
Advances in Pure Mathematics, 2020, 10, 706-727 
https://www.scirp.org/journal/apm 

ISSN Online: 2160-0384 
ISSN Print: 2160-0368 

 

DOI: 10.4236/apm.2020.1012044  Dec. 22, 2020 706 Advances in Pure Mathematics 
 

 
 
 

Numerical Comparison Research on the 
Solution of Stress Intensity Factors of Multiple 
Crack Problems  

Guo Zhao 

College of Architecture Engineering and Planning, Jiujiang University, Jiujiang, China 

 
 
 

Abstract 
A newly developed approach without crack surface discretization for model-
ing 2D solids with large number of cracks in linear elastic fracture mechanics 
is proposed with the eigen crack opening displacement (COD) boundary 
integral equations in this paper. The eigen COD is defined as a crack in an in-
finite domain under fictitious traction acting on the crack surface. Respect to 
the computational accuracies and efficiencies, the multiple crack problems in 
finite and infinite plates are solved and compared numerically using three 
different kinds of boundary integral equations (BIEs): 1) the dual BIEs re-
quire crack surface discretization; 2) the BIEs with numerical Green’s func-
tions (NGF) without crack surface discretization, but have to solve a com-
plementary matrix; 3) the eigen crack opening displacement (COD) BIEs in 
the present paper. With the concept of eigen COD, the multiple crack prob-
lems can be solved by using a conventional displacement discontinuity 
boundary integral equation in an iterative fashion with a small size of system 
matrix as that in the NGF approach, but without troubles to determine the 
complementary matrix. Solution of the stress intensity factors of multiple 
crack problems is solved and compared in some numerical examples using 
the above three computational algorithms. Numerical results clearly demon-
strate the numerical models of eigen COD BIEs have much higher efficiency, 
providing a newly numerical technique for multiple crack problems. Not only 
the accuracy and efficiency of computation can be guaranteed, but also the 
overall properties and local details can be obtained. In conclusion, the nu-
merical models of eigen COD BIEs realize the simulations for multiple crack 
problems with large quantity of cracks. 
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1. Introduction 

Solid materials that contain large number of cracks can be the fracture mechan-
ical models for many structural materials, especially for lots of brittle and qua-
si-brittle materials, such as cementitious materials in ref. [1], concretes structure 
in ref. [2], rocks in ref. [3], ceramics in refs. [4] [5], biological bones in ref. [6] 
and metallic materials in ref. [7] etc. The cracks may be formed by natural 
growth, also may be produced in the process of working. It is easy to be a frac-
ture failure under external load for these solid materials. In other words, the exis-
tence of cracks especially multiple cracks is the main cause of fracture failure for 
these solid materials. Therefore, the prediction of multiple crack behaviors and the 
strong interaction between cracks need to be researched. The fracture failure al-
ways happens due to strong interactions among cracks or crack interconnections 
each other, where the strong interactions or interconnections depend on the ap-
plied external loading the geometrical configuration of cracks, such as crack sizes, 
crack shapes, crack locations as well as crack orientations. However, it is impossi-
ble to know the distribution information of all the cracks beforehand, particularly 
when the quantity of cracks up to hundreds even thousands. As a result, the 
analysis of strong interactions among cracks or crack interconnections can be a 
numerical tool for researchers and engineers in designing general structures. 

In 1957, Irwin first postulated the concept of stress intensity factor (SIF). SIF 
became one of the main parameters which need to be obtained, depending on 
the stress field around the crack tips. Based on the value of SIFs, crack behaviors 
such as fatigue propagation can be investigated. The analysis of SIFs plays a 
greatly important role and real concern in linear elastic fracture mechanisms 
(LEFM), since solids with multiple cracks become one class of the most important 
problems in fracture mechanics. However, as mentioned earlier, the exact crack 
sizes, shapes, locations as well as orientations are unable to know in advance, it is 
an enormous challenge for researchers to seek an appropriate numerical model for 
LEFM problems, leading to huge complexities such as the computational efficiency 
and storage of solids with multiple cracks. As a result, most of them are incredibly 
difficult to solve by analytical procedures in ref. [8]. It is urgently needed to devel-
op more reliable, accurate and efficient numerical processing techniques. 

The finite element method (FEM), now widely available in many fields, not 
only has achieved a great reputation after decades of development in the applica-
tions of fracture mechanics, but also has many mature commercial software 
tools, such as ANSYS and ABAQUS, etc. Despite of its widely spread popularity, 
solids with cracks in large number are probably one class of the most difficult 
problems to simulate since the crack tips need to be discretized. To the author’s 
best knowledge, the advantage of the FEM is to model the solids as a whole, not 
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enough to understand the local information.  
Owing to the advantage of boundary discretization only, the boundary ele-

ment method (BEM) is subsequently considered as an efficient numerical me-
thod to deal with multiple crack problems. In other words, the BEM reduces the 
dimension of original problems compared with the FEM, enjoyed absolute ad-
vantages in improving the speed and accuracy of calculation. Inevitably, the 
conventional BEM also has its own weaknesses in solving large-scale cracks due 
to its dense and asymmetric of the final system matrix. It is well known there are 
generically two difficulties for numerical modeling in ref. [9]. The first difficulty 
is how to accurately describe the stress field around the crack tips. The second 
difficulty is how to deal with the degeneration of the boundary integral equation 
resulting from the geometric coincidence of the upper crack surface and lower 
crack surface. To overcome the former difficulty, special discretization element 
as in the FEM can be used as a good refinement of the mesh in ref. [10], while 
sub-region technique can be usually applied to avoid the degeneration of the 
integral equations for the latter in refs. [11] [12]. 

