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Abstract 
Nowadays, the main effort of the scientific community is focused on the 
search of specific drugs for the inhibition of the Severe Acute Respiratory 
Syndrome—Coronavirus 2 (SARS-CoV-2), which is responsible for the Co-
ronavirus Disease 19 or COVID-19. With the same objective in mind, a Mo-
lecular Docking study was performed in this work in order to discover infor-
mation about some antiviral drugs of common use as protease inhibitors. As 
a complement of this research, a chemical reactivity study of these potential 
drugs was done with the aim of finding a relationship between the inhibition 
ability and the chemical reactivity. The results presented in this research con-
stitute one of the first predictions aimed to identify the best potential com-
pounds for this purpose while at the same time verifying the validity of the 
employed theoretical and computational methodology. By means of the anal-
ysis of the number of hydrogen bonds as well as the binding energies coming 
from the Molecular Docking study, it can be said that Telaprevir, Nelfinavir 
and Indinavir have the highest probability of success as potential inhibitors of 
SARS-CoV-2. 
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1. Introduction 

During the rapid development of the COVID-19 disease, researchers over the 
whole world are hard-working in order to develop a successful therapy. The 
main protease proteins of SARS-CoV-2 have been identified as the drug targets 
required to process the translation of the proteins from the RNA virus. In par-
ticular, the main protease (Mpro, also known as 3CLpro) is one of the coronavi-
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rus nonstructural proteins (Nsp5) designated as a potential target for drug de-
velopment [1] [2] [3]. Thus, inhibition of Mpro would prevent the virus from 
replication and therefore constitutes one of the potential anticoronaviral strate-
gies [1] [2] [3] [4]. For these reasons, the main objective of some of recent inves-
tigations has been finding adequate drugs with inhibitory activity properties of 
this particular protease protein [3]-[9]. 

Viral proteases show differences depending on the type of virus that express 
them. Among other aspects, they may vary in their substrate specificity as well as 
in their amino acid sequences and their subunits. However, all of them have a 
series of regions of substrate specificity where they can act as receptors, the 
so-called active center [10]. In order to find the particular region of one of the 
main proteases of SARS CoV-2 as well as the interactions with the amino acids 
present in these areas, a Molecular Docking process with molecules with poten-
tial inhibition activity can be developed with the aim of finding information 
about the protein-substrate interactions. With the objective of identifying if al-
ready well-known drugs can be used to treat this new disease that nowadays is 
affecting more than 200 countries and territories around the world [11], a series 
of protease inhibitors that could block the activity of the SARS-CoV-2 protease 
enzyme can be tested by using Molecular Docking strategies. These kinds of sys-
tems work by blocking the division of the large polyproteins into the smaller 
fragments that are necessary for the assembling of new viral particles [1] [2] [3] 
[4]. 

In the drug discovery research, the identification and validation of lead com-
pounds and the determination of active binding sites of biological targets related 
to a certain lead compound performed through wet lab experiments are quite 
expensive and time consuming [12]. Computational determinations reduce ef-
fectively the time required to obtain useful drugs and decrease their associated 
economic costs, making it possible the proposal of new potential drugs with low 
expenditures and selective targeting [13]. 

Considering these facts, the overall goal of this research is the discovery of 
significant binding affinities between some protease inhibitors and a selected 
protein chosen as the receptor, considering it in a rigid conformation and dock-
ing the protease inhibitors into its active site. Once the enzyme-substrate inte-
raction is selected, the binding site at several discrete points is tested and the in-
teraction energies between the molecules and the atoms within the receptor are 
calculated. This information is used to identify energetically favourable and un-
favourable regions for specific ligand-receptor interactions that could guide a 
correct pharmacophore feature placement or aid in the ligand design and opti-
mization [14] [15] [16]. 

