) imply that ( ) ( ) ( )1 2 3x k x k x k= = , k ∈ , and 
( ) ( ) ( )1 2 3

C C Cx k x k x k= = , 2,3,k =   Thus, in order to satisfy Equations (18), 
the initial conditions must be chosen so that ( ) ( ) ( )1 2 30 0 0x x x= =  and  

( ) ( ) ( )1 2 30 0 0C C Cx x x= = . The system of Equations (15), (16) reduces to 

( ) ( ) ( ) ( )( )1 2
1 3 1 1 ,
2

Cx k f x k u k u k = + − + − 
 

           (19) 

( ) ( ) ( )1 1 1 , .
2

C Cx k x k x k k= − + − ∈               (20) 

We have found that the initial values ( )0Cx , ( )0x  satisfying Equations (18) 
are (approximately) ( )0 1.9634Cx = , ( )0 0.9810x = . The first 4 values of the 
3-periodic solution of Equations (15), (16) are presented in Table 1. 

This solution can be found with arbitrarily high accuracy. 

(b) Next, let us assume that 11
1
2

a = , 12 22
1
4

a a= = , 13 21 33
1
8

a a a= = = ,  

 
Table 1. A 3-periodic solution of Equations (15), (16). 

 0k =  1k =  2k =  3k =  

( )Cx k  1.9634 1.9627 1.9504032 1.9633761 

( )x k  0.9810 0.9690532 0.9881745 0.9810172 
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23 31
1

16
a a= = , 32

1
32

a = , the transfer functions ig , 1,4i = , the weights ijb , 

1,3, 1,2i j= = , of the input nodes and ijc , 1, 4, 1,3i j= = , of the hidden nodes 
are still arbitrary. 

Then, assumption A2 is still satisfied with 
1 , 1,3
4iL i= = , assumption A4 is 

also satisfied since 
3

1
1

3

2
1

3

3
1

1 51 ,
1 16

1 471 ,
1 64

1 271 .
1 32

j j
j

j j
j

j j
j

L a

L a

L a

α

α

α

=

=

=

− =
−

− =
−

− =
−

∑

∑

∑

                   (21) 

Finally, the matrix 
3 1 1
4 8 16
1 7 1

16 8 32
1 1 15
32 64 16

 − − 
 
 = − − 
 
 − − 
 

                    (22) 

is an M-matrix with inverse 

1

1.3536229 0.1951023 0.0967449
0.0983574 1.1577144 0.0451476 .
0.0467601 0.0257986 1.070644

−

 
 =  
 
 

            (23) 

Since all assumptions of Theorem 1 are satisfied, the modified Elman neural 
network under consideration has an N-periodic output ( )y k , k ∈ . 

Let us assume that, moreover, 11
1
2

b = , 12 21
1
3

b b= = , 22 31
1
4

b b= = , 32
1
8

b = , 

and 3N = . Then, the system of Equations (4), (5) takes the form 

( ) ( ) ( )1 1 1 , , 1,3,
2

C C
i i ix k x k x k k i= − + − ∈ =           (24) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1 2 3

2 1 2 3

3 1 2 3

1 1 1 1 ,
2 4 8 3
1 1 1 1 , 1 mod3 ,
8 4 16 4
1 1 1 1 ,

16 32 8 8

C C C

C C C

C C C

x k f x k x k x k

x k f x k x k x k k

x k f x k x k x k

 = + + +    
 = + + + ≡ 

  
 = + + +  

  

   (25) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1 2 3

2 1 2 3

3 1 2 3

1 1 1 7 ,
2 4 8 6
1 1 1 5 , 2 mod 3 ,
8 4 16 6
1 1 1 7 ,

16 32 8 8

C C C

C C C

C C C

x k f x k x k x k

x k f x k x k x k k

x k f x k x k x k

 = + + +    
 = + + + ≡ 

  
 = + + +  

  

   (26) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1 2 2

2 1 2 3

3 1 2 3

1 1 1 2 ,
2 4 8
1 1 1 17 , 0 mod 3 ,
8 4 16 12
1 1 1 1 ,

16 32 8 2

C C C

C C C

C C C

x k f x k x k x k

x k f x k x k x k k

x k f x k x k x k

 = + + +    
 = + + + ≡ 

  
 = + + +  

  