A combination or dual boundary integral equations (BIEs) in refs. [10] [13] 
[14] [15] are described alternatives and compared in the present paper, where 
conventional displacement integral equation and traction integral equation are 
simultaneous utilized correspondingly to the upper and lower crack surface, re-
spectively. Since all unknown information of the crack surfaces and outer boun-
daries are contained in the final system matrix, the size of dual BIEs will be a 
sharply rise when the quantity of cracks increase. The fast multipole expansion 
technology embedded in the conventional BEM, which is known as the fast mul-
tipole boundary element method (FMBEM), may be employed to solve multiple 
crack problems in refs. [16] [17]. 

The analytical solutions for most of multiple crack problems are restricted to 
obtain, except a few regular cracks. In order to eliminate the unknowns appear-
ing on the crack surfaces, an analytical Green’s functions, known as the Erdogan 
function in ref. [18] was used as the fundamental solution in conventional BEM 
in ref. [19]. Unfortunately, most of the above Erdogan function was always in 
plural, only restricted to lower dimension or single crack with simple size and 
shape, not available for solid materials with large number of cracks. 

In 1995, Telles et al. put forward the numerical Green’s function (NGF) pro-
cedure, which can be modeled as the superposition of a basic plus a comple-
mentary solution problem in refs. [20] [21], where the basic part is known as the 
Kelvin analytical solution problem. The complementary problem can be de-
scribed as a single crack embedded into an infinite domain under far-field load-
ing with the negative of the former Kelvin traction. However, the size of the final 
system matrix of the complementary solution problem of the NGF will grow 
large immediately with the number of crack increases, which have to be deter-
mined numerically step by step by using the conventional BEM. The processing 
technology seems very troublesome. Kachanov in refs. [22] [23] also proposed 
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an algorithm to simulate the interaction between cracks. The original crack 
problem in an infinite domain under surface loading can be decomposed into a 
superposition model of uniform and non-uniform terms. It is assumed that the 
interaction between non-uniform terms can be ignored in ref. [24]. In fact, it is 
not advisable to ignore this term since the interaction between cracks will be 
much stranger when the distance between cracks is quite close. 

To overcome these weaknesses of the above mentioned algorithms, the con-
cept of the eigen crack opening displacement (COD) are firstly proposed in au-
thor's previous paper in ref. [25] and reintroduced in the present paper as shown 
in Section 2.1. Based on the concept of eigen COD, the basic format of eigen 
COD BIEs and its iterative fashion are established step by step with a small size 
of final system matrix in refs. [26] [27]. 

In order to efficiently and numerically simulate the interaction effects between 
the cracks, a superposition technique as in NGF is applied and the local Eshelby 
matrix derived from the traction BIE in discretized form is introduced subsequent-
ly. Due to limited space, more details will be discussed in Section 3.2. The eigen 
strain BIEs for multiple inclusion problems can be also found in refs. [28] [29]. In 
fact, a generalized inclusion can be degenerated into a crack in physical. Corres-
pondingly, the eigen strain BIEs will degenerate into the eigen COD BIEs indirectly. 

In the present paper, two dimensional multiple crack problems in fi-
nite/infinite plates are numerically considered and discretized by using the 
boundary point method (BPM) in refs. [30] [31]. The rest structure of this paper 
is organized as follows: in Section 2, the basic formulations of the above three 
kinds of BIEs are briefly given, respectively. In Section 3, the concept of eigen 
COD is reintroduced, and also the computational model is established. After 
that, the local Eshelby matrix is presented with the numerical treatments in de-
tails. In Section 4, solution procedures of the eigen COD algorithm are given 
with its iteration fashion and convergence criterion. In Section 5, several nu-
merical examples in large number of cracks (the crack quantity up to hundreds) 
in finite/infinite plates are calculated and compared to show the accuracy and 
the efficiency with the proposed three kinds of boundary integral equations. 