The selection of the protease inhibitors to be tested in this research was in-
spired by the recently experimental evaluation of their antiviral activity by Ya-
mamoto and coworkers [17]. The selected molecular systems are Amprenavir, 
Asunaprevir, Atazanavir, Darunavir, Fosamprenavir, Indinavir, Lopinavir, Nel-
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finavir, Ritonavir, Saquinavir, Telaprevir and Tipranavir have been taken from 
the ZINC15 database [18] of the Food and Drug Administration (FDA) because 
they are currently used as protease inhibitors against Human Immunodeficiency 
Virus (HIV) and Hepatitis C Virus [19]-[27], while the crystallographic struc-
ture of the SARS-CoV-2 main protease was obtained from Protein Data Bank 
(PDB) with code 6M03 [28]. The physical and chemical properties of these mo-
lecules as well as their pharmacokinetics are readily available through the free 
online PubChem database (https://pubchem.ncbi.nlm.nih.gov/). A graphical re-
presentation of the two-dimensional structures of the considered molecules is 
displayed in Figure 1. 

In a complementary way, the chemical reactivity properties of the potential 
inhibitors were determined through a calculation of the reactivity descriptors 
that arise from Conceptual Density Functional Theory (CDFT) [29] [30] [31] 
[32]. The chemical reactivity descriptors affect the selectivity of the molecular 
system and play an important role in the prediction of the electrodonating or 
electroaccepting character of the systems [32]-[39]. The electronic configuration 
details help to describe the recognition process under negative and positive 
charges, exposing those interactions that can be difficult to identify with non 
bonded interactions [40]. The use of the concepts derived from this theory as 
well as their associated descriptors allowed us to find the reactivity of the mole-
cular systems in terms of their electronic densities which was an additional con-
tribution in the validation of the lead compounds. The determination of the Con-
ceptual DFT-based chemical reactivity descriptors of the potential SARS-CoV-2  

 

 
Figure 1. Graphical display of the two-dimensional structures of the potential SARS-CoV-2 protease inhibitors. 
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protease inhibitors through the consideration of the KID procedure [41] [42] 
[43] makes the current research as a distinctive improvement over recent similar 
works on the search of a proper therapy for the COVID-19 disease [44] [45] [46] 
[47]. 

2. Computational Methodology 
2.1. Molecular Systems Relaxation and Optimization 

The molecular structures of the ligands were obtained from the online ZINC15 
database [48]. Their structures were geometrically optimized and the most stable 
conformer in each case was selected. Random sampling was used in the process 
involving Molecular Mechanics methods with different torsional angles through 
the overall MMFF94 force field [49] [50] with connection to the MarvinView 
17.15 program (ChemAxon, Budapest, Hungary). MarvinView is an advanced 
chemical viewer that is considered to be suitable for the representation and study 
of single and multiple chemical structures, reactions, and queries. This was fol-
lowed by a review of the chemistry involved in the molecular structures and a 
generation of stereoisomer 3D structures, also by the use of MarvinView 17.15. 

After the conformational determination procedure, the selected molecular 
structures were geometrically reoptimized followed by the analysis of the vibra-
tional frequencies using the Gaussian 09 series of programs [51]. The procedure 
was performed in the context of the Density Functional Theory (DFT) metho-
dology using the MN12SX density functional [52] and the Def2SVP basis set 
[53] [54] with the SMD parameterization of the Integral Equation Formal-
ism-Polarized Continuum Model [55] and water as the solvent. The MN12SX 
density functional was chosen because it is already well known that it is capable 
of giving very good results for several structural and thermodynamic properties 
[52]. The resulting model chemistry, MN12SX/Def2TZVP/H2O, has proven to 
be adequate because MN12SX behaves as a Koopmans-complaint density func-
tional which is a very helpful feature for obtaining accurate HOMO and LUMO 
orbital energies avoiding the determination of the energies of the cationic and 
anionic systems for which convergence is usually hard to obtain for the some-
what large molecules as peptides are [41] [42] [43]. 

2.2. KID Procedure 

It is usually assumed that the goodness of a given density functional can be esti-
mated by comparing the results that it gives with the experimental values that 
are trying to be reproduced or with the results that can be obtained through post 
Hartree-Fock calculations like MP2, MP4 or CCSD. However, this is not always 
possible due to the lack of experimental results for the molecular systems that 
are being studied or the large size of the molecules that keep some accurate me-
thodologies to be computationally practical. For this reason, we have developed 
a protocol named KID (Koopmans in DFT) [41] [42] [43], which is an attempt 
to validate a given density functional in terms of its internal coherence. Within 
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the KID protocol four descriptors have been defined where it has been shown 
that there is a connection between those descriptors and the simplest conformity 
to the theorem of Koopmans or the Ionization Energy theorem, which is its 
equivalent within the Generalized Kohn-Sham (GKS) version of DFT, by con-
necting H  to −I, L  to −A, and their actions through the HOMO-LUMO gap 
as ( ) ( )1I H gs gsJ E N E N= + − − , ( ) ( )1A L gs gsJ E N E N= + − +  and  