   (27) 

It suffices to find the initial values ( ) ( )0 , 0 , 1,3C
i ix x i = , so that Equations 

(18) are satisfied. We have found that, approximately, ( )1 0 1.8403Cx = ,  
( )2 0 1.614Cx = , ( )3 0 1.3689Cx = , ( )1 0 0.9705x = , ( )2 0 0.89425x = ,  
( )3 0 0.77054x =  (see Table 2 for the first 4 values of the 3-periodic solution of 

Equations (24)-(27)). 
The initial values in Example 1, (a) and (b) have been found after numerous 

experiments with different sets of possible initial values, using MATLAB. They 
can be found with an arbitrarily high accuracy after sufficiently many iterations. 

3. Output Hidden Feedback Elman  
Neural Networks: Main Results 

OHF Elman neural network achieves the ability to process dynamic data by 
adding feedback from the output layer to the hidden output context layer (second 
context layer) based on Elman neural network. The mathematical model of an 
OHF Elman neural network is [4]: 

( ) ( ) ( )
1 1

1 , 1, , ,
n r

C
i i ij j ij j

j j
x k f a x k b u k i n k

= =

 
= + − = ∈ 

 
∑ ∑        (28) 

( ) ( ) ( )1 1 , 1, , ,C C
i i ix k x k x k i n kα= − + − = ∈           (29) 

( ) ( ) ( )
1 1

, 1, , ,
n m

C
i i ij j ij j

j j
y k g c x k d y k i m k

= =

 
= + = ∈ 

 
∑ ∑         (30) 

( ) ( ) ( )1 1 , 1, , ,C C
i i iy k y k y k i m kγ= − + − = ∈           (31) 

where Equations (28), (29) are the same as Equations (1), (2), the transfer func-
tions ig , 1,i m= , of the output layer are as in Equation (3), ( )0,1γ ∈  is the 
gain factor of the self-feedback of the output layer, ijd  are the connection  

 
Table 2. A 3-periodic solution of system (1), (2) in Case (b). 

 0k =  1k =  2k =  3k =  

( )1
Cx k  1.8403 1.89065 1.813606 1.8400157 

( )2
Cx k  1.614 1.70125 1.5821907 1.6145067 

( )3
Cx k  1.3689 1.45499 1.3448186 1.3689537 

( )1x k  0.9705 0.868281 0.9332127 0.9705381 

( )2x k  0.89425 0.7315657 0.8234114 0.8943396 

( )3x k  0.77054 0.6173236 0.6965444 0.7705772 
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Figure 2. An OHF Elman neural network with 2r = , 2r =  and 4m = . 

 
weights of the second context layer nodes, and Cy  is the output of the second 
context layer. An OHF Elman neural network with 2r = , 3n =  and 4m =  
is depicted in Figure 2. 

Clearly, for a given input ( )u k , { }0k ∈  , and initial values ( )0x , 
( )0Cx , ( )0y , ( )0Cy , we can find the output ( )y k , k ∈ , from Equations 

(28)-(31). 
Now suppose that the input ( )u k  is N-periodic for some N ∈ , that is, 
( ) ( )u k N u k+ = , { }0k ∈  . We shall look for sufficient conditions for the 

existence of an N-periodic output ( )y k , k ∈ . This means that for a suitable 
choice of the initial values ( )0x , ( )0Cx , ( )0y , ( )0Cy , the output ( )y k  is 
N-periodic. 

In addition to assumptions A1-A5, we make the following assumptions: 
A6. 0 1γ< < . 
A7. There exist positive constants ˆ

iL , 1,i m= , such that 

( ) ( ) ˆ
i i i i i i ig y g y L y y− ≤ −   for all ,i iy y ∈  , 1,i m= .      (32) 
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A8. 
1, 1

1 ˆmin 1 0
1

m

j jii m j
L d

γ= =

 
− > − 

∑ . 