2. Three Kinds of Boundary Integral Equations 
2.1. Eigen COD Boundary Integral Equations 

Without loss of generality, one two dimensional elastic domain Ω with outer 
boundary Г which contains multiple NC cracks is considered, where NC is the to-
tal number of cracks. Suppose there is a source point y, the displacements at y 
can be expressed with the unknown displacement discontinuities as follows in 
refs. [22] [23]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* *
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, d , d
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where *
iju  and *

ijτ  are respectively the displacement and traction fundamental 
solutions in ref. [9]. Am represents the crack number m. x and y represent the 
field point and the source point respectively. γ is the free term coefficient, which 
depends on the location of the source point and the geometry of the boundary. γ 
= 1 when the source point y is inside in the domain Ω, γ = 0.5 if it is on the outer 
boundary Г and only if the outer boundary is smooth and continuous. Δui are 
the displacement discontinuities, or the CODs at the crack surfaces, which can 
be defined as follows: 

( ) ( ) ( )i i ix A x A
u x u x u x+ −∈ ∈

∆ = −                  (2) 

where A+ represents the upper surface of one crack, A- represents the lower sur-
face, respectively. It is obvious from Equation (1) that if all the unknown dis-
placement discontinuities (CODs) are obtained in advance, the multiple crack 
problems can be solved by Equation (1) in a discrete form as in conventional 
BEM in ref. [9]. The stress and traction at source point y can be derived by the 
stress BIE and traction BIE, respectively, with the unknown CODs as follows: 
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   (4) 

where nj represents the unit outer direction cosine at the source point y. Equa-
tions (1), (3) as well as (4) are designated as the eigen COD BIEs in the present 
paper. The CODs in those equations are unknown and should be computed with 
the concept of eigen COD, which will be shown in Section 3.1. Anyway, as it 
mentioned before, because there are general two difficulties in conventional 
BEM, i.e., accurately describe the stress field around the crack tips and the dege-
neration of the boundary integral equations resulting from crack surfaces coin-
cide, Equation (1) cannot be employed alone to solve multiple crack problems. 

2.2. Dual Boundary Integral Equations 

For the numerical solution of multiple crack problems with dual formulations, 
the boundary integral equations used are as follows for the crack surfaces, to-
gether with the use of Equation (1) for the outer boundary: 

( ) ( ){ }
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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which means that both the displacement and the traction equations should be 
employed when the source point y is placed on the crack surface, thus avoiding 
the degeneration of the system matrix and getting rid of interfaces between the 
sub-regions into the modeling scheme in refs. [11] [12]. The limitation of the use 
of the dual BIEs for multiple crack problems is that the size of the finial system 
matrix will grow large shapely when the number of crack increases, since all the 
unknowns are placed both on the crack surfaces and outer boundaries of the 
domain. 

2.3. Numerical Green’s Function 

Since the analytical solutions for most of multiple crack problems are restricted 
to obtain, Telles et al. put forward the numerical Green’s function in 1995, which 
can be modeled as the superposition of a basic plus a complementary solution 
problem in refs. [20] [21], which became an important alternative in solving 
fracture mechanics problem. The main model of NGF is represented as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), d , dG G
i j ij j iju y x u x y x u x x y xγ τ τ

Γ Γ

= Γ − Γ∫ ∫         (7) 

where the superscript G means the Green's function fundamental solution as 
follows: 

( ) ( ) ( )*, , ,G C
ij ij iju x y u x y u x y= +                   (8) 

( ) ( ) ( )*, , ,G C
ij ij ijx y x y x yτ τ τ= +                    (9) 

The complementary parts of the NGF, C
iju  and C

ijτ  need to be determined by 
numerical means by using the traction BIE in refs. [20] [21]. It can be seen from 
Equation (7) that the discretization of crack surfaces has been elegantly avoided. It 
is a merit of the usage of the NGF. 

3. The Computational Model of Eigen COD BIEs 
3.1. Concept of Eigen COD 

In Section 2.1, the eigen COD BIEs have been defined. The CODs are the un-
knowns and need to be computed step by step with the concept of eigen COD, 
which will be discussed in what follows. 

For convenience, we consider an infinite domain containing a traction free 
crack A under far-field loading σ as shown in Figure 1(a). The crack has a COD 
response. This cracked model can be decomposed equivalently into two parts: 
the first part is that an enclosed crack under far-field loading, and both of the 
tractions with a negative minus sign along the upper and lower surface of the 
crack as shown in Figure 1(b). It is important that there is no COD response in  
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Figure 1. Fictitious tractions on crack surface. 

 
this part. The second part is that an opened crack under the fictitious tractions 
which applied on the upper and lower surface of the crack but without far-field 
loading as shown in Figure 1(c). Unlike the first part, the opened crack in Fig-
ure 1(c) has same COD response as that of Figure 1(a). After this treatment, the 
fictitious tractions applied on the crack surfaces can be numerically calculated 
with no difficulty regardless the existence of crack by using Equation (4), i.e., 
tractions boundary integral equation with the eigen COD unknowns. The con-
cept of eigen COD, Δui, redefined as the crack opening displacements of current 
crack A under the fictitious tractions, τi, acting on the surface. 