2 2
HL I AJ J J= + . An additional descriptor ΔSL has been designed [41] [42] [43] 

to help in the verification of the accuracy of the KID approximation by compar-
ing the HOMO energy of the radical anion with the energy of the LUMO of the 
neutral species. Although the Koopmans-complaint behavior of the MN12SX 
density functional has been proven previously for the case of peptides [41] [42] 
[43], we think that it is worth to perform a further validation for the case of the 
molecules considered in the present study. 

2.3. Chemical Reactivity Properties 

On the basis of the molecular structures obtained from the geometry optimiza-
tions, the calculation of the KID parameters as well as the Conceptual DFT-based 
chemical reactivity descriptors was pursued by resorting to our in-house devel-
oped “CDFT” application [41] [42] [43]. The parameters found were the ioniza-
tion potential (I) and the electron affinity (A), directly from the results of the 
ground state computed energy, by using the same density functional and basis 
set as for the optimization step. This was followed by the determination of the 
global reactivity descriptors, which are: global hardness (η ), electronegativity 
( χ , and electrophilicity (ω ) [29] [30] [31]. Also, the electrodonating power 
(ω− ) and electroaccepting power (ω+ ) [39] and finally, the net electrophilicity 
( ω±∆ ) [56], whose meanings are described as follows: 
• Chemical Potential. This property measures the tendency of the electron to 

escape from systems in equilibrium. It is equal to minus the electronegativity. 
• Global Hardness. It quantifies the resistance of a molecule to intramolecular 

charge transfer. 
• Electrophilicity Index. It is defined in terms of the square of chemical poten-

tial divided by the chemical hardness and it denotes the stabilization energy 
after a system gets an additional electronic charge from the external envi-
ronment. 

• Electrodonating Power. It represents the capability of a chemical system to 
donate a small fractional charge. 

• Electroaccepting Power. It represents the capability of a chemical system to 
accept a small fraction of charge. 

• Net Electrophilicity. It is a measure of the relative electrophilicity. 
Their mathematical definitions are expressed through the following equations 

[29] [30] [31] [39] [56]: 

Electronegativity    ( ) ( )1 1
2 2 L HI Aχ = − + ≈ +   
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Global Hardness    ( ) ( )L HI Aη = − ≈ −   
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Net Electrophilicity     ( )ω ω ω ω ω± + − + −∆ = − − = +  
being H  and L  the HOMO and LUMO energies associated with each of the 
molecules considered in this work. 

2.4. Molecular Docking 

The crystal structure of COVID-19 main protease related to SARS-CoV-2 with 
PDB ID: 6M03 has been retrieved from the Protein Data Base  
(https://www.rcsb.org/structure/6M03) and was considered as the receptor in 
this study. The molecular docking was performed with the aid of AutoDock 4.2.6 
[57]. As a part of the procedure, water molecules were eliminated and only polar 
hydrogens were added to the protein structure for the simulation process of the 
intermolecular interactions between the protein and the ligand in the active site. 
The Lamarckian Genetic Algorithm (LGA) was considered for the estimation of 
the free energy change upon binding [58]. 

The grid box for the docking was built with a size of 80 × 80 × 80 points, cen-
tered at x = 12.116, y = −11.384 and, z = 4.660 coordinates and a grid spacing of 
0.381Å. The size and center of the grid box were defined after a cavities search in 
the structure that establishes the regions which can be occupied by the ligand. 
The search was developed by using the CAVER Analyst 2.0 Beta program 
(CAVER, Pilsen, Czech Republic). The docking parameters used for the LGA 
based conformational searches are docking trials: 150, population size: 150, the 
maximum number of energy evaluations: 2,500,000, the maximum number of 
top individuals to survive to next generation: 1, rate of gene mutation: 0.02, rate 
of crossover: 0.8: Mean of Cauchy distribution for gene mutation: 0.0, the va-
riance of Cauchy distribution for gene mutation: 1.0, and the number of genera-
tions for picking: 10. 