In order to formulate our main result, we introduce the m m× -matrix 

ˆ
, , 1,

1
i

ij ij
L

d i j mδ
γ

 
= − =  − 

                  (33) 

and assume that: 
A9. The matrix   is an M-matrix. 
Now, we can state our main result as the following theorem. 
Theorem 2. Suppose that assumptions A1-A9 hold. Then the system of Equ-

ations (28)-(31) has at least one N-periodic solution ( )y k . 
Proof. According to Theorem 1, the system of Equations (28), (29) has an 

N-periodic solution ( )x k . Then the system of Equations (30), (31) with N-peri- 
odic input ( )x k  is of the form of Equations (1), (2), thus it has at least one 
N-periodic solution ( )y k . 

As mentioned in Section 2, the transfer functions ig , 1,i m= , of the output 
layer are often taken as linear functions. Without loss of generality, we can as-
sume that: 

A10. ( ) , 1,i i i ig y y y i m= + = . 
where iy  are some constants. In this case, in the assumptions of Theorem 2 we 
have ˆ 1, 1,iL i m= = . 

Now we show that, once the N-periodic solution ( )x k  of the system of Equ-
ations (28), (29) has been found, in the case of linear transfer functions of the 
output layer the N-periodic solution ( )y k  can be found in a straightforward 
way using another sufficient condition. 

For convenience, we introduce the matrices 

( ) ( ), 1, , 1, , , , 1, ,ij ijC c i m j n D d i j m= = = = =            (34) 

mI  is the m m×  unit matrix. Then Equations (30), (31) can be written in a 
matrix form as 

( ) ( ) ( ) ( ) ( ) ( ), 1 1 , .C C Cy k Cx k Dy k y y k y k y k kγ= + + = − + − ∈    (35) 

We successively obtain 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 0 0 , 1 0 0 1 ,C C Cy y y y D y y Cx yγ γ= + = + + +      (36) 

( ) ( ) ( ) ( )( ) ( )2 0 0 1 ,C C
my I D y y Cx yγ γ= + + + +            (37) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 0 0 2 1 ,C
m my D I D y y Cx DCx D I yγ γ= + + + + + +    (38) 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )

23 0 0 2

1 1 ,

C C
m

m m

y I D y y Cx

I D Cx D I y

γ γ

γ γ

= + + +

+ + + + +   
           (39) 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

2

2

3 0 0 3 2

1 1 .

C
m

m m

y D I D y y Cx DCx

I D DCx D D I y

γ γ

γ γ

= + + + +

 + + + + + +  
       (40) 
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By induction, we prove that 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( )

1 0 0 1

2 , , 1 , ,

kC C
m

k

y k I D y y Cx k

F Cx k Cx y

γ γ−= + + + −

+ − 


         (41) 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( )

1 0 0

1 , , 1 , , ,

k C
m

k

y k D I D y y Cx k

G DCx k DCx y k

γ γ−= + + +

+ − ∈
 

          (42) 

where ,k kF G  are some linear functions of their arguments. 
In order to obtain an N-periodic solution ( )y k  of the system of Equations 

(30), (31) we need to find initial conditions ( ) ( )0 , 0Cy y  satisfying 

( ) ( ) ( ) ( )0 , 0 .C Cy N y y N y= =                 (43) 

From Equations (41)-(43) we derive 

( )
( )

( ) ( ) ( )( )
( ) ( ) ( )( ),

1 2 , , 1 ,0
,

0 1 , , 1 ,

C
N

m N
N

Cx N F Cx N Cx yy
y Cx N G DCx N DCx y

 − + − 
 =    + −   







      (44) 

where 

( ) ( )
( ) ( )

1 1

, 1 1
.

N N
m m m

m N N N
m m m

I I D I D

D I D I D I D

γ γ γ

γ γ γ

− −

− −

 − + − +
 =
 − + − + 

         (45) 

If 
A11. The 2 2m m×  matrix ,m N  is nonsingular, then from Equation (44) 

we can determine the initial values ( ) ( )0 , 0Cy y . Thus, we have proved. 
Theorem 3. Suppose that assumptions A1-A6, A10, A11 hold. Then the sys-

tem of Equations (28)-(31) has at least one N-periodic solution ( )y k . 
Example 2. Now let us consider an OHF Elman neural network given by Eq-

uations (28)-(31), with 2r = , 3n =  and 4m = , 3N = , where Equation (28), 

(29) are as in Example 1(b), 1
3

γ = , assumption A7 is satisfied with ˆ 1iL = , 

1,4i = , the matrix of the connection weights of the nodes of the second context 
layer is 