To better explain the following processes, an infinite domain contains only 
one crack is considered. By making the source point y on the crack surface, the 
expression of the traction, a hypersingular traction integral equation, can be de-
rived from Equation (4) in the global coordinate after a limiting process as fol-
lows: 

( ) ( ) ( ) ( ) ( )*HFP , d ,j k ijk i
A

n y u x x y A x y y Aτ τ
+

+∆ = − ∈∫        (10) 

where the capital HFP in the left side means the Hadamard finite part when the 
source y and the field point x coincide, which has hypersingularity. Without loss 
of generality, the single crack can be modeled as the case of a straight crack in 
refs. [20] [21]. It is noticed that there are always two respectively loading modes, 
i.e., the opening mode and the sliding mode, having similarly mathematical ex-
pression in fact. By the way, there is an explicitly analytical solution, *

ijkτ , for a 
single crack in infinite domain in ref. [12]. Suppose the straight crack with 
length of 2a. Embedding the explicitly analytical solution for a single crack into 
Equation (10), a simplified form can be reduced as follows: 

( ) ( )
( ) ( )

1

2
1

HFP d
2 1 ,

i
iA x y

a r x y
δµ τ

ν

+

−

= −
−π ∫             (11) 

where μ and ν are the shear modulus and Poisson’s ratio of the solid material, 
respectively. r represents the distance between field point x and source point y. δi 
stands for the COD for convenience. a in denominator means the half length of 
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the crack. It can be seen from Equation (11) that the COD, δi, has to be solved 
numerically. 

To eliminate the subscript i, the explicitly analytical expression of the HFP 
integral in ref. [30] can be employed into Equation (11) and transform the global 
coordinate to the local coordinate, the discrete form of Equation (11) can be ob-
tained as follows: 

( ) ( ) ( )2 2 2
1, 1,

2

2
1,

2
2 1 1

1
ln , 1, ,

1 2

G G

G

N N
j j

j k
j j k j j k ij k j k

N
j k k k k

k G
j j k j k i

w w
a

w w
k N

µ δ δ
ν ξξ ξ ξ ξ

ξ δ δ
τ

ξ ξ ξ ξ ξ

= ≠ = ≠

= ≠

  
  − +  − −− −  

  − ∂ ∂ − − + = − =   − + ∂ ∂   

π

 

∑ ∑

∑ 

   (12) 

where the subscript j and k are respectively the collocation points and the Gauss 
stations. wj and ξj are respectively the Gauss weight functions and station func-
tions. NG is the total discrete Gauss number. It is noticed that in Equation (12) 
there exists the derivatives of the COD, kδ∂ , which can be computed by using a 
Lagrange polynomial interpolation as follows: 

1

GN
k

k
k

lδ δ
=

= ∑                          (13) 

where lk represent the coefficients of the Lagrange polynomials interpolation 
with an order number of (NG + 2), making the Equation (13) satisfy that  
( ) ( ) 0a aδ δ+ = − = . 
Finally, by embedding Equation (13) into Equation (12), an equation in ma-

trix form can be written for both opening mode and sliding mode of the CODs 
as follows: 

1 0a− =S δ τ , 0  
=  
 

S
S

S
0

0
                  (14) 

where the vector form δ  and fictitious tractions τ  have a size of (2NG × 1). 
S  is discretized from Equation (12) in matrix form with a size of (NG×NG), 
which can be defined as the basic matrix for multiple crack problems in the 
present paper. 

3.2. The Local Eshelby Matrix 

In this section, an infinite domain contains multiple cracks is considered as 
shown in Figure 2. To efficiently and numerically simulate the interaction ef-
fects among cracks, the superposition technique as in the NGF is applied and the 
local Eshelby matrix derived from the traction BIE in discrete form is introduced 
in what follows. 

The main idea is to first select a crack as the current crack A (research object), 
and then divide all cracks into two groups according to a distance of other cracks 
to the current crack, defined as the adjacent group and the far-field group. It needs 
to be explained that the intermediate crack is usually selected as the current crack  
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Figure 2. The group definition for multiple crack problems. 

 
to facilitate the calculation in the present paper. The adjacent group (interior of 
the dashed circle) is consisted of the cracks with relatively small distances while 
the far-field group (exterior of the dashed circle) is made up of those with rela-
tively large distances. Correspondingly, the adjacent group has strong interac-
tion effects while the far-field group has week interaction effects to the current 
crack, respectively. 

In order to better explain the derivation of local Eshelby matrix, only the ad-
jacent group is considered, that is, the dashed circle around the current crack A 
contains all the cracks in infinite domain while the far-field group just contains 
crack number of zero. The number of cracks in the adjacent group being de-
noted as NL (NL = NC). By placing the source point y on the crack surfaces, Equ-
ation (10) can be rewritten as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

*

*

1,

HFP , d

, d ,

l

L

m

j k ijk
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τ

τ τ

+

+= ≠

∆

+ ∆ = − ∈

∫

∑ ∫
      (15) 

The first integral in the left side of Equation (15) has hypersingularity with the 
same structure as that of Equation (11), which can be discretized and computed 
by using Equation (12) and Equation (14), respectively. The second integral in 
the left side of Equation (15) is regular, which is easy to compute without any 
difficulty. After discretization and arrangement, Equation (15) can be rewritten 
in matrix form as follows: 

,1 ,2

1 0
1 1,2 1, 1 1
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2 22,1 2 2,
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L LL L L

N

N

N NN N N
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         

S S S

S S S

S S S





 

   



δ τ
δ τ

δ τ

            (16) 

where ak in the left side represent the half length of the kth crack. kmS  represent 
the sub-matrices which derived from the discrete form corresponding to the 
second regular integral in the left side of Equation (15). 