3. Results and Discussion 
3.1. Geometry Optimization 

The starting point consisted in the optimization of the geometries of the twelve 
inhibitors in the presence of water as the solvent and their vibrational frequen-
cies were analyzed to verify that each molecular structure corresponded to the 
minimum energy conformations. The resulting optimized structures are shown 
in Figure 2. The structures showed minimal changes from those obtained from 
the ZINC15 database so it was not considered necessary to display a table with  
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Figure 2. Optimized molecular structures of the inhibitors calculated with MN12SX/Def2SVP with water as the solvent. The color 
code is: gray for carbon, red for oxygen, blue for nitrogen, yellow for sulfur, orange for phosphorous, green for chlorine, light blue 
for fluorine and white for hydrogen 
 

the optimized bond and angles. 

3.2. KID Procedure Validation 

Although the Koopmans-complaint behavior of the MN12SX density functional 
has been proven previously for the case of peptides [41] [42] [43], we think that 
it is worth to perform a further validation for the case of the molecules consi-
dered in the present study. This determination has been achieved by making use 
of the in-house developed CDFT software tool and the results of this analysis are 
shown in Table 1. 

It can be seen from the results in Table 1 that the descriptors considered for 
the estimation of the goodness of the selected density functional through the 
KID procedure are very close to zero for all the studied molecules, providing an 
accurate justification for the choice of the MN12SX/Def2DZVP/H2O model 
chemistry employed for the computational determinations in this study. 

3.3. Chemical Reactivity of the SARS-CoV-2 Inhibitors 

With the most stable and relaxed molecular structure of the analyzed SARS-CoV-2 
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inhibitors, the analysis of their reactivity was performed using the descriptors 
mentioned above and included in Table 2. 

The electronic affinities of inhibitors vary from 0.89 to 2.66 eV. The greater 
facility to form an anion is for Fipranavir. For the case of the ionization poten-
tial, Telaprevir is the system with the greatest potential of losing an electron with  

 
Table 1. HOMO, LUMO and SOMO orbital energies, HOMO-LUMO gap and the KID 
descriptors (all in eV−1) tested in the verification of the Koopmans-like behavior of the 
MN12SX density functional for the SARS-CoV-2 inhibitors. 

Ligand HOMO LUMO SOMO SOMO JI JA JHL ΔSL 

Amprenavir −6.144 −1.174 −1.116 4.970 0.009 0.029 0.030 0.058 

Asunaprevir −5.844 −1.884 −1.852 3.960 0.032 0.015 0.035 0.032 

Atazanavir −6.318 −1.821 −1.807 4.498 0.022 0.006 0.023 0.013 

Darunavir −6.144 −1.175 −1.118 4.969 0.009 0.028 0.029 0.057 

Fosamprenavir −5.948 −1.015 −0.950 4.933 0.016 0.033 0.037 0.065 

Indinavir −6.257 −1.089 −1.077 5.168 0.058 0.006 0.058 0.012 

Lopinavir −6.551 −0.893 −0.913 6.658 0.008 0.009 0.012 0.020 

Nelfinavir −5.767 −1.733 −1.690 4.034 0.188 0.019 0.190 0.043 

Ritonavir −6.512 −1.463 −1.228 5.049 0.005 0.122 0.122 0.235 

Saquinavir −6.335 −2.650 −2.642 3.684 0.022 0.004 0.022 0.008 

Telaprevir −7.016 −2.616 −2.539 4.400 0.015 0.039 0.042 0.077 

Tipranavir −6.147 −2.659 −2.512 3.489 0.014 0.072 0.074 0.147 

 
Table 2. Global reactivity descriptors for the potential SARS-COVID-2 inhibitors: Elec-
tronegativity ( χ ), Hardness (η ), Electrophilicity (ω ) (all in eV), Softness S (in eV−1), 
Nucleophilicity N, Electrodonating Power (ω− ), Elctroaccepting Power (ω+ ) and Net 
Electrophilicity ( ω±∆ ) (also in eV). 