1 1 1 1
3 9 27 81
1 1 1 1
27 9 81 243 ,
1 1 1 1
81 243 27 9
1 1 1 1
9 81 243 81

D

 
 
 
 
 

=  
 
 
 
  
 

                 (46) 

the matrix C of the weights of the hidden layer is arbitrary. 
Assumption A8 is satisfied since 

4 4

1 2
1 1

4 4

3 4
1 1

1 7 1 52ˆ ˆ1 , 1 ,
1 27 1 81

1 70 1 64ˆ ˆ1 , 1 .
1 81 1 81

j j j j
j j

j j j j
j j

L d L d

L d L d

γ γ

γ γ

= =

= =

− = − =
− −

− = − =
− −

∑ ∑

∑ ∑
         (47) 
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The matrix 

1 1 1 1
2 6 18 54
1 5 1 1

18 6 54 162
1 1 17 1
54 162 18 6
1 1 1 53
6 54 162 54

 − − − 
 
 − − − 

=  
 − − −
 
 
 − − − 
 

                (48) 

is an M-matrix with inverse 

1

2.0724479 0.4168759 0.1305003 0.0638851
0.143112 1.229219 0.0326251 0.0159713

.
0.1042683 0.0328298 1.0667989 0.1833283
0.3552811 0.0941895 0.0294854 1.0311707

−

 
 
 =
 
 
 

       (49) 

Since all assumptions of Theorem 2 are satisfied, the OHF Elman neural net-
work under consideration has a 3-periodic output ( )y k . 

Now let also assumption A10 be satisfied with still arbitrary iy , 1,4i = . 
Equation (44) takes the form 

( )
( )

( ) ( )

( ) ( ) ( )

4,3

4 4

2
4 4

0
0

1 42 1
3 3

,
1 43 2 1
3 3

Cy
y

Cx I D Cx I D y

Cx DCx I D DCx D D I y

 
  
 

    + + + +    
    =

    + + + + + +    
    







    (50) 

where 
2 2

4 4 4

4,3 2 2

4 4 4

1 1 1
3 3 3

.
1 1 1
3 3 3

I I D I D

D I D I D I D

    − + − +    
    =  
    − + − +        

           (51) 

For the 4 4×  blocks of this matrix we find 
2

4 4
1 1
3 3
0.8498704 0.0412539 0.0132771 0.0056902
0.0139206 0.9327508 0.003816 0.0016935

,
0.008434 0.0020322 0.9539535 0.0265768
0.0376636 0.0073724 0.0024048 0.9595421

I I D − + 
 

− − − 
 − − − =
 − − −
 
− − − 

     (52) 

2

4

0.4503887 0.1237616 0.0398313 0.0170706
0.0417619 0.2017477 0.0114481 0.00508051 ,
0.025301 0.0060966 0.1381395 0.07973043

0.1129909 0.0221172 0.0072143 0.1213738

I D

− − − − 
 − − − −   − + =   − − − − 
 
− − − − 

 (53) 
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2

4
1 1
3 3

0.0523673 0.0213897 0.0065848 0.0035687
0.0073662 0.0090555 0.0014941 0.0008935

,
0.0064079 0.0016805 0.0021522 0.0055569
0.0173526 0.0055134 0.0017415 0.001262

D I D − + 
 

− − − − 
 − − − − =
− − − − 
 − − − − 

     (54) 

2

4 4
1
3

0.8428982 0.0641691 0.0197545 0.0107061
0.0220986 0.9728335 0.0044824 0.0026806

.
0.0192238 0.0050414 0.9935433 0.0166706
0.0520578 0.016540 0.0052246 0.996214

I D I D − + 
 

− − − 
 − − − =
− − − 
 − − − 

     (55) 

We give the entries of the 8 8×  matrix 1
4,3
−  in the form of Table 3. 

Clearly, the matrix 4,3  is nonsingular. By virtue of Theorem 3, the system of 
Equations (28)-(31) has a 3-periodic solution ( )y k . Moreover, for a 3-periodic 
solution ( )x k , k ∈ , of Equations (28), (29), and given a 4 3×  weight ma-
trix C of the hidden layer and a constant vector 4y∈  , we can express the ini-
tial conditions ( ) ( )0 , 0Cy y  from Equation (50) making use of the inverse ma-
trix 1

4,3
− . 