By inversing the total square matrix to the right side, the eigen COD, δk, of the 
kth crack can be obtained as follows: 
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( ) ( ) ,, 1, 2 ,kk k Ck N== S δ τ                   (17) 

where the right vector ( ) { }T

1 2, , ,
LNk k

= τ τ τ τ  are the fictitious tractions of all 
cracks in the adjacent group with a size of ((2NG × NL) × 1). The left vector ( )kδ  
are the eigen COD of the kth crack with a size of (2NG × 1). kS  are the inverse 
matrix of Equation (16), which is named as the local Eshelby matrix with a size 
of (2NG × (2NG × NL)) in the present paper. Since the discrete Gauss number NG 
and the adjacent number NL are always a limit number, the matrix kS  have a 
small size. 

It should be noted that the above local Eshelby matrix kS  are distinctly dif-
ferent for each crack. Once the radius of the dashed circle is defined in Figure 2, 
the adjacent group will be given for the current crack, then the local Eshelby 
matrix kS  which reflect the interaction among cracks will be correspondingly 
given. In this way, there are many local Eshelby matrices with small sizes for dif-
ferent current crack. However, from the perspective of computational efficiency, 
the computational efficiency of solving a cracked problem with many small ma-
trices must be much higher than that of a single but huge matrix as in dual BIEs 
and NGF. 

3.3. Stress Intensity Factors 

In order to avoid directly compute stresses or displacements around the crack 
tips due to its singularity, the SIFs are computed by using a polynomial expan-
sion of fictitious tractions in this section. 

Under normal circumstance, we can define the normal direction (opening 
mode) as n and the tangential direction (sliding mode) as t, respectively, with 
respect to the crack in the local coordinate as shown in Figure 1(c). The ficti-
tious tractions, τ, in either normal or tangential direction, can be fitted approx-
imately by using a polynomial expansion of an order NP as follows: 

[ ]
2

0 1 2 , ,
P

P

N

Nc c c c a a
a a a
η η ητ η   = + + + ⋅⋅⋅ + ∈ − +   

   
        (18) 

where ci represent the coefficients of the polynomial. 
According to the analytical solution of fracture mechanics [32] [33], the for-

mula of stress intensity factors for an infinite domain contains one crack under 
loading on the crack surfaces are as follows ( [ ],a aη ∈ − + ): 

( )( )
I 2 2

1 d
aR
a

p a
K

a a

η η
η

η−

−

−π
= ∫                  (19) 

( )( )
I 2 2

1 d
aL
a

p a
K

a a

η η
η

η−

+

−π
= ∫                  (20) 

where p is the loading on the crack surfaces, and p is the same with the fictitious 
tractions τ in the present paper. 

Then embedded Equation (18) into Equation (19) and (20), respectively, the 
SIFs at the two crack tips of a crack can be easily obtained as follows: 
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⋅ ⋅⋅ ⋅ 

π

         (21) 

where KR and KL represent the SIFs of right and left tips of the crack, respective-
ly. It is important to note that the troubles of computing stresses or displace-
ments around the crack tips can be avoided by using Equation (21), which only 
related to the coefficients of the polynomial expansion of the fictitious tractions. 

4. Solution Procedures of the Eigen COD BIEs 

It is obvious that all the unknown CODs and the fictitious tractions are related 
to the outer loading mode, the geometries, the quantities as well as the distribu-
tions of cracks in finite/infinite domain, which having mutual interactions among 
them. The solution procedures of the eigen COD BIEs are mainly divided into 
four stages as follows, i.e., the initiation stage, the iteration stage, the conver-
gence check stage and the post process stage, respectively. 

4.1. The Initiation Stage 

1) Initializing all the data related to the finite/infinite domain, such as boun-
dary conditions and geometric information of cracks, etc.; 

2) Computing the local Eshelby matrices, kS ; 
3) Computing the boundary unknowns by using the displacement eigen COD 

boundary integral Equation (1); 
4) Computing the fictitious tractions of all cracks by using the traction eigen 

COD boundary integral Equation (4); 
5) Computing the initial SIFs by using Equation (21). 