Ligand χ  η  ω  S N ω−

 ω+

 ω±∆  

Amprenavir 3.66 4.97 1.35 0.20 2.65 4.83 1.18 6.01 

Asunaprevir 3.86 3.96 1.89 0.25 2.95 5.95 2.09 8.04 

Atazanavir 4.07 4.50 1.84 0.22 2.47 5.10 1.93 7.93 

Darunavir 3.66 4.97 1.35 0.20 2.65 4.84 1.18 6.01 

Fosamprenavir 3.48 4.93 1.23 0.20 2.84 4.51 1.02 5.53 

Indinavir 3.67 5.17 1.31 0.19 2.54 4.77 1.10 5.87 

Lopinavir 3.72 5.66 1.22 0.18 2.24 4.66 0.94 5.60 

Nelfinavir 3.75 4.03 1.74 0.25 3.03 5.61 1.86 7.47 

Ritonavir 3.99 5.05 1.58 0.20 2.28 5.46 1.47 6.93 

Saquinavir 4.49 3.68 2.74 0.27 2.46 7.95 3.46 11.42 

Telaprevir 4.82 4.40 2.64 0.23 1.78 7.95 3.14 11.09 

Tipranavir 4.40 3.49 2.78 0.29 2.65 7.98 3.57 11.55 
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a value of 7.02 eV. Chemical Hardness values range from 3.49 to 5.66 eV, This 
means that Tipranavir with 3.49 eV has the lowest resistance to change its elec-
tronic configuration; thus, it will react more easily in the presence of the pro-
tease. Electronegativity values are located between 3.48 and 4.49 eV. The inhibi-
tor systems with a bigger tendency to attract electrons are Saquinavir, Tipranavir 
and Telaprevir respectively. 

The Electrophilicity values are in a range of 1.22 to 2.78 eV. This property 
denotes the capacity to stabilize the energy of a system when it becomes satu-
rated with electrons from the surroundings. The inhibitor which is most capable 
to stabilize energy is Tipranavir. Also, in all cases, the electrodonating powers or 
the potential inhibitors are larger than its accepting powers. 

As a complement of these global reactivity descriptors that arise from Con-
ceptual DFT [29] [30] [31] [39] [56], Domingo and his collaborators [59] [60] 
[61] [62] [63] have proposed a Nucleophilicity index N through the considera-
tion of the HOMO energy obtained through the KS scheme with an arbitrary 
shift of the origin taking the molecule of tetracyanoethylene (TCE) as a refer-
ence. On the basis of the previous definition and the scale established by these 
authors [60], it can be concluded that Nelfinavir can be regarded as a strong 
nucleophile because the value for the Nucleophilicity N is slightly greater than 3 
eV, while the other inhibitors can be considered as moderate nucleophiles with 
the exception of Telaprevir with a N value of 1.77 eV, thus labeled as a marginal 
nucleophile. 

3.4. Molecular Docking and Active Site Descriptors  
for the SARS-CoV-2 Inhibitors 

The Molecular Docking calculations were performed for the interaction between 
the protease protein with PDB code 6M03 and twelve potential inhibitors of 
protease included in the ZINC15 database of the Food and Drug Administration 
(FDA). 

One of the important results that arise from the Molecular Docking process is 
the binding energy (BE) of the inhibitors. Negative values for this BE are an in-
dication of the stability of the system and for the interaction with the active site 
of the protein. The docking procedure was evaluated for 10 poses. 

The values corresponding to the lowest energy conformation are in a range 
from −6.85 to −2.11 kcal/mol. The stability decreases in the following order: In-
dinavir > Lopinavir > Tipranavir > Nelfinavir > Asunaprevir > Telaprevir > Da-
runavir > Amprenavir > Fosamprenavir > Ritonavir > Atazanavir > Saquinavir. 

The other important result from the molecular docking is the description of 
the active site for each inhibitor. It is important to know the bonding between 
the analyzed macromolecule and the ligand because if a bond shows a good 
docking and its functional groups are well positioned so that they interact with 
the active site of the analyzed macromolecule, then it is likely that this bond is 
biologically active [64] [65]. This ability of the ligands to bind to macromole-
cules is directly related to the chemical reactivity properties of the molecular 
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systems involved. The marginal or strong nucleophilic or electrophilic character 
defines the interaction of the geometrical interaction structure in the binding 
pocket of the ligand. The moderate nucleophilic character of most of the ligands 
can explain the presence of the lysine residue in the active site of almost all of the 
ligands. 