Now, let us recall the 3-periodic solution ( )x k , k ∈ , of the system of Eq-
uations (28), (29): 

 
Table 3. Entries of the matrix 1

4,3
− . 

1
4,3
−  1j =  2j =  3j =  4j =  

1i =  1.2227899 0.0719604 0.0224995 0.0111231 

2i =  0.0246968 1.0772533 0.0055876 0.002802 

3i =  0.0183772 0.0055728 1.0495322 0.0303892 

4i =  0.0610861 0.0164463 0.0051634 1.0436876 

5i =  0.0784422 0.0329799 0.0100189 0.0056839 

6i =  0.0114738 0.0113854 0.0020869 0.0012782 

7i =  0.01032 0.0032401 0.002709 0.0061286 

8i =  0.0258891 0.0091753 0.0028365 0.0019349 

 5j =  6j =  7j =  8j =  

1i =  0.6683694 0.2158811 0.0674986 0.0333692 

2i =  0.0740904 0.2317599 0.0167629 0.0084059 

3i =  0.0551307 0.0167183 0.1485967 0.0911675 

4i =  0.1832583 0.0493388 0.0154903 0.131063 

5i =  1.2353264 0.0989397 0.0300569 0.0170517 

6i =  0.0344214 1.0341562 0.0062608 0.0038348 

7i =  0.0309602 0.0097202 1.008127 0.0183857 

8i =  0.0776672 0.0275259 0.0085096 1.0058047 
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( )
( ) ( )
( ) ( )
( ) ( )

T

T

T

0.868281,0.7315657,0.6173236 , 1 mod3 ,

0.9332127,0.8234114,0.6965444 , 2 mod3 ,

0.9705381,0.8943396,0.7705772 , 0 mod 3 .

k

x k k

k

 ≡
= ≡


≡

    (56) 

We assume that 

9 84 1
27 0 8

1 3 9 0
3 1 3 1

1

, ,
3
3

C y

   
   
   = =
   
   
   

                  (57) 

and evaluate the right-hand side of Equation (50): 

( ) ( )4 4

19.667758
10.9695871 42 1 ,
113.598733 3
112.36785

Cx I D Cx I D y

 
 

     + + + + =        
 
 

        (58) 

( ) ( ) ( ) 2
4 4

23.958132
10.9298371 43 2 1 .
101.927563 3
95.796757

Cx DCx I D DCx D D I y

 
 

     + + + + + + =        
 
 

  (59) 

Now from Equation (50) we find 

( )
( )

1
4,3

19.667758 57.09375
10.969587 20.074371
113.59873 148.44606
112.36785 138.309420
23.958132 39.0560130
10.929837 13.864602
101.92756 106.60011
95.796757 100.53127

Cy
y

−

  
  
  
  
  

    = =     
    

  
 
  
  

 .











 
  



           (60) 

 
Table 4. A 3-periodic solution of the system of Equations (28)-(31). 

 0k =  1k =  2k =  3k =  

( )1
Cy k  57.09375 58.087263 57.21886 57.093745 

( )2
Cy k  20.074371 20.556059 20.006159 20.074388 

( )3
Cy k  148.44606 156.08213 145.5913 148.44605 

( )4
Cy k  138.30942 146.63441 134.48547 138.30943 

( )1y k  39.056013 37.856439 38.020791 39.056013 

( )2y k  13.864602 13.15414 13.405668 13.864598 

( )3y k  106.60011 93.563926 99.915618 106.60012 

( )4y k  100.53127 85.607332 93.480936 100.53128 
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Finally, we find the first four values of the approximate 3-periodic solution 
(see Table 4). We notice that Equations (43) are satisfied much more precisely 
than Equations (18) in Example 1. On the other hand, the application of the 
method becomes much more difficult for a greater number m of the nodes in the 
output layer. 

4. Conclusion 

We presented sufficient conditions for the existence of periodic output of mod-
ified and OHF Elman neural networks with periodic input. Examples illustrating 
the results obtained were given. The models considered can be applied to the 
services quality of experience prediction. 
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