4.2. The Iteration Stage 

Since all cracks are divided into two groups, adjacent group and far-field group, 
the eigen CODs of all cracks are correspondingly calculated with respect to the 
fictitious tractions by two parts as follows: 

1) The first part is calculated by using the fictitious tractions of the current 
crack and other cracks in the adjacent group via the local Eshelby matrix Equa-
tion (17); 

2) The second part is calculated by using the fictitious tractions of all the 
cracks in the far-field group. A modified traction boundary integral equation of 
Equation (4) can be obtained as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* *

*

1,

, d , d

, d , 1, ,
C

l
L m

i l j k ijk j k ijk

N

j k ijk C
m m N A

y A n y x u x y x n y u x x y x

n y u x x y A x l N

τ τ τ

τ
+

+

Γ Γ

= ∉

∈ = Γ − Γ

− ∆ =

∫ ∫

∑ ∫ 

 (22) 

where l
LN  represent the cracks of adjacent group centered at the current crack 
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l. Then computing the corresponding SIFs of all cracks using Equation (21). 

4.3. The Convergence Check Stage 

In this block, we defined the maximum iteration error as follows: 
( ) ( )1

max max k kK K K −= −                    (23) 

where Kmax represents the maximum difference of the SIFs between the two ite-
rations. The superscript k is the iteration count. 

The convergence criterion of the present eigen COD BIEs is chosen as follows: 
3

max 10K aσ −≤π                       (24) 

1) If the convergence criterion is not satisfied Equation (24), it should be 
solved the boundary unknowns again and then return to the previous iteration 
stage; 

2) If the convergence criterion is satisfied Equation (24), then go to the next 
post process stage in what follows. 

4.4. The Post Process Stage 

The post process stage can be carried out according to the computational needs 
or the interests of the researchers such as the overall properties and the fracture 
properties of these solid materials, as well as the local stresses or strain field 
around the crack tips, etc. 

In conclusion, the solution procedures of the present eigen COD BIEs can be 
described in the flow chart as shown in Figure 3. 

5. Numerical Examples 

In this section, solutions of stress intensity factors of multiple crack problems in 
finite/infinite plates are presented to demonstrate the accuracy and the efficiency  

 

 
Figure 3. The flow chart of the solution procedures of eigen COD. 

https://doi.org/10.4236/apm.2020.1012044


G. Zhao 
 

 

DOI: 10.4236/apm.2020.1012044 718 Advances in Pure Mathematics 
 

by using the above three kinds of boundary integral equations. The numerical 
examples are solved by using a desk-top computer Dell with Intel Core Dual 
CPU, 2.50 GHz, 8 Gb of memory. 

5.1. Stress Intensity Factors in Finite Square Plates 
5.1.1. Square Plate with Four Cracks 
The first example is a square plate (W = H) in tension contains four cracks (NC = 
4) with the same length (a = 0.2 W) as shown in Figure 4, which was previously 
analyzed by Chen & Chang in ref. [34] by using FEM. The outer boundaries of 
the square plate and the cracks are respectively discretized by using 200 and 9 
nodes in dual BIE and eigen COD algorithm for this example. The number of 
cracks in adjacent group is set as NL = 4, the same as that of the total cracks (NL 
= NC) in the eigen COD algorithm. 

The stress intensity factors are computed with the variation of angle θ of the 
left and the right cracks symmetrically while the upper and the bottom cracks are 
kept stationary. The computed results are presented and compared in Figure 5 for  

 

 
Figure 4. A square plate with four cracks of equal size. 

 

 
Figure 5. Normalized stress intensity factors as a function of tilting angle θ. 
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the stress intensity factors at the crack tips A, B and C. The results by Chen & 
Chang in ref. [34] at θ = 0˚, 30˚ and 60˚ are also presented in Figure 5 for com-
parison. It is seen from Figure 5 that the good agreement exists among the dual 
BIE and the eigen COD algorithms and those by Chen & Chang in ref. [34], 
showing the effectiveness of the eigen COD BIE approach. 

5.1.2. Square Plate with Multiple Cracks 
The second example is a square plate in tension with multiple cracks, and two 
typical examples are as illustrated in Figure 6. The total number of cracks are 
chosen as ( )22 1 , 1,2,CN n n= + =  , where n is an integer. In this block, n is 
chosen as 3 and 5 as shown in Figure 6(a) and Figure 6(b), respectively. The 
size of each crack is set as 2a = 0.4 W/n, where W = H are the width and the 
height of the plate, respectively. The stress intensity factors of the central crack 
are computed and compared by using the three algorithms. The number of 
cracks in adjacent group is set as NL = 9 in the eigen COD algorithm. 

The effects of the number adopted for crack discretization, NG, are compared 
in Table 1 with the total crack number NC = 9 (the tilting angle θ = 55.86˚) and 
compared in Table 2 with the total crack number NC = 25 (the tilting angle θ = 
-55.75˚) for the three algorithms. It is seen from the Table 1 and Table 2 that 
the computed results are not sensitive to the number of NG, which become stable 
when the number for crack discretization is equal to and greater than 13 (NG ≥ 
13) in all these examples. 