The active site of the macromolecule remains in the core of the protein structure 
for all the tested inhibitors. Some of the residues are linked together in protein se-
quences. The residues of the active site for each ligand are presented in Table 3. 

There are residues repeated in the contour of the pose with the best score of 
each ligand. Lysine5 (LYS5) is present in the active site of eight residues: Am-
prenavir, Darunavir, Fosamprenavir, Indinavir, Nelfinavir, Saquinavir, Telaprevir 

 
Table 3. Binding energies, active sites and interactions between the inhibitors and the 
main protease of SARS-CoV-2-PDB: 6M03 obtained by the Molecular Docking proce-
dure. 

Ligand 
Binding Energy 

(Kcal/mol) 
Active Site 

Hydrogen 
Bonds 

Amprenavir −4.95 
LYS5, TYR126-GLN127, LYS137,  

SER139, GLU288-ASP289-GLU290 
LYS5-O7 

ASP289-N10 

Asunaprenavir −5.64 
PHE8, VAL104, ILE106, GLN110-THR111, 
ASN151-ILE152-ASP153, SER158, THR292, 

PHE294-ASP295 
LYS102-O47 

Atanazavir −3.36 
TYR126, LYS137-GLN138-SER139-PHE140, 

GLY170-VAL171 
0 

Darunavir −5.09 
LYS5, TRY126-GLN127-ARG131,  
LYS137-GLY138, ASP289-GLU290 

GLU290-O5 

Fosamprenavir −3.94 
LYS5, TRY126-GLN127-CYS128, LYS137, 

LEU286-LEU287-GLU288, ASP289-GLU290 
0 

Indinavir −6.85 LYS5, TYR126-GLN127, SER139, GLU290 
LYS5-O3 

GLU290-O3 

Lopinavir −6.82 
PHE8, VAL104-ARG105-ILE106, 

GLN110-THR111, ASN151, PHE294-ASP295 
0 

Nelfinavir −6.15 
LYS5, TYR126-GLN127, LYS137-LY138-SER139, 

PHE140, GLU166, THR169-GLY170 

LYS5-O2 
GLY138-N8 
SER139-O5 

Ritonavir −3.87 
LYS102, THR111, ASN151-ILE152, SER158, 

THR292,  
PHE294-ASP295, ARG298 

0 

Saquinavir −2.11 
LYS5, TYR123, LYS137-GLY138,  

SER139, LUE141, GLU166, HIS172 
0 

Telaprevir −5.35 
LYS5, TYR126-GLN127, ARG131, LYS137, 

GLU290 

LYS5-O8 
LYS5-O51 

GLN127-N34 
LYS137-N46 

Tipranavir −6.60 
LYS5, TYR126-GLY127;LYS137-GLY138-SER139, 

HIS172, GLU290 
GLU290-O6 
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and Tipranavir. The dipeptide Tyrosine126-Glutamine127 (TYR 126-GLN127) 
is present in the active site of seven of the antiviral systems: Amprenavir, Daru-
navir, Fosamprenavir, Indinavir, Nelfinavir, Telaprevir and Tipravir. Ly-
sine137-Glycine138 (LYS137-GLY138) is present in the active site of five resi-
dues as Atazanavir, Darunavir, Nelfinavir, Saquinavir, and Tipranavir. And Ly-
sine137 (LYS137) is as simple residue present in three ligands: Amprenavir, Fo-
samprenavir and Telaprevir. Glutamic acid is present in the active site with six 
ligands, Amprenavir, Darunavir, Fosaprenavir, Indinavir, Telaprevir and Tipra-
navir. The active sites of all the ligands are shown in Figure 3. 