The CPU time are compared as listed in Table 3 of the three algorithms. It 
can be obvious seen that the calculation efficiency of the proposed eigen COD 
approach is at least 20 times and 40 times higher compared with the NGF and 
the Dual BIEs, respectively, when the total crack number is set NC = 121 (the 
tilting angle θ = 60.50˚). In Dual BIEs, the final system matrix contains all un-
known information both on boundaries and crack surfaces, the size will be grow 
large with the total crack number increases, while in the NGF algorithm, the size 
of final system matrix to determine the complementary solution also grow large 
with the total crack number increases. 

5.2. Stress Intensity Factors in Infinite Plates 

In this section, infinite plates contain multiple rows of periodical cracks are  
 

 
Figure 6. The square plates in tension with multiple cracks of equal size. (a) NC = 9; (b) 
NC = 25. 
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Table 1. The normalized SIF with different NG (NC = 9, θ = 55.86˚). 

Algorithm NG 
1,RK aσ π  2,RK aσ π  1,LK aσ π  2,LK aσ π  

Dual BIEs 

5 0.34038 0.46616 0.37789 0.47206 

9 0.33831 0.46603 0.37281 0.47155 

13 0.33769 0.46597 0.37127 0.47139 

17 0.33737 0.46595 0.37049 0.47131 

21 0.33701 0.46593 0.36958 0.47121 

NGF 

5 0.33859 0.46567 0.36993 0.47118 

9 0.33837 0.46563 0.36940 0.47111 

13 0.33831 0.46563 0.36927 0.47109 

17 0.33829 0.46562 0.36922 0.47108 

21 0.33828 0.46562 0.36920 0.47108 

Eigen COD 

5 0.33753 0.46584 0.37135 0.47135 

9 0.33732 0.46582 0.37080 0.47129 

13 0.33727 0.46582 0.37067 0.47128 

17 0.33724 0.46582 0.37062 0.47127 

21 0.33723 0.46582 0.37059 0.47127 

 
Table 2. The normalized SIF with different NG (NC = 25, θ = −55.75˚). 

Algorithm NG 
1,RK aσ π  2,RK aσ π  1,LK aσ π  2,LK aσ π  

Dual BIEs 

5 0.35240 −0.42233 0.35648 −0.40404 

9 0.34964 −0.42487 0.35343 −0.40808 

13 0.34882 −0.42564 0.35251 −0.40931 

17 0.34840 −0.42604 0.35205 −0.40994 

21 0.34811 −0.42632 0.35173 −0.41037 

NGF 

5 0.32574 −0.41434 0.32749 −0.39836 

9 0.32568 −0.41470 0.32741 −0.39887 

13 0.32567 −0.41479 0.32739 −0.39900 

17 0.32566 −0.41483 0.32738 −0.39905 

21 0.32566 −0.41484 0.32738 −0.39908 

Eigen COD 

5 0.35019 −0.42246 0.35326 −0.40629 

9 0.34988 −0.42278 0.35292 −0.40677 

13 0.34980 −0.42286 0.35284 −0.40689 

17 0.34977 −0.42289 0.35280 −0.40694 

21 0.34976 −0.42291 0.35279 −0.40696 

 
Table 3. The CPU time (s) of the three algorithms. 

NC/n θ Algorithm CPU time (s) 

121/11 60.50˚ 

Dual BIEs 810.367 

NGF 405.612 

Eigen COD 20.548 
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considered. In order to make the problem being much convenient, the crack 
problems are composed of cracks with the same size, orientation and spacing. 
The cracks in arrays considered are placed periodically in a number of configu-
rations. Since all the cracks in arrays are under the same loading condition, one 
crack in the array is designated as the representative crack while the influences 
of all the other cracks, serving as an infinite series, on the representative crack 
can be summed up. 

5.2.1. Periodical Collinear Cracks in Horizontal Line 
The first example, as shown in Figure 7, is a row of periodic collinear cracks in 
horizontal line under far-field uniform tension perpendicular to the crack sur-
faces. In this computational model, up to 501 cracks (the total number of crack 
NC = 501) are taken into consideration instead of using an infinite number. It 
should be noted that the total number of crack is set to be an odd number so that 
the current crack can be centrally arranged for convenience. 

The calculated results for I-mode SIFs are expressed as shown in Table 4. It is 
important to point out that the unknowns are corrected step by step in an itera-
tive fashion. Since our concern is infinite plate problems, with the crack number 
NC increasing, the absolute error between computed results and theoretical solu-
tions is decreasing. It can be seen that the computing results are matched well by 
using the three algorithms, even though at a/b = 0.9, the error is still less than 
1%. It is so trivial that we could assume NC = 501 is enough to describe infinite 
array of periodically spaced collinear cracks problem. If the local number of 
cracks NL and the gauss points NG increase, the accuracy will be even more sa-
tisfactory. 

5.2.2. Double Periodical Collinear Cracks 
The last example in this block is an infinite plate containing double periodical 
collinear cracks with the same length under far-field uniform tension perpendi-
cular to the crack surfaces as shown in Figure 8. The number of row and column 
are equally set to be an odd number N so that the geometrical center of the  

 

 
Figure 7. Periodical collinear cracks with equal size. 
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Table 4. The normalized I-SIF comparsions (NL = 9, NG = 13). 

Algorithm 
a/b 

NC  
0.10 0.50 0.80 0.90 

Dual BIEs 

101 1.00408 1.12737 1.55942 2.09185 

201 1.00409 1.12762 1.55988 2.09276 

301 1.00411 1.12791 1.56165 2.09452 

401 1.00411 1.12810 1.56232 2.10257 

501 1.00411 1.12825 1.56319 2.10299 

NGF 

101 1.00411 1.12765 1.56021 2.09685 

201 1.00412 1.12803 1.56205 2.10075 

301 1.00412 1.12816 1.56266 2.10206 

401 1.00412 1.12823 1.56297 2.10271 

501 1.00412 1.12827 1.56316 2.10311 

Eigen COD 

101 1.00412 1.12769 1.56025 2.09689 

201 1.00414 1.12808 1.56209 2.10079 

301 1.00414 1.12821 1.56270 2.10210 

401 1.00414 1.12828 1.56301 2.10275 

501 1.00414 1.12832 1.56320 2.10315 

 

 
Figure 8. Double periodical collinear cracks with equal length. 

 
problem is located at the center. The total number of crack is (N × N). 

The normalized stress intensity factors of the central crack at different num-
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ber of rows N are calculated and compared as listed in Table 5 with different 
number of row N. It can be seen that the numerical results agree well with ref. 
[35], showing the effectiveness of the proposed approaches. 

The CPU time are also compared as listed in Table 6, showing high efficiency 
of the eigen COD algorithm. This is because, as mentioned previously, the final 
system matrix of the dual BIE algorithm contains all unknowns both on the 
boundaries and crack surfaces, where the size will be always largely increase with 
the total crack number. On the other side, the sizes of the final system matrices 
of either the NGF or the eigen COD algorithm remain unchanged. However, in 
the NGF algorithm, the size of the matrix to determine the complementary solu-
tion also increases. Much computional time is required for solving this matrix. 
In this way, the eigen COD algorithm has improved greatly in dealing with large 
number of crack problems, providing a newly numerical technique for multiple 
crack problems. Not only the accuracy and efficiency of computation can be  

 
Table 5. The normalized I-SIF comparsions (NL = 9, NG = 13). 

NC Algorithm 

h/d = 1.0 

Present Wang [35] 

a/b = 0.5 0.8 0.99 a/b = 0.5 0.8 0.99 

9 × 9 

Dual BIEs 1.10683 1.55238 6.36674 

1.11330 1.55774 6.36983 NGF 1.12183 1.56247 6.37052 

Eigen COD 1.11325 1.55773 6.36917 

11 × 11 

Dual BIEs 1.10746 1.56023 6.36794 

1.11330 1.55774 6.36974 NGF 1.12357 1.56514 6.37742 

Eigen COD 1.11325 1.55773 6.36917 

13 × 13 

Dual BIEs 1.10822 1.56437 6.36815 

1.11330 1.55773 6.36964 NGF 1.12483 1.56776 6.37981 

Eigen COD 1.11326 1.55773 6.36982 

 
Table 6. The CPU time (s) of the three algorithms. 

NC Algorithm CPU time (s) 

9 × 9 

Dual BIEs 226.529 

NGF 137.630 

Eigen COD 15.419 

11 × 11 

Dual BIEs 668.137 

NGF 445.818 

Eigen COD 18.521 

13 × 13 

Dual BIEs 1692.356 

NGF 653.128 

Eigen COD 22.069 
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guaranteed, but also the overall properties and local details can be obtained. In 
conclusion, the numerical models of eigen COD BIEs realize the simulations for 
multiple crack problems with large quantity of cracks using ordinary desk-top 
computers. 

6. Conclusion 

A new algorithm based on the eigen COD BIEs is proposed to simulate solid 
materials with cracks in large number, where the eigen COD is defined as the 
crack opening displacements of a crack under the fictitious tractions loading on 
the crack surfaces. With the concept of eigen COD, multiple crack problems can 
be easily solved in an iterative fashion with a relatively small size of final system 
matrix compared with the Dual BIEs and the NGF, showing the practical signi-
ficance of the present approach. Through the division of adjacent group and 
far-field group, the local Eshelby matrix, reflecting the strong interactions 
among cracks and avoiding numerical iteration divergence in the case of dense 
cracks, derived from the traction boundary integral equation in discrete form is 
introduced. Numerical examples verify the feasibility of the eigen COD BIEs for 
the simulation of multiple crack problems from two aspects of the numerical 
calculation accuracy and efficiency of computation. The numerical results of 
stress intensity factors show that the eigen COD algorithm has intrinsic scientific 
and rationality. Not only ensures the accuracy, also greatly improves the effi-
ciency. The overall properties such as the rigidities and the local details such as 
the stresses around the crack tips can be achieved in future research, which have 
important theoretical significance and engineering application value. 
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