3.5. Hydrogen Bonds 

The electrostatic interactions analysis between the ligands and the residues of the 
active site was performed with the aim of classifying them as strong, moderate or 
weak following the recommendation of Jeffrey [66]. It could be appreciated that 
seven of the twelve studied ligands presented hydrogen bonds which can be con-
sidered significative because the electrostatic interactions as hydrogen bonds are 
important as a measure of the highest probability of inhibitory effectiveness. 
This information is also summarized in Table 3. 
• Amprenavir—Weak hydrogen bond between O7 of the (C=O) accepting 

group of the ligand and amino group of LYS5 and with bond distance of 2.24 
Å. Moderate hydrogen bonds between carboxylic group of ASP289 and N10 
from the amino of the ligand with bond distance of 2.10 Å. 

 

 
Figure 3. Binding conformations of the amino acids on the active site of the main protease of SARS-CoV-2 (PDB code 6M03) 
with the inhibitors and hydrogen bond interactions in green dots. 
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• Asunaprevir—Moderate hydrogen bonds between amino group of LYS102 
and O47 of the ligand with bond distance of 1.88 Å. 

• Darunavir—Shows a moderate hydrogen bond with the donor group (O-H) 
belonging the donor group (O-H) belonging the ligand and O5 of carboxylic 
group of GLU290 with 1.92 Å. 

• Indinavir—Moderate hydrogen bond between O3 of the (C=O) accepting 
group of the ligand and amino group of LYS5 and with bond distance of 2.13 
Å. Moderate hydrogen bond between O3 of the (C=O) accepting group of the 
ligand and amino group of LYS5 and carboxylic group of GLU290 with bond 
distance of 1.80 Å. 

• Nelfinavir—Moderate hydrogen bond between O2 of the (C=O) accepting 
group of the ligand and amino group of LYS5 and with bond distance of 2.08 
Å. Moderate hydrogen bond between O5 of the donor group (O-H) belong-
ing to one of the rings of the ligand and the hydroxymethyl group of SER139 
with bond distance of 1.90 Å. Moderate hydrogen bond between N8 of the 
amine of the ligand and carboxylic group of GLY138. The bond distance is 
1.82 Å. 

• Telaprevir—Two moderate hydrogen bonds between amino group of LYS5 
with O38 and O51 of acceptor groups (C=O) of the ligand. Distances are 1.75 
and 1.90 Å respectively. Moderate bond between N34 of the ligand and the 
secondary amine of GLN127, distance of 2.13 Å. Moderate bond between 
N46 of the ligand and LYS137, distance of 1.89 Å. 

• Tipranavir—Moderate hydrogen bond of acceptor carboxylic group (C=O) 
of GLU 290 and O6 of the donor group (O-H) of the ligand. Bond distance 
2.00 Å. 

4. Conclusions 

In this research, we have performed the calculation of the chemical reactivity 
properties and a Molecular Docking study of the main protease proteins of 
SARS-CoV-2 6M03 with twelve known molecules with recognized inhibitory ac-
tivity included in the ZINC15 drugs database of the Food and Drug Administra-
tion (FDA). Binding energies, hydrogen bonds and residues that form the active 
site were defined for all the ligands. 

The results obtained from the determination of the chemical reactivity para-
meters indicate that the lowest values for the chemical hardness were for Tipra-
navir with 3.49 eV, Asunaprevir with 3.96 eV and Nelfinavir with 4.03 eV. This 
means that these ligands have the lowest resistance to change the shape of their 
electronic densities, and thus are the most reactive ones. According to the Bind-
ing Energy results obtained from the Molecular Docking procedure, Indinavir 
had the greatest stability with the studied protease followed by Lopinavir, Ti-
pranavir and Nelfinavir with a small binding energy difference. The binding site 
within the biological target maintained the presence of some residues in simple 
form and linked in protein arrangements. LYS5, GLU290 and dimer LYS137- 
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GLY138 residues established interactions with mostly of the ligands and showed 
electrostatic interactions. 

The electrostatic interactions as hydrogen bonds formed are important to de-
fine the highest probability of inhibitory effectiveness: Telaprevir, Nelfinavir and 
Indinavir combined high number of hydrogen bonds with stable conformation 
Binding Energy. It can be said that these ligands have the highest probability of 
success for acting as inhibitors of SARS-CoV-2. These results can be the basis for 
the identification of the best potential compounds for this purpose and could 
serve as a good starting point for future research in this field. 
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